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1 Executive Summary

WP6 continues to focus on interaction dynamics of social interaction during robot-human play and the
prerequisites for gesture and non-verbal communication between robots and humans, as well as the
realization of these capabilities in a robot. User studies are used to gain understanding of the kinesics
and dynamics of social interaction during robot-human play and its development in ontogeny. At
the same time, techniques for achieving this capability in an autonomous robot through grounded
sensorimotor experience and interaction histories, are investigated.
This deliverable brings together three areas of complementary research work. The first, defined by
two papers detailing an investigation of a robot-human drumming interaction game: “Drum-mate:
A Human-Humanoid Drumming Experience” (Kose-Bagci et al., submitted 2007b) and “Emergent
Turn-Taking in Drumming Games with a Humanoid Robot” (Kose-Bagci et al., submitted 2007a),
both have been submitted to conferences. The results from the drumming interaction showed differ-
ences in both the participants qualitative experience and objective measures of the interaction under
different conditions of concomitant non-verbal gestures by the robot as well as revealing interesting
gender differences.
The second area of work regards an architecture by which a robot can ontogenetically develop through
social interaction and grounded sensorimotor experience. We present work that has been published
in a journal article (June issue of Adaptive Behaviour (Mirza et al., 2007)) detailing the architecture
and experiments using the early interaction game, “peekaboo”, between a robot and human. The
interaction history was shown to be capable of supporting development of a turn-taking interaction in a
robot which took appropriate actions or gestures based on its own grounded sensorimotor experience.
Furthermore, we describe in the body of this deliverable key areas of research with the interaction
history architecture including issues of scalability, forgetting and experimental technique. Finally,
we present the current state of research that brings together the interaction history architecture on a
humanoid platform to play the early social interaction game, “peekaboo”.
The third area is concerned with the neural bases of gesture communction. Studies during the third
project year on this topic include work on (a) eye-contact (work in progress), (b) brain areas involved
in gestural communication, and (c) a behavioral study of cooperation and competition during human
interaction.

2 Timing and Nonverbal Cues in Interactive Play with a Humanoid
Robot

2.1 Gestures in Human-Humanoid Drumming

The results of a study focusing on interaction dynamics of social interaction during human-robot play
are presented. The study is an exploratory investigation of a drumming experience between Kaspar, a
humanoid robot, and human partners. The social interaction was mediated through a drumming call-
and response game and was systematically modulated by non-verbal gestures and cues. The results
were statistically analysed in terms of the game performance as well as the evaluation of the game by
the participants.
The analysis found a clear effect due to the concomitant gestures during the interaction and also found
interesting gender differences between the participants in terms of how they interacted with the robot
under different gesture conditions. Male participants tended to focus more on the interaction rather
than the accuracy of drumming as gestures increased.
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Full details of the experiment and results are to be found in the paper included as Appendix A.

2.2 Kinesics of Interaction and Emergent Turn-Taking

In a further series of experiments, we studied emergent turn-taking while regulating the manner in
which the robot’s actions were produced. In this work, KASPAR uses different probabilistic models
to decide when to start and stop its turn. KASPAR uses the number of beats of human participants and
the time duration of its previous play as parameters in the models to decide the start and stop times.
Therefore the number of beats and play times are not deterministic but emerge completely from the
interaction between the human participant and the humanoid. Thus, during the games, sometimes
KASPAR plays the ‘leader’ role, sometimes it follows the human participant. Analysis of the results
showed an impact of the turn-taking model on the structure of the interaction in terms of duration and
complexity of drumming by human participants as well as on their enjoyment of the interaction game;
however, individual differences between participants played a strong role. Moreover participants
behaviour changed over the course of (order controlled) exposure to the models, indicating that they
may have adapted their interaction to perceived capabilities of the robot.
Full details of the experiment and results are to be found in Appendix B.
Both of these results together sugest that deeper study of human-robot interaction kinesics and recipi-
ent design is warranted in the area of ontogenetic robotics where a robot develops by engaging in and
sustaining social interaction with human partners.

3 Grounded Sensorimotor Interaction Histories and Metric Space of
Experience

Over the last three years of the project work has been ongoing to develop the capability for a robot
to develop in ontogeny through interaction in a social environment. The history of interaction is
composed of grounded sensorimotor experiences which are related to one-another in a metric space
defined by their distances in terms of an information theoretic quantity termed Experience Distance.
As a robot interacts with its environment it accumulates experiences and the metric space grows
accordingly. A further dimension to the experience is added in terms of rewards signals from the
environment. An action selection mechanism can then use this space of experience to decide the next
action according to proximity of the current experience to one in its history and the expected value of
the experience in terms of reward.
The combination of the sensorimotor experiences, the metric space of experience and the action se-
lection mechanism are collectively referred to as the Interaction History Architecture.

3.1 Peekaboo and the Temporal Horizon of Interaction

Appendix B presents a published article Mirza et al. (2007) that details the architecture as outlined
above, and also presents results of robotic experiments that establish the predictive efficacy of the
metric space and shows the robot developing the capacity to play the simple interaction game “peek-
aboo”. A quantitative investigation of the appropriate horizon length of experience for the game
reveals the relationship between length of experience and cycle time of interaction, and suggests the
importance of multiple, and possibly self-adaptive, horizon lengths.
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3.2 Technical Assessment of the Interaction History Architecture: Scalability

Appendix C and D present recent research on the interaction history architecture. Appendix C exam-
ines the issue of scalability of the architecture, addressing issues such as forgetting and computational
complexity. Appendix D utilizes the architecture in a simple simulated toy-problem, in order to study
and improve the learning and developmental capabilities of the architecture before implementation on
a humanoid robot.

3.3 Current research

Experiments using the peekaboo task with a humanoid robot (KASPAR) will be the focus of the
next phase of research on the interaction history architecture and its role in a robot’s ontogenetic
development of capability to act in a social interaction. The experiments will be based on the previous
peekaboo work but will utilize a more generic motivation system, use audio as a further interaction
modality as well as utilizing the enhancements learnt through the scalability and simulated test-bed
studies. An important goal in this work in particular is to move towards software that will form part
of the iCub open software delivered at M42.

4 Neuroscience of Gesture Communication

Work on the neural bases of gesture communication in year 3 was focused on studies in three areas:
(a) eye-contact (work in progress), (b) the brain areas involved in gestural communication (Fadiga
et al., 2006), and (c) the behavioral study of cooperation and competition during human interaction.

4.1 Eye Contact

Sympathy is the ability of the observer to reproduce the internal states of others, either when observing
an external event or the display of a reaction, motor or affective. We test the hypothesis that sympathy
is used as an information extracting device: the reproduction of the neural activity of the observed
subject provides a signal on the information available to the observed subject. An implication of the
theory is that a subject has very little to know on his own internal states, so brain activity related to
sympathy should be smaller than it is when a different subject is involved. We test this hypothesis
using the simplest form of interpersonal communication: the exchange of gazes among human sub-
jects, including the subject looking at himself. Five different conditions have been used. The key
comparisons are between the brain activity of a subject when he is looking at a different person and
when he is looking at his own eyes. In other conditions, subjects are looking at an observer who is not
looking, or they are looked at as they are not looking. A group of 29 subjects has been observed in an
fMRI study. The results support the hypothesis of sympathy ax an information acquisition. For ex-
ample, BA 44 is involved specifically when two subjects exchange gazes. Anterior Insula is activated
when subjects are being looked at and are not looking. In addition to this study (preliminary data
were presented in, Fadiga, L. Craighero, L., Lungu, O, and Rustichini, A. Eye-to-eye communication,
2005, Society for Neuroscience Meeting, Washington DC), we more recently carried out a behavioral
experiment aiming at investigating the gaze behavior of two human subjects while they look each
other into the eyes. The parameters we acquired where: eye position (60 Hz), pupil diameter (as an
index of attention) and blinking. The basic experimental condition was contrasted with two control
conditions. In the first, subjects were looking at themselves through a mirror, in the second, they were
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looking at a photograph of two eyes. We are currently analyzing the data and we will soon publish
these results together with those of the fMRI experiment described above.

4.2 Brain Areas Involved in Gestural Communication

The recent finding that Broca’s area, the motor center for speech, is activated during action observation
lends support to the idea that human language may have evolved from neural substrates already in-
volved in gesture recognition. Although fascinating, this hypothesis has sparse demonstration because
while observing actions of others we may evoke some internal, verbal description of the observed
scene. Here we present fMRI evidence that the involvement of Broca’s area during action observation
is genuine. Observation of meaningful hand shadows resembling moving animals induces a bilateral
activation of frontal language areas. This activation survives the subtraction of activation by seman-
tically equivalent stimuli, as well as by meaningless hand movements. Our results demonstrate that
Broca’s area plays a role in interpreting actions of others. It might act as a motor-assembly system,
which links and interprets motor sequences for both speech and hand gestures. These results have
recently been published in Social Neuroscience Journal (Fadiga et al., 2006) (Appendix F).

4.3 Cooperation and Competition in Human Interaction

We studied the behavior of 12 pairs of (normal, right-handed) undergraduate students while they were
involved in a simple coordination game requiring motor interaction. Three experimental conditions
were defined according to whether a monetary prize was given to both or only one player, if the couple
was successfully completing the required assignment. Electromyographic potentials (EMG) were
recorded from the right first dorsal interosseus (FDI) muscle, a muscle critically involved in the motor
task. We also collected written answers from standard questionnaires from which we constructed
individual measures based on organized group interaction, social involvement and altruism. These
measures of ’Altruism’ were collected to estimate individual pro-social or altruistic attitudes and
behavior. Consistently with a simple behavioral model, by which EMG signals may reveal subjects’
personal concern (utility) associated to the given task, experimental evidence shows that individual
average EMG signal was increasing when the players where expecting a monetary reward. When we
split the subject pool into two subsamples (according to the measures of Altruism obtained from the
questionnaire), we found that monetary incentives explain the level of subjects’ EMG signal only in
the subsample characterized by low SC or Altruism. These findings seem to support the possibility that
an electrophysiological measure, such as EMG recording, could reveal the most profound attitudes and
believes that guide social interaction.
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Drum-mate: A Human-Humanoid Drumming 
Experience  

Hatice Kose-Bagci, Kerstin Dautenhahn, Dag Sverre Syrdal, and Chrystopher L. Nehaniv 

  
Abstract—We present an exploratory study investigating a 
drumming experience with Kaspar, a humanoid child-sized 
robot, and a human. In this work, our aim is not to have Kaspar 
just replicate the human partner's drumming, but to engage with 
the human in a ‘social manner’ using head gestures in a call and 
response turn-taking interaction and to assess the impact of non-
verbal gestures on the interaction. Results from the first 
implementation of a human-robot interaction experiment are 
presented and analysed qualitatively (in terms of participants' 
subjective experiences) and quantitatively (concerning the 
drumming performance of the human-robot pair). The 
interaction experience is discussed in terms of imitation, turn-
taking, and the effect of gender differences. 
 

Index Terms—Humanoid, robot drumming, human-robot 
interaction, imitation 

I. INTRODUCTION 

 
USIC performance is a good tool for studying the 
interaction between humans and robots in terms of 

social aspects including imitation, turn-taking and 
synchronization. Drumming is one of the best ways of 
performing music in robotics, since it is relatively 
straightforward to implement and test, and can be 
implemented technically without special actuators like fingers 
or special skills or abilities specific to drumming.  

There are several works concerning music performance in 
human-robot interaction. In [1,2,3] robotic percussionists, play 
drums in collaboration with human partners. These artifacts 
are robot arms connected to upper torsos that are specially 
designed to play drums. In [4], an approach based on the 
movement generation using dynamical systems was tested on 
a Hoap-2 humanoid robot using drumming as a test case. 
Similarly, in [5] humanoid drumming is used as a test bed for 
exploring synchronization.  

However, a robot will also need to motivate and sustain 
drumming behaviour coping with a wide range of users. One 
way of motivating such behaviour is through the use of social 
gestures. In the related field of virtual agents, researchers have 
shown the beneficial effects of gestures and expressions used 
by virtual agents both in short-term and long-term interactions 

[6,7], in maintaining user involvement with the tasks 
encouraged by the agent.  

 
H. Kose-Bagci, K. Dautenhahn, D. S. Syrdal, and C. L. Nehaniv are  with the 
Adaptive Systems Research Group, University of Hertfordshire, School of 
Computer Science, Hatfield, Herts, AL 10 9AB, U.K. 
(e-mail: {h.kose-bagci,k.dautenhahn,d.s.syrdal, c.l.nehaniv}@herts.ac.uk). 

 

Applied to the field of robotics, the need for the possession 
of a set of social skills for a robot in order to encourage 
behaviour successfully may require that it possesses the ability 
to use social cues and gestures to motivate users to interact 
with it. This is especially the case for assistive robotics [8]. 

We can already find robotic systems that use social gestures 
in order to encourage human-robot interaction. A well known 
example is KISMET where facial expressions were used to 
regulate the interaction with people inspired by interactions of 
infants with their caretakers [9]. Other recent examples 
include small cartoon like robotic "creatures" such as Keepon 
and Roillo designed to be used in interaction with children 
[10,11]. These little rubber robots have a limited action 
repertoire, but can produce selected gestures to engage in 
interaction with children in the playground. The fixed gestures 
are either random or tele-operated by a hidden puppeteer as in 
the Wizard of Oz (WoZ) technique, as a part of social 
interaction. Other related work is discussed in section 2.  

In this study, our humanoid robot Kaspar plays drums 
autonomously with a human ’partner’ (interactant), trying to 
imitate the rhythms produced by the human. However, the 
social interaction is not limited to the replication of drumming, 
but also involves studying the impact of non-verbal robot 
gestures which are meant to motivate the human. Kaspar 
produces fixed head gestures and eye-blinking as it drums. 
Our approach is tested with adult participants in several 
drumming sessions, and the experimental results are reported 
and analyzed below in terms of imitation, turn-taking, and the 
impact of gender differences.  

The rest of this paper is organized as follows; in the next 
section, related research is summarized. Next, the 
methodology is briefly described. The section 4 presents the 
research questions, corresponding achievements and 
conditions. The experiments are described in the section 5. 
Section 6 includes a brief conclusion on what was learned 
from this work, and the final section presents ideas for future 
work.  

 
II. RELATED RESEARCH 

 
HAILE [1,2] is a robot arm that aims to play a drum in 

collaboration with a human partner to  study social, 
mathematical, physical, and technological aspects of music. 
HAILE does not use fixed deterministic rules, but uses 

M 
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autonomous methods to create variant rhythms. It perceives a 
variety of complex features of the human partner's drumming 
whereby a microphone on the drum analyses the sounds and 
produces rhythms in response. 

In [3], a somewhat less musically sophisticated humanoid 
robot called NICO with an upper half body torso, plays a 
drum together with human drummers. It has visual and audio 
sensing to discover the right tempo, and it trains itself. It uses 
a simple threshold mechanism to understand the human 
partner's beats, and can distinguish its own performance with 
audio sensing, integrating the two sources of information to 
predict when to perform the next beat. 

ROILLO is a simple robot with a rubber coated foam head, 
body, and an antenna. It has 3 wires connected to simple 
servos which move the head and body in various directions. It 
is used in experiments with children to study interactions 
between robot and children [10]. 

KEEPON is another simple robot, which has only a rubber 
head and a body. It is has a small CCD camera, and 
microphone on it. It can move its head, turn its body, and 
make bobbling actions to show its “feelings”. It has both 
attentive and emotive actions. It is simple but robust enough to 
be used in play rooms in interaction with children [11,12]. 

 
III. METHODOLOGY 

 
In the current study the human partner plays a rhythm 

which Kaspar tries to replicate, in a simple form of imitation 
(mirroring). Kaspar has two modes: listening and playing. In 
the listening mode, it records and analyses the played rhythm, 
and in the playing mode, it plays the rhythm back, by hitting 
the drum positioned in its lap. Then the human partner plays 
again. This (deterministic) turn-taking will continue for the 
fixed duration of the game. Kaspar does not imitate the 
strength of the beats but only the number of beats and duration 
between beats, due to its limited motor skills. It tailors the 
beats beyond its skills with the minimum values allowed by its 
joints. Kaspar needs at least 0.3 seconds between each beat to 
get its joints ‘ready’, so that even if the human plays faster, 
Kaspar’s imitations will be slower using durations of at least 
0.3 seconds between beats. It also needs to wait for a few 
seconds before playing any rhythm in order to get its joints 
into correct reference positions.  

 In Fig. 1, the basic model of Kaspar-human interaction is 
presented. The model requires the gestures of both human and 
the humanoid for social interaction, as well as drumming. 
Currently human gestures are not detected and therefore 
excluded from the current implementation. 

One of the fundamental problems in this scenario is the 
timing of the interaction; timing plays a fundamental role in 
the regulation of interaction (cf. [13]). It is not always clear 
when the robot or human partner should start interaction in 
taking a turn. Currently, in this model some predefined fixed 
time duration heuristics are used for synchronization. Kaspar 
starts playing if the human partner is silent for a few seconds, 
and tries to motivate the human partner with simple gestures. 

 
 

 
Fig. 1 The model for Kaspar-human interaction 
 

IV. RESEARCH QUESTIONS, CORRESPONDING 
ACHIEVEMENTS AND CONDITIONS 

 
In this work, the effect of the robot’s social gestures in a 

game of imitation, and turn-taking, was studied. A simple 
drumming game enriched with the robot’s gestures was used 
as a test bed, and the subjective evaluations of the participants 
were analysed.  Our primary focus was the possible impact 
that utilizing social gestures would have, not only on the game 
itself (in terms of performance), but also on the participant’s 
subsequent evaluation of the game. 

 

 
 

Fig. 2 Snapshots of Kaspar’s dynamic head gestures used in the experimental 
tests 

We studied three conditions with increasing amounts of 
gesturing. In the first condition Kaspar does not use any 
gestures. Kaspar only imitates the drumming. This condition 
was called no-gesture. In the second condition, simple head 
gestures (e.g. moving the head to the right or left, moving the 
head up or down, tilting head slightly to different angles) and 
eye blinking were included in Kaspar's movements (Fig. 2). 
Kaspar starts drumming with one of the fixed gestures. If the 
human partners do not play their turn, then Kaspar does not do 
anything, too, and the turn passes to the partner. A fixed order 
of n gestures was used, and this order was repeated for every n 
turns. The value for n should be large enough so that the 
human partner does not realize that this is a fixed pattern but 
rather that the gestures are either meaningful or random (In 
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the current experiments n was 7). This condition is called 
gesture in our experiments. In the third condition, Kaspar 
simply repeats the sequence of gestures without playing even 
if the partners did not play their turn. This case is named 
gesture+. The gestures and their sequences were the same in 
the last two conditions, and the drumming part was the same 
in all of the three conditions.   

 
V. EXPERIMENTS 

A. Kaspar 
The experiments were carried out with the humanoid robot 

called Kaspar. Kaspar is a child-like humanoid robot which 
was designed and built by the members of the Adaptive 
System Research Group at the University of Hertfordshire to 
study human-robot interactions with a minimal set of 
expressive robot features. Kaspar has 8 degrees of freedom in 
the head and neck and 6 in the arms and hands. The face is a 
silicon-rubber mask, which is supported on an aluminum 
frame. It has 2 DOF eyes fitted with video cameras, and a 
mouth capable of opening and smiling, see description in [14]. 

B. Experimental Setup 
The experiments were carried out in a separate room 

isolated from other people and noises which could affect the 
drumming experiment. Kaspar was seated on a table with the 
drum on its lap. The human partner was seated in front of the 
robot using another drum that was fixed on the table (Fig. 3). 
The human participants used a pencil to hit the drum. 
Although we suggested to the participants to use one pencil 
and hit on the top of the drum, sometimes they used two 
pencils with a single hand or with both hands, and several 
times they used the tambourine-style bells around the drum’s 
sides. 

 
 

Fig. 3 A screen shot from the experiments 

C. Software Features 
The implementation of robot perception and motor control 

used the YARP environment [15]. YARP is an open-source 
framework used in the project RobotCub that supports 
distributed computation that emphasizes robot control and 
efficiency. It enables the development of software for robots, 
without considering a specific hardware or software 
environment. Portaudio [16] software was used to grab audio 
from the audio device, within the YARP framework. 

The acoustic sound waves recorded by the sound grabber 
module are converted to digital music samples, which allows 
to use mathematical computations and sample based 
techniques. To detect the patterns of a sound wave, a filter 
based method is used, based on the work of Kose and Akin 
(2001) originally used to detect visual patterns. 

D. Participants 
Six female participants in the age range of 21-66, and six 

male participants in the age range of 24-30 took part in the 
study. All participants were right-handed and worked in 
computer science or similar disciplines at the University. They 
had not interacted with Kaspar prior to the experiment, and 
they were overall not familiar with robots. None of our 
participants had children, expect for one participant who had 
grown up children and grandchildren. 

E. Interaction Game Setup 
We used a one minute demo of the robot without any game 

where participants were shown how to interact with Kaspar. 
This was followed by three games reflecting the three 
experimental conditions described above each lasting three 
minutes, without indicating to the participants anything about 
the differences between the conditions. We used all six 
possible different presentation orders of the games, to analyze 
the effect of the order of the games on the humans. To account 
for possible fatigue or learning by the participants, in the 
sequential order section, we analyse the games according to 
their order number in the sequence experienced by the 
participants (independent of the particular experimental 
condition), as being the first game, second or third, 
disregarding their game types, e.g.  for one participant the first 
game (number 1) would be the no-gesture game, and for 
another participant, it would be the third game (number 3). 

F. Evaluation of Questionnaire Data  
After the experiment the participants were asked to 

complete a questionnaire investigating their preferences and 
opinions on the three experimental conditions. 

1) Most and least preferred game types: 
The frequencies of participants which rated each game as 

most preferred can be seen below in Table 1. 
TABLE 1 

 MOST PREFERRED GAME 
Game type Participants 
no-gesture 2 
gesture 6 
gesture+ 3 
No preference 1 

 
Table 1 shows that the most popular game type was the 

gesture game, while no-gesture and gesture+ type were less 
preferred. 

The frequencies of participants which rated each game as 
least preferred can be seen in Table 2. 

Table 2 shows that no participants considered the gesture 
game as the least preferred, while the no-gesture and gesture+ 
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game, had a similar number of participants which considered 
them the least preferred. 

 
TABLE 2 

 LEAST PREFERRED GAME 
Game type Participants 
no-gesture 6 
gesture 0 
gesture+ 5 
No preference 1 

2) Gender Differences in most and least 
preferred game types: 

Most and least preferred game type according to gender are 
described below in Table 3 and Table 4 and in figures 4 and 5. 
 

TABLE 3 
 MOST PREFERRED GAME ACCORDING TO GENDER 

2 0 2

.9 1.1 2.0

1.1 -1.0

2 4 6

2.7 3.3 6.0

-.4 .4

1 2 3

1.4 1.6 3.0

-.3 .3

5 6 11

5.0 6.0 11.0

Count

Expected Count

Std. Residual

Count

Expected Count

Std. Residual

Count

Expected Count

Std. Residual

Count

Expected Count

Std. Residual

nogesture

gesture

gesture+

Game Type
Most Preferred

Total
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Fig. 4 Most preferred game type according to gender 
 

 

 
Fig. 5 Least preferred game type according to gender 

The differences between males and females in most 
preferred game type seem to indicate that for males the 
preferred game type is spread evenly across the three game 
types, while for females the no-gesture game is not preferred 
by any. The differences between males and females were 
assessed using a likelihood ratio chi-square test. This test 
found no significant differences due to gender for this sample 
size ((χ (1,11)=3.70,p= .16).  2

For the least preferred game type, however, there were 
significant differences due to gender ((χ2(1,11)=4.75,p= .03). 
As table 4 and figure 5 suggests, this difference manifests as 
males predominantly choosing the gesture+ game type as 
their least preferred game type, while females predominantly 
chose the no-gesture game type as their least preferred game. 

3) Reasoning behind preferences 
While an exhaustive description of the qualitative analysis 

of the participants’ responses is beyond the scope of this brief 
paper, a short description will be given below: 

Two main themes emerged from the analysis, reflecting two 
different ways of evaluating the games. The first theme was 
that of task-based evaluation, in which participants would 
explain their choice by referring to the success of Kaspar in 
imitating their drumming. The second theme was that of 
interaction-based evaluation, wherein participants would 
explain their choice as to which games they preferred the most 
and least by referring to their enjoyment of the interaction and 
their general liking for the robot. 

When the results from the qualitative analysis were 
compared to the preferences of the participants, it was clear 
that the task-based evaluation led participants to rate the 
gesture+ evaluation as their least favorite game type. 
Participants using an interaction-based evaluation would 
choose the no-gesture game type as their least favorite. 

In terms of gender differences, more female participants 
used an interaction-based evaluation when explaining their 
preferences compared to male participants. There were, 
however, some males who used the interaction-based 
evaluation. As such, differences between the males and 
females in this sample may reflect a greater tendency in males 
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to use a task-based evaluation when evaluating the game 
types. 

G. Behavioural Data 

1) Sequential order 
The error is the average difference between the human's 

number of beats and Kaspar's number of beats in each turn. It 
was observed that the average error in the number of beats 
decreased inversely to the sequence number in order of the 
games presented. The participants usually tried very long and 
fast patterns, or they did not beat loud enough to be detected 
reliably (Kaspar uses a high level noise filter to filter out high 
inner noise coming from its joints, so it can only sense loud 
beats) when they started to play. Interestingly, without any 
external encouragement, as they got used to the game, they 
progressively were able to synchronize themselves to the 
robot better. The number of errors decreased significantly 
between the first and third trials (Z=2.275,p<.05). Details of 
the results are presented in Table 5. 
 

TABLE 5 
 OBSERVED BEHAVIOUR ACCORDING TO ORDER 

Order Avg. error Max # of 
beats 

Avg.  # of 
beats 

Avg. # of 
turns 

1 4.1 ± 3.6 41 7.5 ± 5.3 17.2 ± 6.2 
2 3.1 ± 3.4 37 6.2 ± 4.3 18.3 ± 6.7  
3 2.3 ± 1.8 16 4.6 ± 2.2 20.5 ± 3.8 

2) Interaction game type 
The gesture game had the highest average error, followed 

by the gesture+ game. The non-gesture game had the smallest 
error rate. However, the differences between games were not 
significant in this sample size (Z=1.01,p=.27). 

 
TABLE 6 

 OBSERVED BEHAVIOUR ACCORDING TO GAME TYPE 
Game type Avg. 

error 
Max # of 
beats 

Avg.  # of 
beats 

Avg. # of turns 

no-gesture 2.6 ± 2.5 41     6.2 ± 4.6 18.6 ± 5.8 
gesture 3.5 ± 3.8 37     6.2 ± 5.0 18.8 ± 5.7  
gesture+ 3.3 ± 3 31     6.0 ± 4.7 18.9 ± 6.4 

 
The maximum number of beats decreased with the 

increasing amount of gestures in the game. The average 
number of beats also slightly decreased with the increasing 
amount of gestures in the game.  The average number of turns 
was almost the same in all three games. The total number of 
beats tend to decrease as the amount of gestures in the game 
increased. Again, the differences between game type were not 
significant in this sample size. Details are presented in Table 
6. 

3) Gender  
While the sample size makes it difficult to make any strong 

inferences as to differences between groups, it may be 
reasonable on the basis of our analysis to present the results 
from each gender separately. Our qualitative analysis suggests 
that there are differences in the dynamics when interacting 
with the robot and as such presenting the results from the male 

and female sample separately, rather than just focusing on the 
differences, may be more informative to the reader. However, 
the small number of participants makes inferential statistics 
problematic, and as such the following analysis is only 
descriptive.   

 
Sequential order 
In terms of order, in later games, the participants tended to 

have more turns with fewer beats, which helped them 
synchronize with Kaspar better - decreasing Kaspar's error 
rate in drumming and increasing the success of the interaction 
(Table 7 and Table 8). 

TABLE 7  
OBSERVED BEHAVIOUR OF MALES ACCORDING TO ORDER 

Order Avg. error Max # of 
beats 

Avg.  # of 
beats 

Avg. # of 
turns 

1 4.1 ± 3.3 41 7.8 ± 6.0 15.0 ± 6.5 
2 3.6 ± 3.9 37 7.3 ± 4.5 15.0 ± 5.0  
3 2 ± 0.7 11 4.5 ± 0.9 19.0 ± 1.6 

 
TABLE 8 

 OBSERVED BEHAVIOUR OF FEMALES ACCORDING TO ORDER 
Order Avg. error Max # of 

beats 
Avg.  # of 
beats 

Avg. # of 
turns 

1 4.2 ± 4.3 36 7.2 ± 5.0 19.0 ± 5.7 
2 2.6 ± 3.2 31 5.1 ± 4.2 22.0 ± 6.4  
3 2.5 ± 2.5 16 4.8 ± 3.1 21.7 ± 5.1 

 
Game type 
For male participants, the total number of beats decreased 

with the increasing amount of gestures in the games. These 
results suggest that, as the number of Kaspar's gestures 
increased, they tended to focus more interaction and less on 
than drumming (Table 9).  

TABLE 9 
 OBSERVED BEHAVIOUR OF MALES ACCORDING TO GAME TYPE 

Game type Avg. 
error 

Max # of 
beats 

Avg.  # of 
beats 

Avg. # of  turns 

no-gesture 2.5 ± 2.7 41 7.3 ± 5.8 16.2 ± 6.1 
gesture 3.9 ± 3.6 37 6.3 ± 4.8 16.3 ± 5.8  
gesture+ 3.0 ± 2.9 9 5.7 ± 2.6 15.8 ± 4.2 
 

Different from the male participants, for females the total 
number of beats increased as the amount of gestures in the 
game increased. This indicates that the female participants 
tended to become more involved in the drumming with 
increases in non-verbal interaction gestural cues. The detailed 
evaluations are presented in Table 10. 

 
TABLE 10 

 OBSERVED BEHAVIOUR OF FEMALES ACCORDING TO GAME TYPE 
Game type Avg. 

error 
Max # of 
beats 

Avg.  # of 
beats 

Avg. # of turns 

no-gesture 2.7 ± 2.5 16 5.0 ± 3.0 21.0 ± 4.8 
gesture 3.1 ± 3.8 36 5.8 ± 5.0 21.3 ± 4.7  
gesture+ 3.5 ± 3 31 6.3 ± 4.7 20.3 ± 7.8 

 
It is interesting to note that, although the error rate in 

gesture+ was less than in the gesture condition, male 
participants liked it the least overall. They thought too many 
gestures distract them from drumming, instead of enjoying the 
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gestures. Although gesture had the worst error rate, overall 
they liked it the most. In contrast, although the error rate in 
gesture+ was the highest, female participants liked it more 
than the no-gesture game which had the lowest error rate 
(Table 10).   

 
VI. CONCLUSIONS 

 
In this work, we introduced a computational model of an 

imitative rhythmic interaction game using non-verbal gestural 
head, neck, and blinking gestures and deterministic turn-
taking between a robot and human partner. We based our 
model on drumming, which is a very suitable task for testing 
human-robot interaction. It is intended as more than a simple 
drumming synchronization task. In the long-term, we aim to 
develop social interaction between the robot and the human 
partner, which would not simply focus on synchronization to 
produce the same tempo, but result in producing a joyous and 
fruitful experience, while allowing us to gain insight into the 
role of non-verbal gesture in sustaining and regulating human-
robot interaction.  

We used drumming interaction games enriched with 
different amounts of Kaspar’s gestures to motivate the 
humans.  In our experiments, we saw that humans are, in fact 
motivated by gestures and take enjoyment from this sharing. 
Too many gestures, however, break their concentration. 
Drumming with no gestures is considered successful by 
participants in terms of a drumming task but it is not 
considered successful in terms of social interaction. The 
results from this experiment thus highlight the possible 
tradeoff between the participants' subjective evaluation of the 
drumming experience, compared to objective measurements 
of the drumming performance, also reflecting individual 
preferences as to task and interactional aspects of the task. 
These results point towards a clear role for the use of 
appropriate amount and types of non-verbal gestures as a 
means of motivating drumming behaviour and regulating the 
interaction when interacting with a robot.  

The reason for the high error rates at the start of the games 
is probably due to the human partner's high expectations from 
the game. Especially the male partners appeared to view this 
experiment not as a game, but rather a task to complete. Also, 
due to their background the human partners might have tried 
to 'test' the robot's limitations. So they initially played very 
fast, and very long sequences, and used different parts of the 
drum to enrich their play. They expected Kaspar to watch, 
understand and imitate them (most of the human partners 
thought the robot could detect them with its eye cameras and 
that the gestures were meaningful). As they played more, they 
understood the limited capabilities of the robot and modified 
their drumming and tried to synchronize with it.  

Both the female and male participants overall liked the 
games with gestures, which had the worst error rates in the 
evaluations. This shows that the right amount of gestures 
would attract their attention, and make their experience 
enjoyable, although it did not actually help their drumming. 

This reveals a strong difference between the subjective 
evaluations of the drumming experience by the participants, 
compared to objective performance measures. 

This work is a first step in human-robot interaction research 
on synchronization, timing, and turn-taking using drumming 
games. Although we started with a simple implementation, the 
results are unexpected and interesting. As explained above, in 
our setup Kaspar just repeated the beats produced by the 
human partner, and made simple fixed head gestures 
accompanying its drumming (we especially used very simple 
gestures, not complex ones like smiling or frowning in order 
not to affect the human participants too much). The human 
partners’ in return, perceived these simple behaviours as more 
complex and meaningful. They adapt themselves to the system 
unconsciously.    

It is important to note that while Kaspar's drum playing did 
not change over time, and stayed the same in different games, 
the participants learned the limits of Kaspar and the rules of 
the game, and adapted themselves to the game better, so the 
success rate improved over time. Humans, as shown here, 
were not passive subjects in this game, but adapted themselves 
unconsciously to the capabilities of the robot. In order to 
facilitate and motivate such adaptation, aspects of the 
interaction that are not directly related to the task itself, such 
as interactional gestures may play an important role.  

 
VII. FUTURE WORK 

 
Based on these results, future work on the humanoid 

drumming system will involve further study of the use of 
gestures for motivating the human partners. Because of our 
promising results from using gestures, we foresee a system 
wherein Kaspar may be motivated and rewarded by the human 
partner, through the partner's gestures and other expressive 
actions, and respond to these by playing novel acoustic 
rhythms and using its own repertoire of expressions and 
gestures to show satisfaction with these interactions. If our 
initial results can be extrapolated, then such a system will be 
even more capable of motivating and sustaining interaction. 
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ABSTRACT 
We present an exploratory study investigating emergent turn-
taking in a drumming experience involving Kaspar, a humanoid 
child-sized robot, and adult participants. In this work, our aim is 
to have turn-taking and role switching which is not deterministic 
but emerging from the social interaction between the human and 
the humanoid. Therefore the robot is not just ‘following’ and 
imitating the human, but could be the leader in the game and 
being imitated by the human. Results from the first 
implementation of a human-robot interaction experiment are 
presented and analysed qualitatively (in terms of participants' 
subjective experiences) and quantitatively (concerning the 
drumming performance of the human-robot pair).  

Keywords 
Humanoid, emergent turn-taking, robot drumming, human-robot 
interaction, imitation. 

1. INTRODUCTION 
 
Turn-taking is an important ingredient of human-human 
interaction and communication whereby role switch (‘leader’ and 
‘follower’) is not determined by external sources but emerges 
from the interaction. Human beings ‘know’ when to start and stop 
their turns in the social interactions, based on various factors 
including the context and purpose of the interaction, feedback 
from the social interaction partners, emotional and motivational 
factors etc. They use different criteria for these decisions. In this 
work our aim is to build a novel framework which enables 
emergent turn-taking, and role-switching between a human and a 
humanoid in an imitation game.  
There are several example works that studied turn-taking in 
games and conversations in the literature, focusing on different 
aspects. In [1] there is a very good example of emergent turn-
taking from the domain of developmental psychology. This work 
gives the example of the emergent turn-taking between a mother 
and a baby without any explicit control mechanism. The mother 
starts jiggling in response to her baby’s sucking to encourage her 
baby to resume sucking. This results in emergent turn-taking 
between the jiggling and sucking actions.  
One of the most difficult issues in teaching and education of 
children with autism is to teach children the concept of ‘turn-
taking’. In [2,3] turn-taking games are used to engage children 
with autism in social interactions. Another example of turn-taking 

games is given from a cognitive robotics view in [4]. In this work, 
a ball game between a humanoid robot Cog, and the human 
experimenter is described. Cog and the human were reaching out 
and grasping a ball in alteration. But here the turn-taking 
behaviour was led by the human experimenter in reaction to the 
robot’s visually driven actions.  
Ito and Tani studied joint attention and turn-taking in an imitation 
game played with the humanoid robot QRIO, where the human 
participants try to find the action patterns, which were learned by 
QRIO previously, by moving synchronously with the robot [5].  
From a linguistics point of view, in [6], some of the important 
features of turn-taking in human conversation identified are: 

1. Speaker-change recurs, or at least occurs.  
2. Mostly, one party talks at a time.  
3. Occurrences of more than one party speaking 

at the same time are common but brief.  
4. Transitions (from one turn to the next) with no 

gap and no overlap are common (slight gap or 
slight overlap is accepted). 

5. Turn order is not fixed, but varies.  
6. Turn size is not fixed, but varies.  
7. Length of conversation is not specified in 

advance.  
8. What parties say is not specified in advance.  
9. Relative distribution of turns if not specified in 

advance.  
10. Number of parties can vary.  
11. Talk can be continuous or discontinuous.  
 

Built on these features, Thorisson developed a turn-taking 
mechanism for conversations based on his previous work on the 
Ymir mind model for communicative creatures and humanoids [7]. 
The expressive humanoid robot KISMET [8,9] used social cues 
for regulating turn-taking in non-verbal interactions with people. 
Here, a sophisticated robot control architecture modeling 
motivations,   emotions and drives was used to satisfy KISMET’s 
internal “needs”. Turn-taking between KISMET and humans 
emerged from the robot’s internal needs and goals and its 
perceptions of cues from its interaction partner. Similarly, in our 
work we study emergent turn-taking, but based on minimal, 
probabilistic control models.   
Our particular test bed for studying emergent turn-taking here is 
human-robot drumming games. We used imitation games 
involving drumming as a test bed since they seem a suitable tool 
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for studying the interaction between humans and robots in terms 
of social aspects including imitation, turn-taking and 
synchronization. Also, different from the above-mentioned work 
with KISMET, where the interaction was the goal in itself, we 
wanted to include a certain (enjoyable) task that needs to be 
achieved jointly by the human-robot pair, to provide the overall 
context. Drumming is relatively straightforward to implement and 
test, and can be implemented technically without special actuators 
like fingers or special skills or abilities specific to drumming [10]. 
There are several works concerning drumming in human-robot 
interaction. In [11,12,13] robotic percussionists play drums in 
collaboration with human partners. These artifacts use robotic 
arms that are specially designed to play drums. In [14], an 
approach based on the movement generation using dynamical 
systems was tested on a Hoap-2 humanoid robot using drumming 
as a test case. Similarly, in [15] humanoid drumming is used as a 
test bed for exploring synchronization.  

In this study, our humanoid robot Kaspar plays drums 
autonomously with a human ‘partner’ (interactant), trying to 
imitate the rhythms produced by the human (as a follower) and 
trying to motivate (as a leader in the game) the human to respond. 
With a simple, but novel probabilistic method Kaspar decides 
when to start and stop its turn. It observes the human playing and 
uses its observations as parameters to decide whether to listen to 
the human or to take the turn actively  in the game. This is 
different from our previous work [10] where we tested 
deterministic turn-taking. In this work Kaspar used no gestures, 
but only drumming to interact with the human. We found in our 
previous work that different robot nonverbal gestures influence 
people’s responses in the drumming game, and thus decided to 
carry out this experiment without any gestures in order to be able 
to focus our analysis on the turn-taking behaviour.  

The rest of this paper is organized as follows: the next section 
describes the methodology. Section 3 presents the research 
questions and expectations. The experiments, results and analysis 
are described in the section 4. Section 5 includes a  conclusion on 
what was learned from this work, and presents ideas for future 
work.  

2. METHODOLOGY 
 

In the previous study [10] the human partner played a rhythm 
which Kaspar tried to replicate, in a simple form of imitation 
(mirroring). Kaspar had two modes: listening and playing. In the 
listening mode, it recorded and analysed the played rhythm, and 
in the playing mode, it played the rhythm back, by hitting the 
drum positioned in its lap. Then the human partner played again. 
This (deterministic) turn-taking continued for the fixed duration 
of the game. Kaspar did not imitate the strength of the beats but 
only the number of beats and duration between beats, due to its 
limited motor skills. It tailored the beats beyond its skills with the 
minimum values allowed by its joints: Kaspar needed at least 0.3 
seconds between each beat to get its joints ‘ready’, so that even if 
the human plays faster, Kaspar’s imitations would be slower using 
durations of at least 0.3 seconds between beats. It also needed to 
wait for a few seconds before playing any rhythm in order to get 
its joints into correct reference positions.  

One of the fundamental problems in this scenario is the timing 
of the interaction; timing plays a fundamental role in the 
regulation of interaction (cf. [16]). It is not always clear when the 
robot or human partner should start interaction in taking a turn. 
Therefore, in the previous work, some predefined fixed time 
duration heuristics were used for synchronization. Kaspar started 
playing if the human partner was silent for a few seconds, and 
tried to motivate the human partner with simple nonverbal 
gestures. 

In this work, we used a probability based novel approach for 
timing and turn-taking. These emerge from the interaction 
between the human and the humanoid. Three simple models are 
used to control the start and stopping of the robot’s regular 
drumming based on the duration time of the previous turn and 
number of beats played in the previous turn for the interaction 
partners. In this work, we will simply name the models as model1, 
model2 and model3. The model1 is a step function, model2 is a 
simple triangular function and model3 is a parabolic function (see 
Appendix A). The outputs are limited by maximum and minimum 
limits to ensure that Kaspar and the human would have time to 
play at least once in every turn. There is a minimum time 
threshold of 1.5 seconds (experimentally determined) for human 
participants. Notice that this minimum time threshold is the input 
to the model, there is no threshold to the output of the model. So 
the minimum time per turn could be smaller than 1.5 seconds. For 
Kaspar the minimum time threshold is one second and the beat 
threshold is one beat. These minimum values are assigned to the 
output of the model if it is below these values, so the minimum 
values could not be smaller than these values. The only model 
which does not have threshold limitations is model3 due to its 
parabolic nature (Appendix A (c),(f)). In every turn, Kaspar looks 
up the probability of start or stop, and takes action accordingly. 
For the start Kaspar uses the time duration of its last play, and for 
the stop, the number of beats of the human participant from the 
previous turn is used.  

The human will start the game and Kaspar will use its turn-taking 
strategy, when the human participant stays silent for two seconds 
(only for the first turn). After the first turn, the turn-taking 
strategy is always determined by Kaspar’s models. The 
computational models are presented in Equations (1), (2), and (3). 
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)(          (model1)                     (1) 
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where Th represents the threshold of time in start (Appendix A 
(a),(b)) and beat (Appendix A (d),(e)) in stop. (We had also tried 
to start using beats and stop using time with simulated data, but 
the current combination resulted in more drumming time and a 
higher number of beats for both human and Kaspar, so this 
combination was preferred in the current implementation.) As a 
function of the previous duration and number of beats in the 
interaction, according to their respective probability functions (1), 
(2), (3), the three models may return value 1, which triggers 
starting or stopping in the turn-taking algorithm: 
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Algorithm turn-taking 

   ThTimei= KasparTimei-1 
   IF modelj (HumanTimei,ThTimei) = 1 

      THEN KASPAR STARTS 

   ThBeati= HumanBeati 
   IF modelj (KasparBeati,ThBeati) = 1 

      THEN KASPAR STOPS 

 

So at every turn, Kaspar decides when to start and stop according 
to the performances of both the human participant, and itself. 
Thus, the game is not deterministic but emerges from the current 
status from both Kaspar and the human participant. 

3. Research Questions & Expectations 
 

In this work, the effect of the different computational models 
on emergent turn-taking in an imitation game was studied. A 
simple drumming game enriched with different models 
determining the turn-taking strategy of the humanoid robot was 
used as a test bed, and the subjective evaluations of the 
participants were analysed.  Our primary research questions were: 

1) How do different robot turn-taking strategies based on 
computational, probabilistic models impact the drumming 
performance of the human-robot pair?  

2) How do the different robot turn-taking strategies impact the 
participants’ subjective evaluation of the drumming experience? 

We expect to have ‘successful’ games in terms of turn-taking 
emerging from the social interaction between human and the 
humanoid. Our ‘success’ criteria would be the number of turns 
with no or slight overlaps and gaps. Also the number of human 
beats detected by the robot and number of beats played by the 
robot itself would give us hints about the quality of the games. 

We did not include any head or body gestures other than 
drumming to observe the impact of the models clearly.  We also 
set up simulated experiments before the real experiments, to 
define the maximum and minimum limits and thresholds for the 
real experiments with humanoid and human participants. 

We studied three models with different parameters. Each 
model is used both for starting and stopping the robot’s play. For 
start the time duration of the previous turn is used, and for stop 
the number of beats of the previous turn is used as threshold. As 
described in the previous section in detail, model1 was a step 
function, where the new value of could not be smaller than the 
threshold, thus we expect this model to give more play time and a 
higher number of beats than the other models. Ideally, if the 
human beats long sequences, this model would reach very high 
values so we put a maximum time limitation (both parts cannot 
play longer than 10 seconds per turn).  Unlike model1, model2 has 
a triangular shape which has the threshold as an upper bound. 
Since we have a probabilistic approach we can have values 
smaller than the threshold.  In fact, we expect this model to give 
the least play time and lowest resulting number of beats for 

human participants, so we foresee that the model would not be as 
popular as the other two models among the participants.  The last 
condition is model3 which is a parabolic model which  cannot be 
bounded by the thresholds. It reaches high values (close to 1) very 
fast compared to model2. Therefore we predict that it would give 
more play time and enable to play more beats than model2. Also, 
in our simulations we noticed that it could enable good games 
(with a very low number of overlaps and conflicts) if we played 
short sequences, but since it is not bounded with thresholds, it 
‘reacts’ to the human  but does not exactly ‘imitate’ the games, 
which might not be accepted by participants.  

4. Experiments, Results & Analysis 

4.1 Kaspar 
The experiments were carried out with the humanoid robot 

called Kaspar. Kaspar is a child-like humanoid robot which was 
designed and built by the members of the Adaptive Systems 
Research Group at the University of Hertfordshire to study 
human-robot interactions with a minimal set of expressive robot 
features. Kaspar has 8 degrees of freedom in the head and neck 
and 6 in the arms and hands. The face is a silicon-rubber mask, 
which is supported on an aluminum frame. It has 2 DOF eyes 
fitted with video cameras, eyelids capable of blinking, and a 
mouth capable of opening and smiling, see description in [17]. 

 
 
Figure 1 A screen shot from the experiments showing a person 

playing a drumming game with Kaspar. 

4.2 Experimental Setup 
The experiments were carried out in a separate room isolated 

from other people and noises which could affect the drumming 
experiment. Kaspar was seated on a table with the drum on its lap. 
The human partner was seated in front of the robot using another 
drum that was fixed on the table (Figure 1). The human 
participants used a pencil, or their bare hands to hit the drum. 
Although we suggested to the participants to use one pencil and 
hit on the top of the drum, sometimes they used two pencils with 
a single hand or with both hands, and several times they used the 
tambourine-style bells around the drum’s sides. 

4.3 Software Features 
The implementation of robot perception and motor control 

used the YARP environment [18]. YARP is an open-source 
framework used in the project RobotCub that supports distributed 
computation that emphasizes robot control and efficiency. It 
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enables the development of software for robots, without 
considering a specific hardware or software environment. 
Portaudio [19] software was used to grab audio from the audio 
device, within the YARP framework. 

The acoustic sound waves recorded by the sound grabber 
module are converted to digital music samples, which allows 
using mathematical computations and sample based techniques. 
To detect the patterns of a sound wave, a filter based method is 
used, based on the work of Kose and Akin (2001) originally used 
to detect visual patterns. 

4.4 Participants 
12 participants in the age range of 23-32 (4 female and 8 male) 

took part in the study. All participants were right-handed and 
worked in computer science or similar disciplines at the 
University. Only two of them had interacted with Kaspar prior to 
the experiment, and they were overall not familiar with robots. 
Three of our participants had children aged 1-3 years. 

4.5 Interaction Game Setup 
We used a one minute demo of the robot without any 

drumming game involved where participants were shown how to 
interact with Kaspar. This was followed by three games reflecting 
the three experimental conditions described above each lasting 
three minutes, without indicating to the participants anything 
about the differences between the conditions. We used all six 
possible different presentation orders of the games, to analyze the 
effect of the order of the games on the humans. To account for 
possible fatigue, habituation, or learning by the participants, in the 
sequential order section below, we analyse the games according 
to their order number in the sequence experienced by the 
participants (independent of the particular experimental 
condition), as being the first game, second or third, disregarding 
their game types, e.g. for one participant the first game (order 1) 
would be the model1 game, and for another participant, model1 
would be the third game (order 3). 

4.6 Evaluation of Questionnaire Data  
After the experiment the participants were asked to complete a 

questionnaire investigating their preferences and opinions on the 
three experimental conditions. 

4.6.1 Most and least preferred game types: 
The number of participants which rated each game as most 

preferred can be seen below in Table 1. 

Table 1. Most preferred game 

Game type Participants 

model1 6 

model2 0 

model3 6 

 

 Table 1 shows that both the model1 and model3 games were 
preferred by the same amount of participants, while no participant 
most preferred model2. 

 The number of participants which rated each game as least 
preferred can be seen in Table 2. 

Table 2 shows that most of the participants considered the 
model2 game as the least preferred, while the model1 and model2  
games had a small number of participants which considered them 
the least preferred. The model3 game was slightly more popular 
than the model1 game. 

Table 2. Least preferred game 

Game type Participants 

model1      3 

model2 8 

model3 1 

 
4.6.2 Most and least preferred games according to 
sequential order 

The number of participants which rated each game as most 
preferred according to the sequential order can be seen below in 
Table 3. It is shown that the most popular game type was the third 
game, while first and second games were less preferred. 

Table 3. Most preferred game 

Order Participants 

1 3 

2 2 

3 7 

 

The number of participants which rated each game as least 
preferred can be seen in  
Table 4. All ordinal positions of occurrence in the sequence of the 
games had a similar number of participants which considered 
them the least preferred.  

 
Table 4. Least preferred game 

Order Participants 

1 4 

2 3 

3 4 

 
4.6.3 Reasoning behind preferences 

While an exhaustive description of the qualitative analysis of 
the participants’ responses concerning their impressions and 
preferences about the drumming games is beyond the scope of 
this brief paper, a short description will be given below: 

The order of the games had an impact on the participants. Their 
liking of the games increased significantly between the first and 
third trials (for drumming, F(2,22)=3.29, p=0.069; for sociality , 
F(2,22)=4.904, p<0.05, with ANOVA). They preferred the last 
game more, which could be because they got used to the scenario 
as they played more, so they had more successful plays as they 
spent more time; this is consistent with our previous findings [10]. 
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According to the game types there appeared also to be an impact 
(for drumming, F(2,22)=2.444, p=0.110; for sociality, 
F(2,22)=2.895, p=0.77, with ANOVA). Notice that number of 
participants is small which makes harder to perform a good 
statistical analysis. 

The participants liked the model2 game less, because due to the 
model’s nature, it gives the least play time to the human and 
Kaspar. So Kaspar does not seem to imitate the human 
participants’ game at all, but rather ‘plays on its own’ (Kaspar 
plays at least one beat even when it does not detect a response 
from the human participant). So conflicts occurred between 
Kaspar’s and the human’s turns, and Kaspar seemed to take the 
turn when the human was still playing. Most of the human 
participants found this annoying and some of them even called 
this action “rude”. The model1 gives the human participant the 
most play time, and since it uses the previous play’s play time as 
a threshold, it ensures that the current play time is at least as long 
as the previous play time. The model3 is not limited by the 
thresholds, but its probabilities are increasing fast, so it does not 
give small values very often, and it mostly yielded turn durations 
in the 1.1-1.3 seconds range.  

Therefore according to the explanations of the human 
participants in the questionnaires, they liked the model1, and 
model3 because, they felt the robot could imitate them better in 
these games. But some of the participants also mentioned that the 
model1 game, was ‘slower’ than the other games. In fact, since 
they were given more play time than the other games, there were 
time gaps between their turns and Kaspar’s turns, so they felt the 
tempo of the game was slower than the others. These participants 
preferred model3 which cannot give as much play time for human 
participants as model1, since it does not change with the 
threshold, but gives a long enough time to have a coordinated 
game. They mentioned that the tempo of the game was faster than 
the model1 game. In this game both human and Kaspar had 3-4 
beats every turn, there were less conflicts than when using  
model1, and less gaps compared to model2 between two games. 
But due to the nature of the model, Kaspar played similar patterns 
which seemed to be independent of the human participants’ 
performance, which annoyed some of the participants. Still one 
participant found this like “teaching her son to play drum”. 
Another participant asked if she should consider Kaspar as a 
professional drummer or a child while she commented on the 
games, since it “looks like a child drumming rather than a 
professional”. 

4.7 Behavioural Data 
4.7.1 Sequential order 
There is no significant difference between the games  according 
to the order (e.g. for number of turns, F(2,22)=0.007, p=0.99, with 
ANOVA).  Only the human's total number of beats per game 
increased with order of presentation as they got used to the 
scemario as they played more (Tables 5-8). 

Table 5. Observed behaviour of human (beats) 
according to order 

Order #of turns #of nonzero 
turns  

Max 
 # of 
beats  

Total # of 
beats 
(Kaspar’s 

Total  
# of beats  
(real) 

view) 
1 93±45.08 27.83±14.3 5 44.33±25.8 104.3±27.5 
2 91.1±43 29±12 4 47.8±27 114.8±34.5 
3 90.4±44.27 32.3±15.4 5 55.1±32.69 122.8±23.8 

 
Table 6. Observed behaviour of human (duration) according 

to order 

Order Avg. time per 
turn 

Max  time per 
turn 

Min time per 
turn 

Total time 

1 0.99±0.567 3.11 0.01 70±27.5
3 

2 0.99±0.6 2.06 0.01 69.1±27 

3 1±0.57 3.11 0.01 68±24.8 

 
Table 7. Observed behaviour of KASPAR (beats) according to 

order 

Order Avg. # of beats 
per turn 

Max # of 
beats 

Min # of 
beats 

Total # of 
beats 

1 1.7±0.773 6 1 136±31.86 

2 1.74±0.76 6 1 136±29.2 

3 1.81±0.71 7 1 139±22.9 

Table 8. Observed behaviour of KASPAR (duration) 
according to order 

Order Avg.time per 
turn 

Max  time per 
turn 

Min time per 
turn 

Total time 

1 1.08±0.11 3 1 97.8±41.4 

2 1.07±0.09 3 1 95.5±39.6 

3 1.07±0.09 4 1 94.8±41.2 

4.7.2 Interaction game type 
According to the game types, in model2 more turns were played 
and there is a significant difference between the model2 and the 
other two models, but the number of nonzero turns (where the 
human played at least one beat) is less compared to the other two 
models (Table 9). Although from our observations human 
participants appeared to play similarly in all three games, Kaspar 
could detect a very small number of the human participants’ beats 
in case of model2 (Kaspar only detected human participants’ 
beats, and recorded them, when it decided that the  humans’ play 
a turn according to its computational model. Kaspar discarded the 
beats played by human participants at other times, namely during 
Kaspar’s own play times). The other two models showed almost 
similar behaviour, with model1’s number of turns and number of 
nonzero turns slightly larger compared to model3. When the total 
number of beats were compared, however, we realize that the 
number of beats of the human participant is larger (Table 9) and 
the number of beats of Kaspar is smaller in model1 than in games 
using model3 (Table 11). Likewise. the time given for human to 
play is longer (Table 10), and the time given to Kaspar to play 
(Table 12) is shorter in  model1 than in games using model3, both 
in terms of total time and the avg. time per turn. In terms of 
maximum and minimum durations per turn, for Kaspar (Table 12) 
there is no significant change, but in the case of the human player 
both are significantly longer for model1 than for the other models 
(Table 10). 
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So as we observe from tables 9-12, in the model2 game Kaspar 
almost played alone, and did not give much chance to the human 
player in terms of play time.  We put a minimum threshold of 1.5 
seconds as input to the models, but we did not put any threshold 
to the output of the models, so model2 could give very little play  
time to the human player according to the probabilities. So in this 
model Kaspar is mainly a leader and not a follower. 
In the model3, Kaspar is given a chance to be a follower and 
leader almost equally. Kaspar and the human had almost equal 
total durations of play (Table 10, and Table 12). Kaspar had more 
impact on the play and played longer rhythms (Table 11).  
In model1 the human was given more time than Kaspar (Table 10, 
and Table 12), but Kaspar played more beats than the human 
participants (Table 9, and Table 11). Whereas in model3, Kaspar 
and human participant where given almost equal durations and 
opportunities to play. 

Table 9. Observed behaviour of Human (beats) according to 
game type 

Game 
type 

#of turns #of 
nonzero 
turns  

max  
# of 
beats 
per 
turn 

Sum of 
beats 
(Kaspar’s 
view) 

Total # of 
beats (real) 

model1 65.1±4.03 37.3±15 5 72.1± 
27.8 113±29.223 

model2 151±3.46 21.1±7.8 3 25.6±9.67 116.7±24.69 

model3 59±1.5 31±13 5 50±22 112.08±34.9 

 
Table 10. Observed behaviour of Human (duration) according 

to game type 

Game 
type 

Avg.time per 
turn 

Max  time 
per turn 

Min time 
per turn 

Total time 

model1 1.53±0.02 3.11 1.5 99.3±5.31 

model2 0.25±0.01 0.61 0.01 37.4±1.7 

model3 1.2±0.01 1.8 1 70±1.8 

Table 11. Observed behaviour of KASPAR (beats) according 
to game type 

Game 
type 

Avg. beat 
per turn 

max  # of 
beats per turn 

Min  # of 
beats per 
turn 

Total # of 
beats 

model1 1.55±0.3 5 1 99.9±11 

model2 1±0.01 3 1 153±4.22 

model3 2.7±0.1 7 2 158±3.5 

 
Table 12. Observed behaviour of Kaspar (duration) according 

to game type 

Game 
type 

Avg.time per 
turn 

Max  time 
(sec) per turn 

Min 
time per 
turn 

Total time 

model1 1±0.04 3 1 67±3.05 

model2 1±0.004 3 1 151±3.204 

model3 1.2±0.04 4 1 70±1.71 

 

5. CONCLUSIONS 
In this work, we introduced three probabilistic computational 

models of an imitative rhythmic interaction game that facilitates 
emergent turn-taking between a robot and human partner. We 
based our model on drumming, which is a very suitable task for 
testing human-robot interaction. It is intended as more than a 
simple drumming synchronization task. We aim to develop social 
interaction between the robot and the human partner, which 
would not simply focus on synchronization to produce the same 
tempo, but result in producing a joyous and fruitful experience, 
emerging from human-robot social interaction.  

We used drumming interaction games enriched with different 
probabilistic computational models which enables Kaspar to start 
and stop its turns using its observations on the human 
participant’s play. According to the play time per turn and 
number of beats played during a turn, Kaspar starts and stops its 
own turn, and therefore influences the human participant’s turn. 
So each turn is emerging from the current play status of Kaspar 
and human participants. This is more similar to natural human-
human conversation, where human beings start and stop their 
turns in conversations and also in non-verbal communication 
according to criteria of their own without an external or internal 
rigid ‘clock’.   

There are three game models used in this work. Model1 has a 
step function, model2 is a simple triangular function and model3 
is a parabolic function. In the first two models we use the duration 
of play and the number of beats of previous turns as thresholds. 
Also we make sure that there is a minimum value of thresholds to 
have a continuous game, where Kaspar and the human would 
have enough time to play each turn, or play at least one beat. 

We analysed the games in terms of sequence of order, and 
according to game type. We used the questionnaires and the 
observed behaviors of the Kaspar and human participants to 
compare the games. 

In terms of sequence there is an impact on the participants 
drumming behaviour and evaluation of the games while they 
played the three games. They tend to beat more, in fewer turns, 
and, in terms of the questionnaire data, they liked the games more 
as they played more. 

In terms of game types, in model1, the total number of beats 
for Kaspar were higher than the total number of beats for the 
human participants (100/65), whereas, the total game duration is 
higher for human participants than for Kaspar (70/100). In 
model3, the total number of beats is lower than for model1. 
Although the total play durations for Kaspar and the humans were 
almost identical, the total number of beats for Kaspar was almost 
three times as high as that of human participants. In model1 and 
model3 almost half of the turns were nonzero (i.e. the human 
played at least one beat). The model2 game has the largest 
number of turns which is almost twice as high as the other two, 
but the number of nonzero turns is small (14%). Also, here the 
robot beats much more than the human (number of human beats is 
17% of Kaspar’s beats). Therefore Kaspar was mainly a leader in 
the model2 game, and did not give much chance to the human 
participants to play. So when compared to the questionnaire 
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results, it is logical that humans did not like the model2 game. 
Since the average time for human participants in model3 game is 
smaller it could be viewed as more ‘natural’. But it was not 
bounded by thresholds so it was not affected by the performance 
of the human players. There were many overlaps between 
Kaspar’s play turns and human participants’ play turns in model2. 
So either Kaspar or the human participants interrupted the other 
which was found ‘annoying’ by the human participants, and 
caused the loss of detection of human participants’ beats for 
Kaspar (as described before, Kaspar did not ‘listen’ when it 
played itself). Although there were gaps between the humans’ and 
the robot’s turns in model1, and model3 did not seem to imitate 
the human participants in every turn, both models were successful 
in terms of emergent turn-taking. Although we used very simple 
models, and this work is a first step in this domain, we were able 
to observe some very good games in terms of coordinated turn-
taking, and some of the participants even compared the game to a 
normal game you play with your children. 

It is important to note that while Kaspar's drum playing 
changed in terms of timing based on simple models, some human 
participants commented that Kaspar behaved intelligently, e.g.  
they thought that the robot interrupted them in a structured way,  
in order “to tell them something”. We aimed not to imitate the 
human participants’ drumming exactly, but tried to get some 
emergent effects from the interaction between human and 
humanoid instead. Although some of the participants found this 
”annoying” since Kaspar did “not imitate them well”, surprisingly 
another group of the participants thought Kaspar played like a 
small child, and they enjoyed the games.  

Also over time, the participants learned the limits of Kaspar 
and the rules of the game, and adapted themselves to the game 
better, so they had better games, in terms of turn-taking and 
synchronization. We could observe long sequences of plays 
without any overlaps or gaps between the turns, and human 
participants were really enthusiastic about the games. Humans, as 
shown here, were not passive subjects in this game, but adapted 
themselves unconsciously to the capabilities of the robot. This 
finding is consistent with the notion of ‘recipient design’, a 
concept from ethnomethodology, where we find that natural 
speech is always designed for its recipient, i.e. the interaction 
partner and interpreted as having been so designed.  Here, the 
speaker creates his or her turn “with recipients in mind, and 
listeners are motivated to ‘hear’ a turn that is for them and all 
participants closely and constantly track the trajectory of the talk 
to hear ‘their’ turn” [21, p. 71]. According to conversation 
analysis, this turn-taking is integral to the formation of any 
interpersonal exchange [21, p. 66]. While in our study the robot’s 
behaviour was controlled based on simple computational models, 
the human participants used their recipient design skills in the 
interaction.  

The issue of recipient design will be explored further in our 
future research. Also, we plan to add robot gestures to our future 
games (using head movements and facial expressions), since most 
of the participants commented in the questionnaires that gestures 
might improve Kaspar’s social interaction skills, and we observed 
the same result in our previous work [10]. 
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We motivate and present a definition of an embodied, grounded individual sensorimotor interaction

history, which captures the time-extended behavior characteristics of humans and many animals. We

present an architecture that connects temporally extended individual experience with capacity for

action, whereby a robot can develop over ontogeny through interaction. Central to this is an informa-

tion theoretic metric space of sensorimotor experience, which is dynamically constructed and recon-

structed as the robot acts. We present results of robotic experiments that establish the predictive

efficacy of the space and we show the robot developing the capacity to play the simple interaction

game “peekaboo.” A quantitative investigation of the appropriate horizon length of experience for the

game reveals the relationship between the length of experience and the cycle time of interaction, and

suggests the importance of multiple, and possibly self-adaptive, horizon lengths.

Keywords interaction history · sensorimotor experience · information theory · peekaboo · ontoge-

netic development

1 Introduction

A challenge for research into embodied cognition in
robots is to reach beyond reactive architectures to sys-
tems that exhibit the time-extended behavior character-
istics of humans and many animals. We are interested
in how cognitive structures in natural and artificial sys-
tems can arise, which capture the history of interac-
tions and behaviors of an agent actively engaged in its
environment, without resorting to ungrounded sym-
bolic representations of past events. Our goal is to
design and test such an architecture for a robotic agent,
addressing the problem of broadening the temporal
horizon to generate adaptive behavior, while not neces-

sarily trying to model details of human behavior. The
ultimate aim of the work is to achieve scafolded ontog-
eny in robots and other artificial agents by endowing
them with an extended temporal horizon grounded in
their own sensorimotor interaction histories. In this
work we lay the theoretical and experimental ground-
work for one attempt at achieving this.

We introduce an architecture for ontogeny and
adaptive action based on a metric space of temporally
extended sensorimotor experience. The robot chooses
how to behave in the world based on what it has expe-
rienced. This results in further experience modifying
the space of experience, establishing a tight coupling
of experience and action.
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In Sections 2 and 3, we establish a theoretical
basis for our particular view of an interaction history,
including the information theoretical aspects, ending
by presenting a computational robotic model. Related
research is discussed in Section 4. A simple experi-
ment is presented in Section 5, which demonstrates
the efficacy of the space generated by the robot pas-
sively experiencing its environment. The architecture
is then used by a robot to develop the capacity to
engage in peekaboo, a simple early interaction game
(Section 6). We conclude with a discussion of the
experimental results, the current strengths and limita-
tions of the model, and suggestions for future work.

2 Interaction Histories

We start by considering how memory is viewed from
an embodied perspective and why temporal extension
is important. We then draw on this motivation to
present a suitable definition of interaction history,
which can become the basis for our robotic model.

2.1 Temporal Horizon and Extension

The “temporal horizon” of an agent delimits the his-
tory (whether personal or socially acquired) that an
agent has access to (Nehaniv, Polani, Dautenhahn, te
Boekhorst, & Cañamero, 2002). Autonomous embod-
ied artificial agents, which make use of interaction
histories in guiding their actions, can be thought of as
extending their temporal horizon beyond that of a sim-
ple “reactive agent,” for instance, Braitenberg vehicles
(Braitenberg, 1984). These agents become post-reac-
tive systems when acting with respect to a broad tem-
poral horizon by making use of temporally extended
episodes in interaction dynamics (Nehaniv et al.,
2002). Internal state, as used in affective agents, can
also extend the temporal scope of the agent (poten-
tially indefinitely but usually for the short or medium
term), as previous interactions can affect later actions
through the agents’ affective state. However, in gen-
eral this approach does not allow for access to epi-
sodic historical events and so cannot, for instance,
suggest more complex alternative courses of action
(Scheult & Logan, 2001).

We note that the temporal horizon for an agent
potentially encompasses the entire past history of the
agent (although it can be focused on episodes of hori-

zon of arbitrary size). History may inform forward
temporal extension in, for example, prediction, antici-
pation and planning. The size of the temporal horizon
influencing behavior can be varied and does vary
between natural agents. Some agents, it seems, live
only in the present, for instance Braitenberg vehicles1

and probably bacteria.2

Research into the developmental psychology of
human infants points to the importance of anticipation
and prediction in the development of cognitive capa-
bilities (see, for example, von Hofsten, 1993). A tradi-
tional artificial intelligence approach to achieving this
might be to build an internal model of the process or
task in question, and then to use that model to predict
future states. However, we argue that by using a tem-
porally extended history as the basis for action, links
between experiences and actions may be built that
allow the agent to act such that it exhibits the appear-
ance of prospection, predicting repeated and familiar
events in its environment.

2.2 Dynamic Systems, Cognition, and 
Memory

Cognitive systems can be viewed as the structure and
processing of dynamical systems operating in various
types of state space (agent–environment, sensorimotor,
perception–action, etc.; Dautenhahn & Christaller,
1996; Kelso, 1995; Thelen & Smith, 1994). Regions
and attractors (or structures) of these dynamical sys-
tems may reflect interesting areas in terms of remem-
bering and adaptive action. These structures are
created through interplay of the dynamic system and
the agent interaction with the environment.

From an action-oriented point of view, an agent’s
interaction with the environment can construct the
structures that are used for remembering how to act.
Furthermore, the process of remembering and acting
may alter those structures thus reconstructing the
“memory.” This may involve altering the detail of the
original structures, changing the relative importance
of them or, in terms of dynamical systems, moving
and altering the attractors. We refer to this process as
dynamical construction. To illustrate, consider auto-
associative Hopfield artificial neural networks (Gur-
ney, 1997). The dynamics of such networks resolve to
particular attractors (memories) on presentation of
particular inputs. Learning of new memories affects
what is already stored, and if the network were able to
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learn while recalling, recall would also modify
“stored” memories. Thus, memory consists not of
static representations of the past that can be recalled
with perfect clarity, but rather is the result of a
dynamic accretion of interaction with the environ-
ment.

2.3 Remembering, Memory, and Action

We follow the argumentation of Rosenfield (1988)—
for a review see Clancey (1991)—and Dautenhahn
and Christaller (1996) in relation to situated cognition,
that human and animal memory is the result of an
accumulation of interaction with the environment.
Furthermore, the way that memory manifests itself is
as embodied action. That is, it is in actions resulting
from recall that we witness memory and that recall
itself is dependent on embodiment. This argument has
support in the view that the purpose of perception and
memory for the natural environment is to guide action
(Glenberg, 1997) and that even abstract concepts can be
interpreted in terms of physical actions and properties.

Glenberg (1997), Clancey (1997), and Pfeifer and
Scheier (1999), among others,3 also argue for an
embodied situated memory and memory as recategori-
zation. The emphasis is on the interaction with the
environment and a process view of memory.

An important aspect of interaction history is that
it is constructed from the perspective of the individual,
that is, it is autobiographical in nature. Dautenhahn
(1996) defines an autobiographical agent, as “an
embodied agent that dynamically reconstructs its indi-
vidual history (autobiography) during its lifetime”
(page 31).

In terms of the accepted separation of memory
types due to Tulving (1983), interaction histories
could be classified as episodic memory as opposed to
semantic memory. That is, it is the memory of events
(with a temporal aspect and, usually, a personal
aspect), rather than the memory of knowledge and cat-
egories. Interaction histories, though, have elements
of both. Categories and knowledge may emerge from
many overlapping experiences aided by the process of
dynamic construction, while certain unique events
may still stand out and give memory its episodic
nature. This is a view supported by Glenberg (1997).

An autobiographical agent may also be able to
communicate significant episodes in its past to other
agents, which could further increase the temporal

horizon of the agent and that of others (Nehaniv,
1999). Here, the notion of recounting, or communica-
tion of, that history is important particularly in social
agents.

While we do not claim that an interaction history
can describe all aspects of (human) memory, we
believe that exploring its features may give insights
into the nature of memory in adaptive behavior as a
whole.

2.4 Ontogenetic Development

Ontogenetic development in artificial and natural
organisms can be seen as an incremental, possibly
open-ended, self-organizing process of change, where
an organism refines its current capabilities by using
internally generated drives and motivations and explo-
ration of its environment and embodiment to generate
new goals, capabilities and behaviors (Lungarella,
Metta, Pfeifer, & Sandini, 2003).

We hypothesize that a dynamically constructed
history of interactions, which is used to generate and
select actions in an embodied agent, can serve to scaf-
fold the ontogenetic development of the agent. Devel-
opment in this case can be seen as the increasing
richness of the connections of experience with action,
mediated by suitable mechanisms. Such a history can
facilitate incremental development at the borders of
experience. It is known that this is the case for human
development, which is continually scaffolded by
building new capabilities on top of existing ones.
Learning proceeds at the periphery of known experi-
ence and already mastered interaction skills enabling
development (“zone of proximal development;”
Vygotsky, 1978).

However, the development process depends on
drives and motivation. Classical conditioning and two-
process reinforcement learning based on positive and
negative reinforcers (e.g., Rolls, 1999) are potential
mechanisms for connecting previous experience with
choice of action. In this study, an internally generated
motivation system (see Appendix A) is used that
assigns reinforcement values to an episode of experi-
ence.

2.5 Definition of an Interaction History

In view of the preceding discussion and motivated by
a dynamical systems, embodied view of memory, we

 © 2007 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized distribution.
 at University of Hertfordshire on September 24, 2007 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


170 Adaptive Behavior 15(2)

propose the following definition of an interaction his-
tory as being:

the temporally extended, dynamically constructed,
individual sensorimotor history of an agent situ-
ated and acting in its environment including the
social environment, that shapes current and future
action.

The key aspects of this definition are the following.

• Temporal extension. The overall horizon of an
agent’s experience extends into the past (poten-
tially including all previous experience available
to the agent) and also into the future in terms of
prediction, anticipation, and expectation.

• Dynamical construction. This indicates that the
history is continually being both constructed and
reconstructed, with previous experiences being
modified in this process, and potentially affecting
how new experiences are assimilated.

• Grounding. The history need not be symbolic
(i.e., recorded in terms of externally imposed rep-
resentations) and is grounded in the sensorimotor
experience of the agent. Beyond innate structures
for perception, any new representations and cate-
gories may emerge in cognitive structures as a
result of the agent–environment interaction.

• Remembering in action. The process of remem-
bering drives and shapes the choice of current and
future action, while dynamically reshaping the
structures employed in remembering.

Note that we use the term “interaction” to indicate that
this temporally extended history encompasses the sen-
sorimotor history, the history of action as well as the
feedback of action on the history. This definition
encompasses all types of interaction with the environ-
ment, but specifically includes the social environment.
It differs from simple reinforcement or neural net
learning in explicitly incorporating the temporally
extended nature of experience.

3 An Interaction History Architecture

Figure 1 shows an architecture that demonstrates how
histories of sensorimotor experiences can be explicitly
integrated into the control of a robot. Our approach is

to continually gather sensorimotor data and find epi-
sodes of sensorimotor experience in the history near to
the current episode and, depending on the course of
subsequent experience, choose from among actions
that were executed when these episodes were previ-
ously encountered, or possibly other actions.

There are two key aspects of this architecture. The
first is the metric space of experience whereby new
experiences appear as points in a growing and chang-
ing metric space. The second is the action–selection
system. This closes the perception–action loop and
also closes an internal loop feeding back and modify-
ing the experience space. A quality measure, as deter-
mined by the agent’s motivation and drives, is conferred
onto each experience and that along with proximity in
the metric space is used to distinguish experiences and
select action. We describe these two aspects in the fol-
lowing sections.

3.1 Metric Space of Experience

Central to the proposed architecture is the capability
to make metric comparisons between episodes of sen-
sorimotor experience. An advantage of considering
episodes is that they potentially hold more informa-
tion about recent interactions than does the current
sensorimotor state by itself.

One approach is to look for regularities in the sta-
tistical and informational structure of the data. Infor-
mational and statistical structure of sensorimotor data
can also be used to characterize or “fingerprint”
behavior (te Boekhorst, Lungarella, & Pfeifer, 2003;
Tarapore, Lungarella, & Gomez, 2004) and also for a
robot to classify its own behavior on-line using tra-
jectories in sensor–motor spaces constructed from
metric measures of distances between sensors (Kaplan

Figure 1 Interaction history based control architecture.
See text for description.
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& Hafner, 2005; Mirza, Nehaniv, Dautenhahn, & te
Boekhorst, 2005b).

In the following sections we describe the applica-
tion of Shannon information theory (Shannon, 1948)
to compare episodes of sensorimotor experience (see
also Mirza, Nehaniv, Dautenhahn, & te Boekhorst,
2005a; Nehaniv, 2005). The basis is the information
metric (Crutchfield, 1990), a measure of the distance,
in terms of bits of Shannon information, between two
information sources. We use the measure to compare
sensorimotor experience over time and across modali-
ties. Moreover, we close the loop to adaptive behavior
by allowing the agent to act based on remembering its
previous experiences in this space of its own tempo-
rally extended sensorimotor experiences. Here the
notion of “temporally extended experience” is opera-
tionalized in a rigorous way using the flow of values
over the agent’s sensorimotor variables during a par-
ticular interval of time (temporal horizon).

3.1.1 Sensors as Information Sources An agent sit-
uated and acting in an environment will have many
external and internal sensory inputs, any of which can
be modeled as random variables changing over time.
Consider one such random variable X changing with
time, taking values x(t) ∈ X, where X is the set of its
possible values. Time is taken to be discrete (i.e., t
denotes a natural number) and X takes values in a
finite set or “alphabet” X = {x1, …, xm} of possible
values.4

Furthermore, any sensor or motor variable X,
beginning from a particular moment in time t0 until a
later moment t0 + h (h > 0), with the sequence of val-
ues x(t0), x(t0 + 1), …, x(t0 + h – 1), can be considered
as the time-series data from a new random variable
X , the sensorimotor variable with temporal horizon
h starting at time t0.

3.1.2 Information Distance For any pair of jointly
distributed random variables (sensors) X and Y, the
conditional entropy H(X |Y) of X given Y is the
amount of uncertainty that remains about the value X
given that the value of Y is known, and is given by 

,

where p(x, y) is given by the joint distribution of X
and Y.

We assume approximate local stationarity of the
joint distribution of random variables representing the
sensorimotor variables over a temporal window and
that this can be estimated closely enough by sampling
the sensorimotor variables.

The information distance between X and Y is then
given by 

.

Crutchfield (1990) shows that this satisfies the mathe-
matical axioms of equivalence, symmetry and the tri-
angle inequality and so is a metric. Specifically, for
three information sources X, Y and Z, d is a metric if
it satisfies the following:

1. d(X, Y) = 0  if and only if X and Y are equivalent;
2. d(X, Y) = d(Y, X) (symmetry);
3. d(X, Y) + d(Y, Z) ≥ d(X, Z) (triangle inequality).

Thus, d defines a geometric structure on any space of
jointly distributed information sources.

Given two sensorimotor variables X  and Y
over a temporal horizon of window size h, we can esti-
mate the information distance d(X , Y ) by meas-
uring the frequencies of occurrence of values (x ,
y ) as i runs from 0 to h – 1.

With t0 = t1, d(X, Y) gives the information dis-
tance between different variables at the same time t.
With X and Y taken from the same sensorimotor vari-
able at different times, d(X, Y) gives the information
distance between time-shifted regions of the variable.

Clearly there are issues related to the size of the
temporal horizon h and also the number of values
(bins) X and Y may take that affect the accuracy of
these estimates. These issues are examined in Mirza et
al. (2005a) showing that behavior can be categorized
robustly over a wide range of numbers of bins and
horizon lengths.

3.1.3 Experience and the Experience Metric Given
the above definitions we can now formalize an
agent’s experience from time t over a temporal hori-
zon h as E(t, h) =  where X1, …, XN is

t0 h,

H X Y( ) p x y,( )
y Y∈
∑

x X∈
∑ log2

p x y,( )
p y( )

----------------–=

d X Y,( ) H X Y( ) H Y X( )+=

t0 h, t1 h,

t0 h, t1 h,
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the set of all sensorimotor variables available to the
agent.

We can then define a metric on experiences of
temporal horizon h as 

,

where E = E(t, h) and E' = E(t', h) are experiences of
an agent at time t and t' over horizon h, and d is the
information distance. The fact that D is a metric fol-
lows from the fact that the metric axioms hold compo-
nent-wise, as d is a metric.

As experiences are collected, they can be placed
in a metric space of experience using the experience
metric. The maximum dimensionality of the space is
N – 1, where N is the number of experiences in the
space.

3.2 Action Selection

A simple mechanism is adopted for action selection
whereby the robot can execute one of a number of
atomic actions (or no action) at any time step. This is
seen as a tractable first step, and a more sophisticated
action or behavior generation capability would allow
for more open-ended development.

The actual action selected will be either a random
selection of one of the atomic actions or an action that
was previously executed after an experience in the his-
tory that is near to the current episode. An advantage
of this approach is that behavior can be bootstrapped
from early random activity, and later behavior built on
previous experience.

The process of action selection is as follows.

1. Up to K candidate experiences from the experi-
ence space within a given information distance
radius5 r0 of the current experience Ecurrent are ini-
tially selected.

2. These K experiences are ranked as E1, …, EK

according to how close they are to Ecurrent.
3. Then, sequentially, experience Ei is chosen with

probability a linear function of the quality of Ei

until either an experience is chosen or the ranked
list is exhausted.

4. If an experience is chosen from the candidate list,
then the particular action that was executed fol-

lowing the chosen experience is then chosen as
the action to be executed next; otherwise a ran-
dom action is chosen.

The exact nature of the calculation of quality is
dependent on the nature of the intrinsic drives and
motivations ascribed to the agent. For the experimental
scenarios used in this article, a specific motivational
system was designed (see Appendix A). However, we
note that this could be altered and generalized for
other types of interaction.

The linear mapping from quality to probability
ensures that, with small probability, the robot may still
choose a random action, as this may potentially help
to discover new, more salient experiences. This has
the advantage of emulating body-babbling, that is,
apparently random body movements that have the
(hypothesized) purpose of learning the capabilities of
the body in an environment (Meltzoff & Moore,
1997). Early in development, there are fewer, more
widely spread experiences in the space, so random
actions would be chosen more often. Later in develop-
ment, it is more likely that an the action selected will
come from past experience.

Finally, a feedback process evaluates the result of
any action taken in terms of whether there was an
increase in quality after the action was executed. It
then adjusts the quality of the candidate experience,
from which the action was derived, up or down
accordingly. Using this mechanism, the metric space
is effectively altered from the point of view of the
action-selection system. Closing of the perception–
action loop in this way with feedback, together with
growth of the experiential metric space, results in the
construction of modified behavior patterns over time.
This can be viewed as a form of ontogenetic develop-
ment and adaptation, that is a process of change in
structure and skills through embodied, structurally
coupled interaction.

3.3 Implementation

The interaction history architecture was implemented
using using URBI (Baillie, 2005) and Java on a Sony
Aibo ERS-7 robot dog and a personal computer run-
ning the Linux operating system. URBI provides the
robot control layer and a full-featured event-based
parallel scripting system. The URBI software runs
directly on the robot where actions and background

D E E',( ) d Xt h,
k

Xt' h,
k,( )

1 k=

N

∑=
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behaviors are executed; URBI receives and processes
events and controls motors every 35 ms. The system
runs on-line with telemetry data and video images
being sent over wireless to the personal computer
approximately every 80–120 ms, where the metric
space of experience is constructed and used in action
selection. We define a time step upon reception of
each set of data, so the time between time steps varies
and is approximately 80–120 ms.

The sensory information available to the robot
falls into three broad categories: proprioceptive
(from motor positions), exterioceptive (environmen-
tal sensors, including vision) and internal (these
might, for instance, indicate drives and motivations,
or be the result of processing of raw sensory data,
e.g., ball position). Vision sensors are built by subdi-
viding the visual field into regions and taking average
color values over each region at each time step. In this
implementation a 3 × 3 grid over the image is used,
taking the average of the red channel only, resulting in
nine sensors for vision. A generalized human face
detection system, required for the interaction experi-
ments of Section 6 was implemented using Intel
OpenCV HAAR Cascades (OpenCV, 2000), smoothed
to remove short gaps (< 50 ms) in detection. The vari-
ables used in this implementation are summarized in
Table 1, with further discussion of internal variables in
Appendix A. Note that audio is not used in these
experiments.

The basic object of data in the architecture is an
experience. For every experience, the quantized values
of all sensors over the time horizon h are required to
determine the information distance between the expe-
rience and any other one, and so are stored. Addition-
ally, the quality value of the experience, as determined
by the motivational system detailed in Appendix A, is
stored with each experience, subject to modification in
interaction as described in Section 3.2.

The horizon length h of the experiences used to
construct the metric space and the number of bins Q
used to quantize sensor data are parameters set for
each particular experiment. Experiences are taken
from the sensorimotor data stream every G time steps,
where G is the experience granularity. Thus, a granu-
larity of G = 2 would store an experience of h time
steps at every other time step.

The metric space is continually being updated as
new experiences are added, by calculating the experi-
ence distance between the new experience and all
other experiences in the space. For efficiency, a list of
near experiences is kept for each experience and is
updated as new experiences are added.

A list of actions being executed (if any) at any
time step is kept and consulted when determining
what actions were executed immediately following
any given experience.

4 Related Work

There are many potential architectures that take his-
tory of action and interaction into account. Top-down
deliberative architectures, such as ACT-R, include
memory storage and retrieval and others, such as Soar,
have been extended to include episodic memory (Nux-
oll & Laird, 2004). In the model of Nuxoll and Laird,
the features of the episode are encoded and used in
retrieval by matching. This external representation of
sensory input is common. Connectionist systems that
have memory include, for instance, Elman networks
or recurrent neural networks. Rylatt and Czarnecki
(2000) have shown that generally recurrent neural net-
works are not well suited to learning delayed response
tasks. Additionally, recurrent networks are very hard
to design beyond a certain size, and this requires that
sensory input be encoded and reduced in quantity.

Table 1 Sensors and internal variables.

Type Examples Total

Exterioceptive IR-distance, buttons 15

Visual Average color values in a 3 × 3 grid over image 9

Proprioceptive Joint positions 18

Internal Face position, ball position, desire to see a face 10

 © 2007 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized distribution.
 at University of Hertfordshire on September 24, 2007 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


174 Adaptive Behavior 15(2)

Approaches such as echo state networks and liquid state
machines attempt to address this limitation by training
only the output nodes of a network (Jaeger & Haas,
2004). The memories of episodes appear only as
weights and attractors of the system and so different epi-
sodes cannot be compared. Other approaches include
certain behavior-oriented control systems combined
with learning (Matarić, 1992; Michaud & Matarić,
1998). Most behavior-based models do not include
learning from past experience, but of those that do our
approach differs in that the history is not specified in
terms of the behavior being selected (or indeed, the
action being selected), but in terms of the sensorimo-
tor history.

Our work is related to reinforcement learning
(Sutton & Barto, 1998), particularly those examples
that use intrinsic motivation (e.g., Barto & Şimşek,
2005; Bonarini, Lazaric, Restelli, & Vitali, 2006). Our
approach, however, uses temporally extended experi-
ence rather than the instantaneous values of the senso-
rimotor and internal variables (state). We would argue
that this distinction is important, as temporal structure
is inherently captured in experiences of different
lengths. Moreover, we do not assume that the environ-
ment can be modeled as a Markov decision process
(MDP; this is particularly important when there is an
interaction partner) as is the case with most reinforce-
ment learning paradigms and, in particular, with
approaches that do not use a model (e.g., Q-learning).
Furthermore, our approach does not require a static
state space to be circumscribed at the outset, but
instead uses a growing and changing space of experi-
ences, where potentially in the course of ontogeny the
set and character of sensors, actuators, and embodi-
ment may change.

Related work in the multi-agent domain (Arai,
Sycara, & Payne, 2000) has agents in a grid world
acquiring coordination strategies, and uses a fixed-
length episodic history expressly to counter the MDP
assumption. However, this model is also state-based
and so uses a profit-sharing mechanism to assign
credit to state–action pairs. Moreover, it does not com-
pare episodes of history with previous ones, or locate
them in a metric space.

Examples of a developmental approach used in
robots include Blank, Kumar, Meeden, and Marshall
(2005), where a robot uses subgoals to develop
smooth-wall following in an architecture that uses
self-organizing maps of visual and sonar data, and

Oudeyer, Kaplan, Hafner, and Whyte (2005), where
an Aibo robot discovers object affordances through an
“adaptive curiosity” driven developmental framework.
Kaplan and Oudeyer (2006) also propose mechanisms
of drive and motivation based on “progress niches,”
which allow an agent to maximize learning and devel-
opmental progress in a way analogous to Vygotsky’s
“zone of proximal development” (Vygotsky, 1978).

As interest in developmental robotics gains
momentum, we will increasingly see play-like scenar-
ios used to scaffold early development of robots
(Oudeyer et al., 2005), to study human cognitive
development (Kozima, Nakagawa, & Yano, 2005) and
just for entertainment (Brooks et al., 2004). Likewise,
our use of an interaction game, peekaboo (see
Section 6.1), played by human children during early
development was deliberately chosen to bring robotic
development closer to human development. See also
Dautenhahn, Bond, Cañamero, and Edmonds (2002)
for a representative review of robots socially interact-
ing in play.

Recent research has used information methods in
the analysis and control of (simulated and unsimu-
lated) robot behavior. Lungarella and Sporns (2005)
use informational measures (including mutual infor-
mation and a related complexity measure) to quantify
the degree of statistical structure in sensorimotor
spaces, and suggest that perceptually guided move-
ment generates high degrees of regularity and correla-
tion. Olsson, Nehaniv, and Polani (2004) use an
information distance measure to find structure in unin-
terpreted sensorimotor data, and also show that this is
superior to other measures such as the Hamming met-
ric and the correlation coefficient (Olsson, Nehaniv, &
Polani, 2006b). In particular, they show that informa-
tion measures are a general method for quantifying
functional relationships between sensorimotor varia-
bles, including non-linear relationships, which we
note may be important in systems situated in complex,
real environments. Having learnt how its sensorimotor
system is structured through information self-structur-
ing during coordinated sensor–motor action, it is pos-
sible for a robot to learn how its effectors can be used,
for example, for simple motion tracking (Olsson,
Nehaniv, & Polani, 2005, 2006a). In earlier work,
Pierce and Kuipers (1997) achieve learning of sensory
maps and motor control laws from uninterpreted sen-
sors and effectors by use of statistical structure in the
data rather than informational methods.
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5 Experimental Validation of Metric 
Space of Experience

In this first experiment, the metric space of experience
was tested in the absence of the action control loop
(although experiments in the next section include this
loop). For the metric space to be useful in an interac-
tion history, experiences that appear to be similar by a
suitable subjective measure must also be close accord-
ing to the measure of distance used to place experi-
ences in the interaction histories metric space. To test
this, the history is used to predict the future path of a
ball based on recent sensory experience. If the experi-
ences are well matched, then so will the predicted
path.

5.1 Validation Experiment: Experimental 
Setup

The robot was stationary in a “sitting” position, with
the head pointed forward. A pink ball was moved in
the air in view of the robot’s head camera at a distance
of approximately 30 cm. The path of the ball in each
trial included repeated vertical, horizontal and circular
movements.

The sensory data collected included the horizontal
and vertical locations of the ball with respect to the
video frame (calculated using simple color threshold-
ing) along with the full sensorimotor input of Table 1.
In addition, the ball position at the end of each episode
of experience was stored along with each experience.
The predicted future position of the ball was then
taken from the positions stored with the experiences
following the nearest previous experience to the cur-
rent one.

It is important to note that the robot is not match-
ing current ball position with previous ball position,
rather we use all sensory and motor variables as infor-
mation sources to detect similarity between experi-
ences, and then use the stored ball position to give the
experimenter an indication as to how well the experi-
ence was chosen. For verification purposes, a path is
drawn on the display of the robot’s visual field during
operation, indicating the predicted future path.

The horizon length of the experiences was 40
time steps or approximately 3,400 ms (a single time
step was approximately 85 ms long). The data were
quantized into five bins in the probability distribution
estimation algorithm. The ball was moved such that

the time for the ball to describe a circle (or to move
horizontally or vertically for a complete cycle) was 6–
7 s. Thus the horizon length was shorter than, but on
the same scale as, a single cycle of the repeated behav-
ior, and the experiences would comprise approxi-
mately a half of a cycle.

5.2 Validation Experiment: Results and 
Analysis

Figure 2 shows a sequence of images from one trial
with one image shown per experience. The sequence
lasts just over 4 s and consists of approximately 50
time steps (one time step ~85 ms) and 12 experiences
(experience granularity G of four time steps). There
were 112 overlapping experiences (about 39 s of
activity) before those shown, during which the ball
was moved from left to right four times and in a circle
once. Each image shows the robot’s camera view dur-
ing an experience with the predicted path overlayed
(at run-time). For clarity, a single image from the
sequence is reproduced in Figure 3 with the position
of the ball and the predicted path highlighted.

In the sequence shown and others, the robot
required very few examples of a sequence (usually
one) before the appropriately predictive experience
could be located. This demonstrates that the informa-
tion distance measure is capable of placing subjec-
tively similar experiences (to an external observer)
near to each other in the experience space (of the
agent). However, it was found that while the path of
the ball could be predicted fairly well early on in the
sequence, later on, as the choice of experiences grew,
the candidate experience chosen was not always the
most appropriate.

Occasionally, subjectively inappropriate experi-
ences were matched. As an example, consider the sev-
enth image in Figure 2. Here, the predicted path
inferred from the sequence of experiences following
the candidate experience corresponds to the half-circle
that the ball has just been through (rather than the
half-circle it is just about to go through, as in the other
images). The candidate experience chosen is informa-
tionally close to another experience half a cycle back
in time, which may have been more appropriate.
These two possible experiences that could have been
matched correspond to motions of the ball from oppo-
site sides of a circle. As the experience distance meas-
ure is the sum of information distances between
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variables, then a symmetric error such as this is likely,
especially as phase-shifted periodic variables can have
a small or zero6 information distance. This particular
test scenario presents an unrealistic situation where
the robot does not move, and we predict that with
embodied action, more information would be availa-
ble with which to distinguish experience.

6 Interaction Game Experiments

In this section we describe two experiments that use
the experience metric space in a robot that develops
the capability to play a simple interaction game. In the
first, a human partner engages in a peekaboo game
with a robot, and in the second the effect of the experi-
ence horizon length on the ability of a robot to
develop the capability to play the game is investigated.
We describe and motivate the choice of the peekaboo
game as an interaction scenario for this study, fol-
lowed by a description of the experiments and results.

Figure 2 Validation experiment. A series of 12 consecutive images from the Aibo camera showing ball path prediction
using a sensorimotor interaction history. The robot does not move its head in this sequence. Images are sequential left
to right and top to bottom. The sequence lasts ≈ 4.2 s (49 time steps or 12 experiences) and is taken after 38 s of activ-
ity. The line shows the path prediction for 10 experiences ahead. The crosses are from various methods for ball detec-
tion; only one of these was actually used as sensory input. Horizon = 40, number of bins = 5, experience granularity =
four time steps. One image shown per experience.

Figure 3 Single image from the Aibo camera taken dur-
ing the ball prediction experiment. The predicted path has
been highlighted with arrows, starting from the position of
the ball during the matched experience, and ending with
the position of the ball during the tenth experience after
the matched one. The lower cross-hair is the detected
ball position, and the upper cross-hair is the predicted ball
position.
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6.1 Peekaboo Early Interaction Game

The development of gestural communicative interac-
tion skills is grounded in the early interaction games
that infants play. In the study of the ontogeny of social
interaction, gestural communication and turn-taking in
artificial agents, it is instructive to look at the types of
interaction that children are capable of in early develop-
ment and how they learn to interact appropriately with
adults and other children. A well-known interaction
game is peekaboo where, classically, the caregiver, hav-
ing established mutual engagement through eye-con-
tact, hides their face momentarily. On revealing their
face again, the caregiver cries peek-a-boo!, peep-bo!,
or something similar. This usually results in pleasure
for the infant, which, in early development, may be a
result of the relief7 in the return of something consid-
ered lost (i.e., the emotionally satisfying mutual con-
tact), but later in development also may be a result of
the meeting of an expectation (i.e., the contact return-
ing as expected along with the pleasurable and famil-
iar sound), and the recognition of the pleasurable
game ensuing (Montague & Walker-Andrews, 2001;
Veatch, 1998).

Bruner and Sherwood (1975) studied peekaboo
from the point of view of play and learning of the
rules and structures of games. They also recognized
that the game relies on (and is often contingent with)
developing a mastery of object permanence as well as
being able to predict the future location of the reap-
pearing face. We suggest that the parts of the game
can be viewed as gestures in a non-verbal communica-
tive interaction. The hiding of the face is one such ges-
ture; the vocalization, and the showing of pleasure
(laughing) are others. In order for the interaction game
to proceed successfully, the gestures must be made by
either party at the times expected by the players, and
that absence or mis-timing can result in the game
cycle being broken. Learning of the game is supported
by further gestures, such as a rising expectant intona-
tion of the voice during hiding, as a reassurance or cue
of the returning contact. Later in development, the
roles of the game can become reversed with the child
initiating the hiding, while still obeying the estab-
lished rules by, for instance, uttering the vocalization
on renewed contact.

In all this, the rhythm and timing of the interac-
tion are crucial and Bruner and Sherwood have sug-
gested that the peekaboo game and other early

interaction games act as scaffolding on which later
forms of interaction, particularly language and the
required intricate timing details, can be built (Pea,
2004, pp. 424–5).

In relation to the development of social cognition
in infants, “peekaboo” and other social interaction
games, which are characterized by a building and then
releasing of tension in cyclic phases, are important as
they are considered to contribute developmentally to
infant understanding and practise of social interaction.
Peekaboo provides the caregiver with the scaffolding
upon which infants can co-regulate their emotional
expressions with others, build social expectations and
establish primary intersubjectivity (Rochat, Querido,
& Striano, 1999).

6.2 Interaction Experiment 1: Sensorimotor 
Contingencies in the Interaction Game 
Peekaboo

The purpose of this experiment was to investigate
whether an embodied interaction history in a robot
could be used for the robot to act appropriately in an
interaction that requires following a spatio-temporally
structured set of rules, which when followed result in
a high value according to an internal motivational sys-
tem.

6.2.1 Interaction Experiment 1: Experimental
Setup The robot remains in a sitting position (see
Figure 4) throughout the experiment with the forelegs
free to move, facing the human interaction partner at a
distance of 30–50 cm. The actions that the robot can

Figure 4 Aibo playing the peekaboo game. Left: Sony
Aibo with human partner. Right: Using a static image.
(Top: hiding head with front leg. Bottom: Aibo’s view,
showing face detection.)
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execute are listed in Table 2. Each action takes 2 s or
less and the re-center head action is duplicated to off-
set the two actions that take the head away from the
center.

The human partner takes a passive role with the
usual interaction feedback from the partner provided
by an internally generated motivational value in the
robot. The action to hide head with foreleg means that
the robot covers its forward-facing camera with one or
other of its forelegs, before uncovering it again a short
time later.

In this experiment and the next, we define a
“peekaboo sequence” to have occurred when the
robot having detected a face, through action loses
detection and returns to detect the face again, with
this cycle repeating at least once. This is marked,
because of the nature of the motivational dynamics
(see Appendix A), with a high value for the motiva-
tional variable m. The duration of the sequence is
measured from the point of the first loss of face detec-
tion through to the last point at which high motivation
can be sustained without a break in the sequence. The
average cycle period is the average duration of a sin-
gle face loss/re-detection cycle within a peekaboo
sequence.

6.2.2 Interaction Experiment 1: Results and Analy-
sis There were 15 trials conducted, each lasting
between 3 and 5 min. The results tend to show that the
robot, after a period of random movement, does start
to engage in repeated cycles of behavior. In 10 of the
trials, the robot engages in peekaboo as defined above.
If the robot were not to take action to block its own

camera view, it would have long periods of detecting a
face, which does not result in a high value for the
motivational variable. Instead, the robot generates
intermittency in detecting a face by executing
actions 1, 2, 6 or 7 in Table 2. Figure 5 shows the
trace of the internal variables as well as the actions exe-
cuted from one short trial where peekaboo behavior
was observed. The sequence consists of eight repeated
cycles of hiding interspersed with other actions, which
importantly include actions to re-center the head.

The trials also show that it is easy for the robot to
“get stuck” in areas of the experience space, espe-
cially if all other factors in the environment remain
unchanged. This occurs four times in these trials, usu-
ally with the robot repeating an action such as waving.

The results also show that relatively few experi-
ences are selected and thus modified (with regard to
their stored quality value) over time. In some of the
trials, particular experiences were selected multiple
times, but this is not always the case. In the trial of
Figure 5, 34 choices of action were made: the first 11
were random actions, and 13 of the remaining 23
actions were selected from a total of 12 previous expe-
riences (the other 10 being randomly selected).

6.3 Interaction Experiment 2: Investigation of 
the Effect of Horizon Length

First, the purpose of this investigation was initially to
evaluate whether the model for development based
on interaction history performed better than random
for the task of playing the game of peekaboo. Sec-
ond, the hypothesis that the horizon length of experi-
ence would affect the ability to acquire peekaboo
behavior was tested by trying a number of different
horizon lengths in a controlled experiment. The
hypothesis was that the horizon length of experience
needs to be of a similar scale to that of the interac-
tion in question. If it is too short, the experience does
not carry enough information to make useful com-
parisons to the history. If it is too long, then the inter-
esting part of the interaction becomes lost in the
larger experience.

6.3.1 Interaction Experiment 2: Experimental
Setup Again the robot remains in a “sitting” posi-
tion throughout the experiments but facing instead a
picture of a face (see Figure 4) at a fixed distance of

Table 2 Actions.

Action Description

0 Do nothing

1, 2 Look right/left

3 Track ball with head

4, 5 Re-center head

6, 7 Hide head with left/right foreleg

8, 9 Wave with left/right foreleg

10 Wag tail
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40 cm. A picture was used rather than an interaction
partner in these particular experiments to allow analysis
of the robot’s interactions in isolation when compar-
ing horizon lengths, and for experimental repeatabil-
ity.

We ran six trials of 2-min duration for each hori-
zon length of 8, 16, 32, 64, and 128 time steps (0.96,
1.92, 3.84, 7.68, and 15.36 s, respectively). For com-
parison, a further six trials were run where the choice
of action was random and not based on history. In
each of the trials, the metric space started unpopu-
lated.

6.3.2 Interaction Experiment 2: Results Table 3 sum-
marizes the results of 36 trial runs, while Figure 6
shows, for selected trials, time-series graphs of the
motivational variables coupled with the actions taken.
Peekaboo behavior, as defined in Section 6.2.1, was

seen in 18 of the 36 runs. All but one of the horizon
size 8 trials, and four of horizon size 16, also showed
peekaboo behavior. The sequences were mostly gen-
erated by repetitive actions for long durations. Fig-
ure 6A (horizon size 8) shows the best example of
this behavior; the average cycle period is approxi-
mately 42 time steps or 5 s, and the sequence dura-
tion is around 640 time steps (76 s). During this
sequence, the head is hidden to the left and right, and
this is interspersed with head-centering actions.
Through all of these episodes, periods of no action
serve to alter the timing of the cyclic periods.
Although all of the trials using random action selec-
tion showed some peekaboo behavior, they were
irregular both in terms of cycle period length and in
terms of the actions used to generate the sequence
(see Figure 6B for example).

Of the longer horizon length (32, 64, and 128) tri-
als, three showed peekaboo behavior using repeated

Figure 5 Time series of motor and sensor values showing the engagement of the robot in the peekaboo game. The
bottom part of the graph shows when the face is seen, and the two internal variables are shown varying in response to
this. The actions executed are shown at the top of the trace.
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actions (e.g., Figure 6D). Three also showed peekaboo
using an action (waving) that would not normally
cause a break in face detection. In this particular cir-
cumstance, “rocking” of the robot caused a break in
face detection > 50 ms and led to a peekaboo sequence
(see Figure 6C for an example.)

6.3.3 Interaction Experiment 2: Analysis All of
the trial runs of random action selection resulted in
some peekaboo sequences, although with mixed,
irregular actions. It is likely that this is due to a moti-
vational system that responds to a wide range of
frequencies8 combined with a range of actions, four

of which would result in some loss of face detection.
However, to see longer peekaboo sequences with
regular actions, some controlled behavior must be
selected and this is only seen in the experience-driven
trials. As a contrary example, see Figure 6F where no
peekaboo-like dynamics are seen.

In some of the experience-driven trials, repeated
behavior was seen that could have resulted in high moti-
vation if the head had been pointed forward. Experience
alone was not able to re-center the head. On one occa-
sion however, when the head was re-centered (ran-
domly), then the experience space allowed a resumption
of the peekaboo sequence (see Figure 6E). Thereafter, a
re-centering action is selected along with hiding actions.

Table 3 Experiment summary. Duration and average cycle period in time steps (ts) of peekaboo sequences for each
trial. Where peekaboo is achieved using a waving instead of hiding action, this is indicated as waving.

Run Random
length/period
(ts/ts)

Horizon 8
length/period
(ts/ts)

Horizon 16
length/period
(ts/ts)

Horizon 32
length/period
(ts/ts)

Horizon 64
length/period
(ts/ts)

Horizon 128
length/period
(ts/ts)

1
 

120/40
 

180/45
 

260/40
 

None
 

400/57
waving

None
  

2 220/55 150/40 None None None None

3
 

220/45
 

Fig 6A
640/42

140/45
200/50

Fig 6F
None

None
 

100/40
 

4
 

200/60
 

130/45
150/70

Fig 6E
260,240/40

None
 

None
 

None
 

5
 
 

160/50
 
 

None
 
 

140/35
waving
 

Fig 6C
540/47
waving

Fig 6D
220,100/37
100/40

120/40
 
 

6
 

Fig 6B
80,140/40

250/42
 

120/40
 

840/47
waving

None
 

None
 

Figure 6 Motivational dynamics and actions for selected 2-min interaction sequences of different horizon lengths.
Graphs show when face is seen (black bars at bottom), the values of the key internal variables (m  and d), and the action
taken at the top (note that action 0, do nothing, is not shown for clarity). (A) Peekaboo. Horizon size 8. Dynamics during
an extended peekaboo sequence. (B) Random action selection resulting in high m and d. Although the action selection
is random, it is possible to obtain periods of high value. (C) Emergent behavior resulting in high m and d. Horizon size
32. Dynamics generate a high value when the face is intermittently lost when the waving paw returns to hit the hind knee
and jogs the robot. (D) Irregular response to regular actions. Horizon size 64. The regular hiding of the head does not al-
ways result in a high value, perhaps because the face is not detected during the period that the head points forward. (E)
Repeated sequence. Horizon size 16. Sequence of peekaboo repeated after the head is re-centered. (F) Peekaboo not
inevitable. Horizon size 32. Here, although the head is hidden twice, the peekaboo dynamics are not inevitable and co-
ordinated action is necessary for continued high motivation.
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The best of the cyclic behavior was seen in the
experience-driven trials of horizon size 8 and 16 time
steps (about 1 and about 2 s, respectively). This result
indicates that it may be necessary to have an appropri-
ately sized time-horizon, and this may be related to
the length of single actions (about 2 s), and thus the
natural period9 of the cyclic behavior. This could be
because to bootstrap the initial repetitive behavior, it is
necessary to focus on an experience of one cycle
length when there is only a single (possibly randomly
generated) example of the cycle in the agent’s experi-
ence. 

7 Summary

We have motivated and presented a definition of
grounded sensorimotor interaction histories for embod-
ied organisms, and presented a control architecture for
an artificial organism using such a history. We also
argue that a system that connects action with dynami-
cally constructed experiences can scaffold ontogenetic
development, given a sufficiently sophisticated system
of goals and motivations.

The system was implemented in an Aibo robot,
and results from a validation experiment have con-
firmed that a metric space of experience based on
information distance measures between time-extended
episodes of sensorimotor experience might be a suita-
ble basis for extending the temporal horizon using
interaction histories in robots. Experiments using a
robot playing a simple interaction game using this
architecture have shown that it is able to develop the
capability to play the game based on its own experi-
ence and an internal motivational system. Further
results indicate that the horizon length of experience
plays an important role in the types of interaction that
can be engaged in. The experimental results support
the hypothesis that horizon length needs to be of a
similar scale to that of the interaction in question, and
thus should be determined, at least in part, by the
types of interaction that will take place. The action-
selection architecture is however still extremely lim-
ited, and this combined with the short experiment
lengths and the oversensitive motivational system sug-
gests various directions for improvement.

8 Future Work

An important direction that needs to be explored is the
anticipation of future action and expectation of future
reward, although how far ahead in the future may vary
for the development of different skills and task abili-
ties. Currently, experiences of the same length are
being compared; however, it is also possible to have
shorter-term current experience being matched against
parts of longer-term episodic experience, and the cur-
rent short experience being assessed with an antici-
pated future value related to the best value in the
extended experience. We expect this approach to bet-
ter balance the requirement, as found above, to have
horizons of appropriate size for comparing experience
successfully, while also taking into account tempo-
rally extended aspects of interaction.

Further, given the apparent dependence on hori-
zon length, it may be necessary to operate on many
different horizon lengths, and an adaptive, variable
experience length may help in then finding areas of
high value for the different types of interaction the
robot will encounter. We suggest that an approach to
deciding on appropriate experience lengths will come
from the density of “interesting” features or events in
the experience space, the operational determination of
which will take into account motivational dynamics,
value of experience, and possibly rates of change of
experience distances.

These particular experiments carried out so far do
not have much non-trivial interaction with either the
environment or the partner’s side, and lack features of
more contingent social interaction. However, their
purpose was to establish the feasibility of using tem-
porally extended experience-based interaction history
architecture in adaptive behavior in controlled studies.
The next steps must be to increase the social complex-
ity of interactions using the interaction history
approach (most likely requiring a more sophisticated
motivational system) in less controlled scenarios, and
to demonstrate further capacity for scaffolding the
ontogeny of interaction skills in the social environ-
ment.

The current architecture is expensive in terms of
both computer memory usage (increasing linearly
with time) and computational complexity (increasing
quadratically with time), and this cannot be sustaina-
ble in support for long-term development. A solution
may be to reduce the number of experiences by “for-
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getting” (i.e., removing “unused” experiences from
the metric space over time) or by “merging” similar
experiences.10 If a constant number of experiences
were retained, then both memory and computational
complexity would remain constant. Questions arise as
to how many experiences to retain, and which to
remove. It would be essential, however, to retain a
sense of the structure of the experience space, and in
particular the local density of experience.

We expect the structure of the dynamically grow-
ing and changing experience space to reveal important
information about familiarity of experience, novelty of
experience, areas of high and low reinforcement, areas
of mastery and zones where current development can
proceed through learning. Moreover, from the structure
of the experience space, natural representations may
emerge grounded in an agent’s sensorimotor history
developed through interaction, which are useful for
ongoing developmental progress. Indeed, as areas of
familiarity, mastery and novelty are identified, these
may themselves provide a more general intrinsic moti-
vational system that can drive development.
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Appendix A: Motivational Dynamics

We present the dynamic system of coupled equations
that describe the motivational system used to confer a
quality measure to experience. This feedback from the
environment was designed specifically for the require-
ments of a peekaboo game, but could be generalized
to other types of interaction.

To provide appropriate feedback, we require a
high value for motivation following a period of peeka-
boo-like interaction. This is achieved by the interplay
between a signal originating in the environmental
interaction (perception of a face) and two internal var-
iables.

First, the agent possesses a binary meta-sensor f
that is a result of processing the visual sensors (image)

to locate a generalized human face shape in the image,
if one exists. Face detection is implemented using
Intel OpenCV HAAR Cascades (OpenCV, 2000). This
is then smoothed to remove short gaps (< 50 ms).

Second, the desire to see a face is given by d (con-
strained in the range [0, 1]) and increases when there
is no face seen at a rate determined by how often a
face has been seen recently (actually by feedback
from m described below). The desire decays other-
wise. See Equation 1.

Finally, the overall motivation m, also constrained
in the range [0, 1], increases when f = 1. The rate of
increase is determined by the desire to see a face d. In
the absence of desire d, when a face is seen m tends to
a constant value set by Cmax. When no face is seen, m
decays at rate δ3. See Equation 2.

In the experiments described in this article m is
used as the quality value for the experiences. 

(1)

(2)

The parameters of the dynamics equations are shown
in Table A1 along with the values used in the experi-
ments. These values were chosen by trial and error,
and we note that with these values the system is recep-
tive to a wide range of periods for peekaboo.

Notes

1 This is true for the simpler vehicles that do not have a
memory.

2 For instance, the bacteria Escherichia coli are known to
have a certain minimal level of embodiment (Quick, Dau-
tenhahn, Nehaniv, & Roberts, 1999) and “cognition” (van
Duijn, Keijzer, & Franken, 2006), and are able, without a
nervous system, to exploit fairly simple sensor–motor
coupling through limited low-bandwidth channels to
achieve reactive behavior such as chemotaxis.

3 The examples here are chosen from the separate but
related fields of psychology, cognitive science, and artifi-
cial intelligence.

4 The approach generalizes to continuous time and value
sets with appropriate changes.

∆d
α1m δ1 1 m–( ) – if f = 0,

δ2– d if f = 1.



=

∆m
δ3– m if f = 0,

α2d β Cmax m–( ) + if f = 1.



=

d m constrained such that d m 0 1,[ ]∈,,
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5 In these experiments the radius is fixed, but we note that
this could be adapted on-line.

6 Variables that have a zero information distance are recod-
ing equivalent and are not necessarily identical (see
Crutchfield, 1990).

7 In the context of humor, peekaboo in its early stages is an
example of relief laughter. That is, relief that the caregiver
that is thought to have disappeared actually has not
(Veatch, 1998).

8 The motivational system tuned with the parameters given
in Appendix A would result in high values of the variable
m after a few cycles where the face signal was lost for any-
where between 50 ms to 9.5 s. Thus, it was inevitable that
a high motivational value should be reached with even
random actions.

9 Note that the motivational system itself does not dictate
this period as any cyclic behavior of period up to 19 s can
result in high values of m.

10 Alternatives are to store fewer experiences in the first
place and to make fewer comparisons, maybe assimilating
and deleting some of these experiences during a “sleep-
ing” phase.
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Abstract

This technical article discusses issues of scalability in the interaction history architecture.

1 Scalability

1.1 Introduction

In this section we discuss scalability of the interaction history architecture in terms of computation time and memory
requirement as the history of the robot’s interaction with its environment grows. The specific areas which can result
in scalability issues are 1) the time to place a new experience in a metric space (for the purpose of returning a list
of nearest neighbours) and 2) the storage of the metric space of experiences. The goal is that computation time
should allow “real-time” operation (i.e. the computational complexity should be constant) and that there should be
mechanisms to keep within a fixed memory limit.

We look at methods that reduce the processing requirement for placing new experiences, as well as forgetting of
experiences and the merging of experiences.

1.2 Computational Complexity

Placing an experience in a metric space requires that the distance from that experience to every other one in the space
be known. By far the most computationally expensive task in this process is the calculation of Experience Distance
between any two experiences. Without any modifications to the basic architecture, the time to place an experience
increases linearly with the number of experiences already in the space. All other processing requirements are constant.

Given that new experiences arrive regularly, it is inevitable that as the number of experiences in the space grows it
will not be possible to place an experience in the metric space before another one is available for processing. Further,
given that the time to make a single comparison is constant, the only way to reduce computation time is to reduce
the number of comparisons. This can be done either by reducing the number of items to compare (see Section 1.3) or
by not explicitly computing all distances (see Section 1.2.1).

1.2.1 Reducing Comparisons

One way to reduce required comparisons would be to use the distances between experiences in the space to infer
distances to any new experience. However, as the metric space of experiences is a non-euclidean space, then this
becomes more difficult.

We note, however, that knowing the distance to all other experiences is not necessary for the correct operation of
the interaction history architecture. It is only necessary to know the nearest neighbours; i.e. the nearest N experiences,
or all experiences within a “ball” of radius r.

∗∗The work described in this paper was conducted within the EU Integrated Project RobotCub (“Robotic Open-architecture Technology
for Cognition, Understanding, and Behaviours”) and was funded by the European Commission through the E5 Unit (Cognition) of FP6-IST
under Contract FP6-004370. We are grateful to Kerstin Dautenhahn and René te Boekhorst for discussions on this work.
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1.2.2 Finding Nearest Neighbours

Say we are interested in finding all nearest neighbours of an experience Enew within a “ball” of radius r, we can use
the triangle inequality to reduce the number of distances that need to be measured. Specifically:

Theorem 1.1 Given an experience Ek that is distance d(Enew, Ek) ≤ r from Enew, then any neighbours of Ek that
are further away than 2r are not within distance r of Enew.

Proof 1.1 Consider 2 experiences Y,Z near X; We define near to mean within distance r, thus: d(X,Y ) ≤ r and
d(X,Z) ≤ r. Then by the triangle inequality d(Y, Z) ≤ d(X, Y ) + d(X, Z), we get d(Y, Z) ≤ 2r. Therefore, if any 2
experiences are further apart than 2r, then they cannot both be within radius r of any particular experience.

This fact can be used discard experiences from consideration when finding nearest neighbours within a specified
radius. Of course, this requires first finding an experience with radius r of the new experience. One approach to this
problem is to simply randomly sample the experience space until one is found. Other strategies exist; for example,
using the continuous nature of the environment to start the search for near experiences (in terms of information
distance) with those experiences near in terms of time.

Algorithm 1 Algorithm B2R NN: Populate Metric Space Distances for Nearest Neighbours
Require: r = radius for near experiences
Require: Enew = new experience
Require: newDistances = empty list
1: toTestList ⇐ all experiences in metric space
2: while toTestList is not empty do
3: remove a random experience from toTestList, assign to EK

4: calculate d(Enew, Ek), add to newDistances
5: if D ≤ R then
6: remove all experiences further than 2r from Ek in toTestList
7: end if
8: end while

An algorithm to find the nearest neighbours of a new experience from a metric space of experiences is given in
Algorithm 1 which guarantees that all experiences within r of the new experience Ek will be in the list newDistances.
There will also be have been other distances which will have been checked in that list as a consequence of the random
sampling.

An important issue is that any strategy that does not fully populate all distances in a metric space is potentially
degenerative. That is, when another experience arrives, it may not be possible to make the same guarantees as the
existing metric space is not fully populated. In practical use however, the algorithm given should still find all neighbours
as it excludes only experiences which clearly do not fall within radius r. The result instead is that potentially more
comparisons will have to be made. This however in turn results in a better populated space.

A question remains: by how much this might reduce the space of experience to be searched? The answer is largely
dependant on r (as shown in the tests below, see Section 1.2.4) and on the nature of the space. At one extreme,
if experiences are clustered tightly together with no experience further than 2r from any other, then all experiences
must be searched. Due to the nature of the algorithm, the computation time would actually be greater than if all
experiences were checked in turn. At the other extreme, if the radius was smaller than any distance between two
experiences, then once again all experiences would have to be checked because no near neighbour would be found.

Happily, the situation is likely to be somewhere between the two. If the experiences are clustered around many
centres further apart than 2r, or are evenly spaced with the minimum distance much less than r but the maximum
distance much greater than 2r, then it is likely that a near experience will be found fairly quickly and consequently,
many experiences will be discarded, reducing the computation time significantly.

1.2.3 Finding a suitable radius r

With the strategy given above, an important question is: what value should r take? This clearly depends on the nature
of the space and how many nearest neighbours are needed to make a choice of next action within the interaction history
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architecture action selection. Thus, r is likely to change as the robot interacts in the environment and so should be
adaptive.

A strategy to adapt r suitably to the current metric space is to instead take N , the number of nearest neighbours
required, as a reference point. Starting with r at an initial value, for every new experience, find all neighbours within
radius r. If this number is greater than N , adjust r downwards and visa-versa.

1.2.4 Test of B2R NN algorithm in artificial and real metric spaces

To quantify the computational saving that can be achieved by the B2R NN algorithm, we conducted two tests. Firstly,
an artificial euclidean metric space with evenly spaced random points was used to investigate the relationship between
the density of the points in the space, N , and the radius, r. Secondly, a real metric space of experience taken from an
Aibo interacting with a human partner was used to investigate the effect of varying the radius, r.

Figure 1: Graphic showing relationship between r and N in determining the number of calculations made by the
B2R NN algorithm in an artificial metric space.

In figure 2 we show the results from the artificial space. The metric space was 3-dimensional euclidean and contained
randomly placed points. The maximum possible distance in the space was 17.32 (no units), with an observed average
distance between any 2 points of approx. 7.2 and a minimum distance to any neighbour between 2.3 and 0.7 depending
on the number of points.

The results show that when the radius r is relatively small (in this case r ≤ 1.0) then there is no or very little
reduction in the number of calculations required to find the neighbours in a ball of radius r. As the radius increases,
less than 20% of the calculations are needed, However, this saving is lessened as the radius grows until it eventually
comes back down to 0. While these observations are true to some extent for any number of points, the certainty of
gaining such a speed-up is increased with the density of points in the space.

Figure 3 shows the results when the algorithm was testing in a metric space that resulted from an Aibo interacting
with a human partner. The Aibo variously looked at the partner’s face, hid its face with it’s forearm (peekaboo) and
looked at the pink ball. The space had a total of 372 experiences in it. The distances for the 373rd experience were
pre-calculated for the purposes of the test, and used as a look-up table in the tests of the B2R NN algorithm.

A similar shaped curve is again observed indicating that, with a good choice of r, significant saving in number of
calculations can be achieved.
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Figure 2: Graphs showing relationship between r and N in determining the number of calculations made by the B2R NN
algorithm in an artificial metric space for selected N . Each point is the mean of 20 runs, error bars show 1 Std. Dev.
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Figure 3: Graph showing effect of r in determining the number of calculations made by the B2R NN algorithm in a real
metric space taken from an Aibo interacting with a human partner. Each point is the mean of 20 runs, error bars
show 1 Std. Dev.
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1.2.5 Reducing number of points

Another strategy for reducing the number of computations of distance between experiences is to reduce the number of
experiences in the space in the first place. This is the subject of the next section, and the discussion continues there.

1.3 Storage Requirements

The memory storage required to maintain a experience space consists of: the storage of the experience1 itself, plus that
of the metric space itself (i.e. distances), plus constant factors. The storage of fixed length experiences grows linearly
with the number of experiences. The non-constant storage of the metric space itself increases faster. At any time it
is proportional to PN

2 , the number of permutations of 2 items from N items, where N is the number of experiences.
In terms of complexity this is order O (n log n).

Thus, it is not possible to store all experiences and all distances indefinitely for a metric space that is growing. At
some point it will exceed the storage available. Also, many calculations in the space are dependant on the number
of experiences and so computational complexity is also affected. We therefore examine two strategies to reduce the
number of experiences within a metric space as it is growing: merging and forgetting.

1.3.1 Merging Experiences in a Growing Metric Space

This strategy is based on the idea that if two experiences are very similar, then they could potentially be treated as
the same experience for the purposes of comparison with other experiences. Intuitively, this is what happens with us
as we experience the world. As we engage in an activity that we do many times, such as drinking a mug of tea at our
desk, we do not notice that it is similar to any one particular time we engaged in that activity in the past, only that
it is similar to a generalized activity: i.e. past experiences have been merged into a single experience (for the purpose
of comparison at least).

The general strategy is to replace two experiences in the space by a single experience that has features taken from
both. Individual strategies are distinguished by how the two experiences are chosen, e.g. by using a threshold Tmerge,
and by what features of the experiences are retained or discarded.

1.3.2 On Calculating an Intermediate Experience

Merging two experiences Ea and Eb, and replacing them with one that is some-way between the two, can be considered
as a problem of finding an intermediate experience Eab, such that: d(Eab, Ea) ≤ d(Ea, Eb) ∧ d(Eab, Eb) ≤ d(Ea, Eb).

Ideally the intermediate experience would be half-way between the two, i.e. d(Eab, Ea) = d(Eab, Eb). This calcu-
lation is not mathematically straightforward due to the non-euclidean nature of the space and may take quite long to
compute. One possibility is to find a combination of binned sensor readings that is approximately half the hamming
distance between the two sets of values, however ee do not explore this possibility further here.

Alternatively, one or other of the distances can be zero, which amounts to keeping one of the experiences and
removing the other. This becomes less of a problem as d(Ea, Eb) approaches zero.

1.3.3 Merging by deletion

Due to the difficulty of mathematically merging two experiences an alternative strategy is to remove one of the
experiences entirely. This may not be satisfactory as that experience probably had important information that may
be useful. The fact of its existence is one such. i.e. the fact that it occurred and was similar to other experiences gives
a sense of familiarity and may be important in choosing a list of N nearest neighbours. Another important piece of
information is the subsequent action that was taken after that particular experience, which may or may not have been
different from the other experience. Finally, the distance information may also be important.

A modified strategy would be to remove one of experiences from the space, but retain other information such as
number of merged experiences and subsequent actions with the remaining experience. This is in fact the preferred
strategy in our architecture. See Algorithm 2 for details.

1In storing an experience, all that is required are the binned values of the sensors, not the actual values of the sensors. In addition
meta-information will be stored with the experience e.g. next action, quality, weight etc.
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1.3.4 Choice of Experiences to Merge

An obvious choice for merging criteria is to merge any two experiences closer than a threshold Tmerge (see Algorithm
2. Tmerge could be fixed but that raises the problem of finding a suitable value. Alternatively it could be an adaptive
threshold responding to some other criteria such as maximum number of experiences in the space. For the special case
Tmerge = 0 no information is lost in the merge of the sensorimotor experiences themselves, however, they can still be
different actual experiences, with different meta-variables (e.g. subsequent actions, quality etc. ) attached.

An alternative way of choosing experiences to merge would be to compare other features of the experiences.
Candidates are next action and assigned quality. Of course, these other features could be combined with threshold to
refine the choice.

Algorithm 2 Algorithm IHA MERGET: Choose and Merge 2 experiences using a threshold
1: for Ei in all experiences do
2: for Ej in neighbours of Ei do
3: if d(Ei, Ej) ≤ Tmerge then
4: actions(Ei) = actions(Ei) + actions(Ej)
5: quality(Ei) =

(
quality(Ei) + quality(Ej)

)
/2

6: weight(Ei) = weight(Ei) + weight(Ej)
7: delete all distances to and from Ej in the metric space
8: delete Ej

9: end if
10: end for
11: end for

1.3.5 Retaining Distances

An alternative to the complete removal of an experience from the metric space, is to delete only the sensorimotor
experience data and retain only the existing distance information. This will result in a reduction of memory requirement
while retaining important structural information about the metric space. The space would then contain parent
experiences about which everthing is known, and child experiences having only distance and meta information. Any
new experiences would only be able to be directly compared to parents and distances to child experiences only inferred.

This strategy has the advantage that only sensorimotor information is lost, and that a natural hierarchy within the
metric space can easily be built. The disadvantage is in that the distances from child experiences cannot be known,
and that the complexity and storage requirements is not reduced significantly.

1.4 Forgetting

In terms of a metric space of experiences, forgetting corresponds to removing individual experiences from the space,
including all meta-information and distances to other experiences. This is a useful way to reduce both computational
complexity in maintaining the space as well as reducing storage requirement.

The question is; how should experiences be chosen for removal? Of course, it could be random, however it makes
more sense to base this on some quality of the experience itself. For instance, time. i.e. how often the experience has
been “accessed” or “used” or how long ago it was last “accessed”. This would correspond to natural, intuitive ideas of
forgetting. An alternative measure could be the quality of the experience in terms of reward signals. In this scheme,
experiences that were neither “very good” nor “very bad” might be candidates for forgetting. In terms of the metric
space of experiences, another measure might be how isolated and experiences is from others.
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Interaction History Architecture : A Simple Test-bed∗∗
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Abstract

This technical article discusses experiments with the interaction history architecture on a toy learning problem.

1 Introduction

In the classic T-Maze task, an agent (e.g. rat or wheeled robot) is required to navigate a simple mazes with a reward at
the end of one arm of the T. Also known as a delayed response task, this is a popular test-bed for reinforcement learning
as the reward is given at sometime after the decision to turn left or right at the junction is taken. The Road-Sign
problem is an extension of a simple T-Maze learning environment where an indication of the reward position is given
by an earlier disconnected event. Thus the agent can make use of its experience in making the decision to turn left or
right. This problem provides a benchmark test-bed for autonomous agents with some kind of short-term memory.

Up till now the interaction history architecture has been applied to complex interaction tasks involving a real
robot with multiple degrees of freedom and colour vision (Sony’s Aibo). The two main test environments were the
prediction of the path of a ball using previous experience and developing the capability to play a modified version
of the peekaboo interaction game. A simpler benchmark problem however may reveal as yet unexamined capabilities
and deficiencies in the architecture and allows the opportunity to extend and develop the architecture to include, for
example, adaptive horizon lengths. We also use this simple environment to test the information distance measure
against other measures such as hamming distance.

1.1 The Road-Sign Problem

The agent is in a T-Maze at the bottom end of the T. The basic task is to travel to the junction and turn either right
or left. A reward is placed at one arm of the T. Which particular arm is a variable of the experiment.

While travelling to the junction, the agent encounters a signal in the form of a light on either the left-hand side or
the right-hand side. In the simplest version of the task this faithfully indicates the position of the reward in the T.
Of course more complex relationships between signal and reward can be devised.

In some versions of the experiment, a negative reward may be given if the agent travels to the end of the ”wrong”
arm of the T.

1.2 Aims

The aim of this study is to investigate how the interaction history operates in a simple benchmark test and in particular
to address the following questions:

Learning : How well does the system perform in this simple task, i.e. is it able to associate the signal and reward
over a series of runs through the maze?

Alternative Distance Measures : How does the information distance metric compare to alternative measures of
distance such as the hamming distance and the pearson’s squared metric?

Multiple Horizon Lengths : Using multiple metric spaces maintained simultaneously with different horizon lengths
is the system able to choose actions from experiences with appropriate horizon length?

∗∗The work described in this paper was conducted within the EU Integrated Project RobotCub (“Robotic Open-architecture Technology
for Cognition, Understanding, and Behaviours”) and was funded by the European Commission through the E5 Unit (Cognition) of FP6-IST
under Contract FP6-004370. We are grateful to Kerstin Dautenhahn and René te Boekhorst for discussions on this work.
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Figure 1: The T-Maze task

2 Related Work

Much of the recent literature on solutions to this problem for autonomous agents are either neural-network based or
evolutionary algorithm based.

Rylatt and Czarnecki (2000) describe a Elman-style recurrent neural network solution using a type of learning
called CRBP Complementary Reinforcement Backpropagation Learning. Although in that original paper they do not
tackle the whole problem. Thieme and Ziemke (2002) go further, testing four different neural network architectureson
the road-sign problem with the highest reliability achieved by Extended Sequential Cascaded Networks, a higher-order
recurrent neural network architecture. They showed that a short-term memory can be realized for delayed response
tasks through synaptic plasticity and dynamic modulation of sensorimotor mapping.

Interestingly, Thieme and Ziemke (2002) also found that a simple feed-forward neural network could also reactively
solve the road-sign problem. This is achieved by moving towards the light and then simply following the wall till the
goal is reached. The memory of state is in the agent-environment interaction. In a similar vein, Bovet and Pfeifer
(2005) explore the possibility that a memory-less agent could solve the road-sign problem. In their case, appearance
of a short-term memory is achieved through a combination of some unchanging aspect of the environment (a coloured
wall) and plasticity of synaptic weights between reward and the visual modality. In effect, the visual system has been
altered by the interaction with the light and the subsequent presentation of the environmental stimulus induces the
appropriate motor response.

Kim (2004) takes an alternative approach of evolving a controller based on Finate State Machines to analyze the
role of internal memory. They looked the size of the internal memory and states required to learn various forms of
the problem involving one, two or more lights. They also studied the effect of noise on their model. They find that
purely reactive controllers cannot solve the problem and multi-states were required. The simplest arrangement of a
single light requiring two-states, with more states required as the number of lights increased.

The representation of state is approached in many different ways in the above. Lin̊aker and Jacobsson (2001) work
at a high level, extracting significant events and clustering them to reduce the number of states down to a handful.
They use a vector quantization network to extract model vectors representing event classes. These provide inputs to
a simple recurrent neural network which learns the associations between events and behaviours.

3 Implementation

Player/Stage was chosen to simulate a robot and the maze itself. The software would be written entirely in C++
under the YARP framework. The simulation uses a pioneer robot model with a SICK laser scanner for localization,
and a CMU camera with colour blob detection in the place of vision.

The robot collects sensorimotor data continuously creating experiences and placing them in a metric space. For
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this implementation the system allows for spaces of multiple horizon lengths to be built on-line simultaneously. The
experimental runs consist of multiple iterations of a maze with different positions of lights and reward with the robot
being placed back at the start with its history intact after it has reached one or other end of the T.

3.1 Reward

The motivational system is a simple reward signal and returns 1 when the robot reaches the end of the correct arm
of the T and 0 at all other times. This scheme is used in these experiments. Alternative schemes can have negative
rewards for reaching the wrong end of the arm, as well as returning an intermediate value while the robot is traversing
the maze.

3.2 Actions

In order to study the effect of the interaction history in detail the robot is contrained to make a single action selection
decision (turn left or right) at the junction of the T. In exploratory trials the system was less contrained, but this
led to difficulties interpreting the results so the situation was simplified to have a single decsion point that could be
compared across trials.

4 Experimental Methodology

During early testing, a methodology similar to that used for the Aibo “peekaboo” experiments was followed. Specifi-
cally, that each trial run was started with an empty history of experience, and experience was gathered on-line by using
random exploration. However, this results in experimental results that are hard to compare as they have different
histories on which to base decisions. As a result an alternative strategy was used whereby a common history was used
across repeated runs of a particular trial alowing a fair comparison between trials. The common history was gathered
during a single run where the robot was constrained to make the correct decisions.

5 Summary of Results

5.1 Learning

The first result was that it was shown that, given the right conditions, the robot was able to take the correct turn on
19 out of 20 decision points across 10 trials using a common history. The conditions were that a single horizon was
chosen which was long enough to cover the period from the light to the end of the arm of the T. Where the horizon
was too short, the robot was not able to learn the task. Secondly, the choice of nearest neighbours was reduced to
two. More nearest neighbours resulted in, randomly, incorrect decisions being taken as the common history was short
and only had two examples of each turn.

The common history contained 219 experiences over 4 iterations of the maze, with the reward alternating between
left and right over the 4 scenarios. Figure 2 shows the experience distances from Exp : 18, the first decision point
(a left turn scenario). It can be seen that the nearest experiences (distance 0.11731) are those around Exp : 136 in
the 3rd iteration which is also a left turn scenario. The experiences at the decision points in the other scenarios are
not as close. Table 1 shows the roulette selection table as created by the action selection process during a subsequent
left-turn scenario. It shows that the left turn (action 2) experiences Exp : 136,Exp : 19 and Exp : 18 are the most
likely to be selected.

5.2 Alternative Distance Measures

The information distance measure was compared with two other measures of distance, the Hamming metric and the
Pearson’s Squared Correlation distance. The Hamming distance for numeric quantities is the 1-norm distance (also
known as Manhattan distance) and is given by equation 1. This is calculated for the binned sensor values.

dhamming(x, y) =
∑

|xi + yi| (1)
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The Pearsons correlation rxy is a statistical measure of the correlation between two random variables x and y and
can be calculated from samples of x and y using the equation 3. A distance measure based on the cooefficient of
determination r2 can also be calculated (equation 2). This quantity has is interesting for us as it is small for both
correlated and anti-correlated variables, as is the information metric.

dpearsons(x, y) = 1− r2
xy (2)

where

rxy =
n

∑
xiyi −

∑
xi

∑
yi√

n
∑

x2
i − (

∑
yi)2

√
n

∑
y2

i − (
∑

yi)2
(3)

Figures 4 and 3 show the Hamming and Pearson’s distances from experience Exp : 18 to all others in the common
history as was shown for the information metric in Figure 2. All the measures clearly show most similarity between
equivalent experiences (i.e. Exp : 136 the other turn-left experience). They also show similarity to experiences at the
same point in the maze but with the light on the opposite side of the wall. The Pearson’s and information metric also
show marked similarity between Exp : 18 and certain others in the history, showing that they both reveal correlations
in the experience beyond the obvious.

5.2.1 Multiple Horizon Lengths

Following the experiments with a fixed single horizon length for experiences, trials were carried out using multiple
simultaneous metric spaces of different horizon length experiences. At any action selection point, the system could
choose from similar experiences both within a single space as well as from other spaces. It was expected that the
choice of experience would reflect the ideal horizon length for the problem at hand. However, instead it was found
that the nearest neighbours were consistently of shorter horizon lengths as there is naturally less variation in shorter
samples. Thus, when a set of horizons included a horizon length too short to learn the task, the system tended to
choose experiences from that metric space and so failed to learn the task. See Figure 5.

In order for this strategy to succeed, it may be necessary to bias the experience choice to favour longer horizons
over shorter ones.

Table 1: Example of choice of experiences and asociated actions ordered by weighted distance.

Exp Hor Weighted % Distance Mass Value Action Freq.
0 1 2 3

136 64 17.421436% 0.173884 1 1.0 0.0 0.0 1.0 0.0
19 64 12.480776% 0.205438 1 1.0 0.0 0.0 1.0 0.0
18 64 9.317441% 0.237768 1 1.0 0.0 0.0 1.0 0.0

194 64 6.884041% 0.276618 1 1.0 0.0 0.0 0.0 1.0
137 64 5.582502% 0.307176 1 1.0 0.0 0.0 1.0 0.0
120 64 5.166194% 0.319313 1 1.0 0.0 1.0 0.0 0.0
178 64 5.056741% 0.322750 1 1.0 0.0 1.0 0.0 0.0
77 64 4.804414% 0.331117 1 1.0 0.0 0.0 0.0 1.0
78 64 4.593748% 0.338624 1 1.0 0.0 0.0 0.0 1.0
3 64 4.492898% 0.342404 1 1.0 0.0 1.0 0.0 0.0

128 64 3.812116% 0.371722 1 1.0 0.0 1.0 0.0 0.0
62 64 3.770775% 0.373755 1 1.0 0.0 1.0 0.0 0.0
61 64 3.516556% 0.387029 1 1.0 0.0 1.0 0.0 0.0

186 64 3.487553% 0.388635 1 1.0 0.0 1.0 0.0 0.0
121 64 3.224787% 0.404158 1 1.0 0.0 1.0 0.0 0.0

2 64 3.222349% 0.404311 1 1.0 0.0 1.0 0.0 0.0
11 64 3.165672% 0.407914 1 1.0 0.0 1.0 0.0 0.0

251 64 0.000000% 0.374959 1 0.0 1.0 0.0 0.0 0.0
244 64 0.000000% 0.337201 1 0.0 0.0 1.0 0.0 0.0
236 64 0.000000% 0.272928 1 0.0 0.0 1.0 0.0 0.0

Columns: Exp: experience number, Hor : horizon length, Weighted % : chance of selection of experience based on distance, value ad

weight, Distance: experience distance from current experience, Mass: number of merged experiences, Value: future expected reward,

Action Freq: a frequency distribution of next actions from this experience. (Actions are 0=none, 1=Forward, 2=Left, 3=Right)
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Figure 2: Distances from experience #18 (1st decision point) in common history.
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Figure 3: Pearson correlation distances (see Figure 2 for comparison with information distance.

Figure 4: Hamming distances (see Figure 2 for comparison with information distance.
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Figure 5: Experience distances for 3 different horizons (h=16, 64, 128). Horizon 16 (top) is not long enough to include
the light in the history.
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The recent finding that Broca’s area, the motor center for speech, is activated during action observation
lends support to the idea that human language may have evolved from neural substrates already involved
in gesture recognition. Although fascinating, this hypothesis can be questioned because while observing
actions of others we may evoke some internal, verbal description of the observed scene. Here we present
fMRI evidence that the involvement of Broca’s area during action observation is genuine. Observation of
meaningful hand shadows resembling moving animals induces a bilateral activation of frontal language
areas. This activation survives the subtraction of activation by semantically equivalent stimuli, as well as
by meaningless hand movements. Our results demonstrate that Broca’s area plays a role in interpreting
actions of others. It might act as a motor-assembly system, which links and interprets motor sequences for
both speech and hand gestures.

INTRODUCTION

Several theories have been proposed to explain
the origins of human language. They can be
grouped into two main categories. According to
‘‘classical’’ theories, language is a peculiarly hu-
man ability based on a neural substrate newly
developed for the purpose (Chomsky, 1966;
Pinker, 1994). Theories of the second ‘‘evolu-
tionary’’ category consider human language as
the evolutionary refinement of an implicit com-
munication system, already present in lower

primates, based on a set of hand/mouth goal-
directed action representations (Armstrong,
Stokoe, & Wilcox, 1995; Corballis, 2002; Rizzo-
latti & Arbib, 1998). The classical view is sup-
ported by the existence in humans of a cortical
network of areas that become active during
verbal communication. This network includes
the temporal�parietal junction (Wernicke’s
area), commonly thought to be involved in
sensory processing of speech, and the inferior
frontal gyrus (Broca’s area) classically considered
to be the speech motor center.
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However, the existence of areas exclusively
devoted to language has increasingly been chal-
lenged by experimental evidence showing that
Broca’s area and its homologue in the right
hemisphere also become active during the ob-
servation of hand/mouth actions performed by
other individuals (Aziz-Zadeh, Koski, Zaidel,
Mazziotta, & Iacoboni, 2006; Decety et al., 1997;
Decety & Chaminade, 2003; Grafton, Arbib,
Fadiga, & Rizzolatti, 1996; Grèzes, Costes, &
Decety, 1998; Grèzes, Armony, Rowe, & Passing-
ham, 2003; Iacoboni, Woods, Brass, Bekkering,
Mazziotta, & Rizzolatti, 1999; Rizzolatti et al.,
1996). This finding seems to favor the evolution-
ary hypothesis, supporting the idea that the
linguistic processing that characterizes Broca’s
area may be closely related to gesture processing.
Moreover, comparative cytoarchitectonic studies
have shown a similarity between human Broca’s
area and monkey area F5 (Matelli, Luppino, &
Rizzolatti, 1985; Petrides, 2006; Petrides & Pan-
dya, 1997; von Bonin & Bailey, 1947), a premotor
cortical region that contains neurons discharging
both when the monkey acts on objects and
when it sees similar actions being made by
other individuals (Di Pellegrino, Fadiga, Fogassi,
Gallese, & Rizzolatti, 1992; Gallese, Fadiga,
Fogassi, & Rizzolatti, 1996; Rizzolatti, Fadiga,
Gallese, & Fogassi, 1996). These neurons, called
‘‘mirror neurons,’’ may allow the understanding
of actions made by others and might provide a
neural substrate for an implicit communication
system in animals. It has been proposed that this
primitive ‘‘gestural’’ communication may be at
the root of the evolution of human language
(Rizzolatti & Arbib, 1998). Although fascinating,
this theoretical framework can be challenged by
invoking an alternative interpretation, more con-
servative and fitting with classical theories of the
origin of language. According to this view, hu-
mans are automatically compelled to covertly
verbalize what they observe. The involvement of
Broca’s area during action observation may
therefore reflect inner, sub-vocal speech genera-
tion (Grèzes & Decety, 2001). Clearly, an
experiment determining which of these two
interpretations is correct, could provide a funda-
mental insight into the origins of language.

We investigated here the possibility that Bro-
ca’s area and its homologue in the right hemi-
sphere become specifically active during the
observation of a particular category of hand
gestures: hand shadows representing animals
opening their mouths. These stimuli have been

selected for two main reasons. First, by using
these stimuli it was possible to design an fMRI
experiment in which any activation due to covert
verbalization could be removed by subtraction:
the activation evoked while observing videos
representing stimuli belonging to the same se-
mantic set (i.e., real animals opening their
mouths), and expected to elicit similar covert
verbalization, could be subtracted from activity
elicited by hand shadows of animals opening their
mouths. Residual activation in Broca’s area after
this critical subtraction would demonstrate the
involvement of ‘‘speech-related’’ frontal areas in
processing meaningful hand gestures. Second,
hand shadows only implicitly ‘‘contain’’ the
hand creating them. Thus they are interesting
stimuli that might be used to answer the question
of how detailed a hand gesture must be in order
to activate the mirror-neuron system. The results
we present here support the idea that Broca’s
area is specifically involved during meaningful
action observation and that this activation is
independent of any internal verbal description
of the seen scene. Moreover, they demonstrate
that the mirror-neuron system becomes active
even if the pictorial details of the moving hand
are not explicitly visible. In the case of our
stimuli, the brain ‘‘sees’’ the performing hand
also behind the appearance.

METHODS

Participants were 10 healthy volunteers (6 fe-
males and 4 males; age range 19�32, mean 23).
All had normal or corrected vision, no past
neurological or psychiatric history and no struc-
tural brain abnormality. Informed consent was
obtained according to procedures approved by
the Royal Holloway Ethics Committee. Through-
out the experiment, subjects performed the same
task, which was to carefully observe the stimuli,
which were back projected onto a screen visible
through a mirror mounted on the MRI head coil
(visual angle, 158�/208 approximately). Stimuli
were of six types: (1) movies of actual human
hands performing meaningless movements; (2)
movies of the shadows of human hands represent-
ing animals opening their mouths; (3) movies of
real animals opening their mouths, plus, as con-
trols, three further movies representing a se-
quence of still images taken from the previously
described three videos. Hand movements were
performed by a professional shadow artist. All
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stimuli were enclosed in a rectangular frame
(Figure 1 and online supplementary materials),
in a 640�/480 pixel array and were shown in grey
scale. Each movie lasted 15 seconds, and con-
tained a sequence of 7 different moving/static
stimuli (e.g., dog, cow, pig, bird, etc., all opening
their mouths). The experiment was conducted as a
series of scanning sessions, each lasting 4 minutes.
Each session contained eight blocks. In each
session two different movie types were presented
in an alternated order (see Figure 1, bottom).
Each subject completed six sessions. The order of
sessions was varied randomly across subjects. The
six sessions contrasted the following pairs of
movie types: (1) C1�/moving animal hand sha-
dows, C2�/static animal hand shadows; (2) C1�/

moving real hands, C2�/static real hands; (3)
C1�/moving real animals, C2�/static real ani-
mals; (4) C1�/moving animal hand shadows,
C2�/moving real animals; (5) C1�/moving ani-
mal hand shadows, C2�/moving real hands; (6)
C1�/moving real hands, C2�/moving real ani-
mals. Whole-brain fMRI data were acquired on a
3T scanner (Siemens Trio) equipped with an RF
volume headcoil. Functional images were ob-
tained with a gradient echo-planar T2* sequence
using blood oxygenation level-dependent
(BOLD) contrast, each comprising a full-brain
volume of 48 contiguous axial slices (3 mm thick-
ness, 3�/3 mm in-plane voxel size). Volumes were
acquired continuously with a repetition time (TR)
of 3 seconds. A total of 80 scans were acquired for
each participant in a single session (4 minutes),
with the first 2 volumes subsequently discarded to
allow for T1 equilibration effects. Functional MRI
data were analyzed using statistical parametric
mapping software (SPM2, Wellcome Department
of Cognitive Neurology, London). Individual
scans were realigned, spatially normalized and
transformed into a standard stereotaxic space, and
spatially smoothed by a 6 mm FWHM Gaussian
kernel, using standard SPM methods. A high-pass
temporal filter (cut-off 120 seconds) was applied
to the time series. Considering the relatively low
number of participants, a high-threshold, cor-
rected, fixed effects analysis, was first performed
by each experimental condition. Pixels were
identified as significantly activated if pB/.001
(FDR corrected for multiple comparisons) and
the cluster size exceeded 20 voxels. The activated
voxels surviving this procedure were superim-
posed on the standard SPM2 inflated brain
(Figure 1). Clusters of activation were anatomi-
cally characterized according to their centers of

mass activity with the aid of Talairach co-ordi-
nates (Talairach & Tournoux, 1988), of the
Muenster T2T converter (http://neurologie.uni-
muenster.de/T2T/t2tconv/conv3d.html) and by
taking into account the prominent sulcal land-
marks. Furthermore, as far as Broca’s region is
concerned, a hypothesis-driven analysis was per-
formed for sessions (3)�(6). In this analysis, a
more restrictive statistical criterion was used
(group analysis on individual subjects analysis,
small volume correction approach, cluster size
�/20 voxels). Only significant voxels (pB/.005)
within the most permissive border of cytoarchi-
tectonically defined probability maps (Amunts,
Schleicher, Burgel, Mohlberg, Uylings, & Zilles,
1999) were considered. This last analysis was
performed with the aid of the Anatomy SPM
toolbox (Eickhoff et al., 2005). Subjects’ lips were
video-monitored during the whole scanning pro-
cedure. No speech-related muscle activity was
detectable during video presentation. The ab-
sence of speech-related motor activity during
video presentation was assessed in a pilot experi-
ment, on a set of different subjects, looking at the
same videos presented in the scanner while
electromyography of tongue muscles was re-
corded according to the technique used by Fadiga,
Craighero, Buccino, and Rizzolatti (2002).

RESULTS

During the fMRI scanning volunteers observed
videos representing: (1) the shadows of human
hands depicting animals opening and closing their
mouths; (2) human hands executing sequences of
meaningless finger movements; or (3) real ani-
mals opening their mouths. Brain activations were
compared between pairs of conditions in a block
design. In addition (4, 5, 6), each condition was
contrasted with a ‘‘static’’ condition, in which the
same stimuli presented in the movie were shown
as static pictures (e.g., stills of animals presented
for the same time as the corresponding videos).
The comparison between the first three ‘‘moving’’
conditions with each corresponding ‘‘static’’ one,
controls for nonspecific activations and empha-
sizes the action component of the gesture.
Figure 1 shows, superimposed, the results of the
moving vs. static contrasts for animal hand
shadows and real animals conditions (red and
green spots, respectively). In addition to largely
overlapping occipito-parietal activations, a speci-
fic differential activation emerged in the anterior
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Figure 1 (See opposite for caption)
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part of the brain. Animal hand shadows strongly
activated left parietal cortex, pre- and post-
central gyri (bilaterally), and, more interestingly
for the purpose of the present study, bilateral
inferior frontal gyrus (BA 44 and 45). Conversely,
the only frontal activation reaching significance in
the moving vs. static contrast for real animals was
located in bilateral BA 6, close to the premotor
activation shown in an fMRI experiment by
Buccino et al. (2004) when subjects observed
mouth actions performed by monkeys and dogs.
This location may therefore correspond to a
premotor region where a species-independent
mirror-neuron system for mouth actions is present
in humans. A discussion of non-frontal activations
is beyond the scope of the present paper, however
the above threshold activation foci are listed in
Table 1. The results shown in Figure 1 on one side
seem to rule out the possibility that the inferior
frontal activity induced by action viewing is due
to covert speech, on the other side indicate that
the shadows of animals opening their mouths,
although clearly depicting animals and not hands,
convey implicit information about the human
being moving her hand in creating them. Indeed,
they evoke an activation pattern superimposable
on that evoked by hand action observation
(Buccino et al., 2001; Grafton et al., 1996; Grèzes
et al., 2003; see Figure 1 and Table 1). To interpret
this result, it may be important to stress the
peculiar nature of hand shadows: although they
are created by moving hands, the professionalism
of the artist creating them is such that the hand is
never obvious. Nevertheless, the mirror-neuron
system is activated. The possibility we favor is
that the brain ‘‘sees’’ the hand behind the
shadow. This possibility is supported by recent
data demonstrating that monkey mirror neurons
become active even if the final part of the
grasping movement is performed behind a screen
(Umiltà et al., 2001). Consequently, the human
mirror system (or at least part of it) seems to act
more as an active interpreter than as a passive
perceiver.

The bilateral activation of inferior frontal
gyrus shown in Figure 1 during observation of
animal hand shadows cannot yet be attributed to

covert verbalization. This is because it survives
the subtraction of still images representing the
same stimuli presented in the moving condition,
which might also evoke internal naming. It could
be argued, however, that videos of moving
animals and animal shadows are dynamic and
richer in details than their static controls, and
might more powerfully evoke a semantic repre-
sentation of the observed scene, but this cannot
be stated with confidence. We therefore made a
direct comparison between moving animal hand
shadows and moving real animals. We narrowed
the region of interest from the whole brain (as in
Figure 1) to bilateral BA 44, the main target of
our study. This hypothesis-driven analysis was
performed by looking at voxels within the most
permissive borders of the probabilistic map of this
area provided by Amunts et al. (1999) by taking
as significance threshold the p value of .005
(random effect analysis). The results of this
comparison are shown in Figure 2B. As already
suggested by Figure 1 and Table 1, right and
(more interestingly) left frontal clusters survived
this subtraction. The first one was located in right
BA 44 (X�/58, Y�/12, Z�/24), an area known to
be involved during observation of biological
action, either meaningful or meaningless (Grèzes
et al., 1998; Iacoboni et al., 1999). The second one
is symmetrically positioned on the left side (X�/

�/50, Y�/4, Z�/22). Finally, two additional
clusters were present in Broca’s region. One was
more posterior, in that part of the inferior frontal
gyrus classically considered as speech related
(X�/�/58, Y�/12, Z�/14; pars opercularis) and
one more anterior, within area 45 according to
the Talairach and Tournoux atlas (1988), (X�/

�/45, Y�/32, Z�/14; pars triangularis). This
finding agrees with our hypothesis and demon-
strates that the activation of Broca’s area during
action understanding is independent of internal
verbalization: if an individual is compelled to
verbalize internally when a hand-shadow repre-
senting an animal is presented, the same indivi-
dual should also verbalize during the observation
of real animals.

The finding that Broca’s area involvement
during observation of hand shadows is not

Figure 1 (opposite). Cortical activation pattern during observation of animal hand shadows and real animals. Significantly activated

voxels (p B/.001, fixed effects analysis) in the moving animal shadows and moving real animals conditions after subtraction of the

static controls. Activity related to animal shadows (red clusters) is superimposed on that from real animals (green clusters). Those

brain regions activated during both tasks are depicted in yellow. In the lowermost part of the figure the experimental time-course for

each contrast is shown (i.e., C1, moving; C2, static). Note the almost complete absence of frontal activation for real animals in

comparison to animal shadows, which bilaterally activate the inferior frontal gyrus (arrows).
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TABLE 1

Montreal Neurological Institute (MNI) and Talairach (TAL) co-ordinates and T-values of the foci activated during observation of

moving animal hand shadows, real hands, and real animals, after subtraction of static conditions

MNI TAL

x y z x y z T-value

Animal hand shadows

Inferior frontal gyrus

BA 44

R 62 8 24 61 9 22 4.71

L �/62 8 24 �/61 9 22 4.58

BA 45

R 58 22 14 57 22 12 3.37

Precentral gyrus

BA 6

R 54 0 36 53 2 33 5.29

60 2 34 59 4 31 4.90

L �/60 �/2 36 �/59 0 33 5.09

�/60 0 18 �/59 1 17 3.56

�/60 �/12 38 �/59 �/10 36 5.24

BA 4

R 54 �/18 36 53 �/16 34 7.97

Postcentral gyrus

BA 40

L �/58 �/22 16 �/57 �/21 16 5.92

BA 3

L �/32 �/38 52 �/32 �/34 50 6.53

BA 2

R 32 �/40 66 32 �/36 63 5.18

Superior parietal lobule

BA 7

R 26 �/48 64 26 �/44 61 6.24

Cuneus

BA 18

R 16 �/100 6 16 �/97 10 10.43

20 �/96 8 20 �/93 12 12.36

L �/16 �/104 2 �/16 �/101 7 5.09

Middle occipital gyrus

BA 18

R 42 �/90 8 42 �/87 12 7.78

L �/28 �/96 2 �/28 �/93 6 6.95

BA 19

L �/40 �/86 0 �/40 �/83 4 7.28

Insula

BA 13

R 54 �/40 20 54 �/38 20 6.35

Middle temporal gyrus

BA 37

R 54 �/70 2 53 �/68 5 10.95

Temporal fusiform gyrus

BA 37

R 42 �/44 �/16 42 �/43 �/11 7.52

L �/44 �/44 �/16 �/44 �/43 �/11 6.44

Cerebellum

R 10 �/80 �/44 8 �/80 �/42 6.53

L �/8 �/78 �/44 �/8 �/77 �/33 5.61

Amygdala

R 22 �/2 �/22 22 �/3 �/18 3.85

L �/18 �/2 �/22 �/18 �/3 �/18 4.15
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TABLE 1 (Continued )

MNI TAL

x y z x y z T-value

Real hands

Inferior frontal gyrus

BA 44

R 62 16 28 61 17 25 5.67

L �/60 10 26 �/60 12 23 3.64

Middle frontal gyrus

BA 6

R 34 �/6 62 34 �/3 57 5.30

L �/24 �/8 52 �/24 �/5 48 4.18

Superior frontal gyrus

BA 10

R 4 58 28 4 58 23 6.22

L �/26 54 �/2 �/27 52 �/4 4.14

Postcentral gyrus

BA 3

R 52 �/20 40 51 �/18 38 4.71

BA 7

R 28 �/50 66 28 �/46 63 12.50

BA 40

R 46 �/32 54 46 �/29 51 4.58

L �/66 �/22 14 �/65 �/21 14 3.37

Inferior parietal lobule

BA 40

R 62 �/30 28 61 �/28 27 4.02

32 �/42 58 32 �/38 55 8.23

L �/50 �/30 32 �/50 �/28 31 5.09

�/34 �/42 58 �/34 �/38 55 6.51

Superior parietal lobule

BA 7

L �/32 �/56 62 �/33 �/51 60 4.94

Cuneus

BA 18

L �/20 �/94 6 �/20 �/91 10 7.13

Middle occipital gyrus

BA 19

L �/54 �/76 2 �/53 �/74 6 7.42

�/36 �/62 14 �/36 �/59 16 7.60

Lingual gyrus

BA 17

R 10 �/96 �/8 10 �/93 �/2 5.74

Inferior occipital gyrus

BA 18

R 30 �/94 �/12 30 �/92 �/6 6.10

L �/26 �/96 �/8 �/26 �/93 �/2 6.69

Middle temporal gyrus

BA 37

R 52 �/68 2 51 �/66 5 7.78

Temporal fusiform gyrus

BA 37

R 46 �/42 �/18 46 �/41 �/13 5.45

L �/46 �/44 �/16 �/46 �/43 �/11 4.59

Cerebellum

R 20 �/82 �/28 20 �/81 �/20 4.11

L �/28 �/56 �/50 �/28 �/56 �/39 5.10

Parahippocampal gyrus

BA 34

R 30 6 �/18 30 5 �/15 6.75

Insula

R 52 �/22 18 51 �/20 18 6.05
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TABLE 1 (Continued )

MNI TAL

x y z x y z T-value

Globus pallidus

R 16 2 2 16 2 2 4.10

L �/16 0 �/2 �/16 0 �/2 3.59

Real animals

Precentral gyrus

BA 4

L �/62 �/14 38 �/61 �/12 36 6.61

BA 6

R 36 �/2 34 36 0 31 5.93

32 �/12 52 32 �/9 48 4.48

L �/30 0 38 �/30 2 35 10.43

Middle frontal gyrus

BA 47

L �/46 48 �/2 �/46 46 �/4 3.92

Superior frontal gyrus

BA 6

R 30 �/8 72 30 �/4 67 3.66

BA 8

R 20 30 56 20 32 50 6.13

Postcentral gyrus

BA 2

L �/38 �/40 70 �/38 �/36 66 4.56

BA 3

R 34 �/36 54 34 �/32 51 3.26

L �/18 �/44 76 �/18 �/39 72 3.35

Precuneus

BA 7

L �/8 �/54 46 �/8 �/50 45 6.08

Middle occipital gyrus

BA 18

R 20 �/98 14 20 �/94 18 11.75

L �/20 �/94 10 �/20 �/91 14 14.91

BA 19

R 38 �/80 2 38 �/77 6 7.21

L �/40 �/86 �/2 �/40 �/83 2 9.88

�/54 �/76 2 �/53 �/74 6 8.43

Lingual gyrus

BA 18

R 14 �/86 �/14 14 �/84 �/8 5.40

L �/6 �/88 �/10 �/6 �/86 �/4 5.24

Limbic lobe-uncus

BA 28

L �/28 8 �/24 �/28 7 �/21 7.00

Superior temporal gyrus

BA 41

L �/46 �/40 12 �/46 �/38 13 3.77

Middle temporal gyrus

BA 21

L �/54 �/24 �/8 �/53 �/24 �/6 3.54

BA 37

R 52 �/70 4 51 �/68 7 8.03

Temporal fusiform gyrus

BA 37

R 44 �/42 �/20 44 �/41 �/15 6.50

L �/46 �/50 �/20 �/46 �/49 �/14 4.66

Cerebellum

R 46 �/58 �/32 46 �/58 �/24 3.55

L �/48 �/58 �/32 �/48 �/58 �/24 3.78
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explainable in terms of internal speech suggests
that, in agreement with other data in the litera-
ture, this area may play a crucial role in action
understanding. However, it remains the fact that
Broca’s area is known as a speech area and its
involvement during overt and covert speech
production has clearly been demonstrated re-
cently (Palmer, Rosen, Ojemann, Buckner, Kel-
ley, & Petersen, 2001). The hypothesis we favor is
that this area participates in verbal communica-
tion because it represents the product of the
evolutionary development of a precursor already
present in monkeys: the mirror neurons area F5,
that portion of the ventral premotor cortex where
hand/mouth actions are represented (see Petrides,
2006). Accordingly, in agreement with the char-
acteristics of area F5 neurons, Broca’s area should
respond much better to goal-directed action than
to simple, meaningless movements. To test this
possibility, we performed two further compari-
sons: (1) The observation of human hands per-
forming meaningless finger movements versus the
observation of moving real animals opening their
mouths, to determine how much of the pars
opercularis activation was due to the observation
of meaningless hand movements; (2) The obser-
vation of animal hand shadows versus the ob-
servation of meaningless finger movements, to pit
the presence of hands against the presence of
meaning. The results are shown in Figure 2, C and
D, respectively. After comparison (1), although
the more dorsal, bilateral, BA 44 activation was
still present (Figure 2C, left: X�/�/56, Y�/10,
Z�/26; right: X�/58, Y�/10, Z�/24), no voxels
above significance were located in the pars
opercularis of Broca’s area. This demonstrates
that finger movements per se do not activate
specifically that part of Broca’s area. In contrast,
after comparison (2) a significant activation was
present in the left pars opercularis (Figure 2D;

X�/�/58, Y�/6, Z�/4), demonstrating the invol-
vement of Broca’s area pars opercularis in pro-
cessing actions of others, particularly when
meaningful and thus, implicitly, communicative.

DISCUSSION

The finding that animal hand shadows but not
real animals or meaningless finger movements
activate that part of Broca’s region most inti-
mately involved in verbal communication support
a similarity between these stimuli and spoken
words. Animal hand shadows are formed by
meaningless finger movements combined to
evoke a meaning in the observer through the
shape appearing on a screen. Thus, when one
looks at them, the representation of an animal
opening its mouth is evoked. Words that form
sentences are formed by individually meaningless
movements (phonoarticulatory acts), which ap-
propriately combined and segmented convey
meanings and representations. Does this twofold
involvement of Broca’s area reflect a specific role
played by it in decoding actions and particularly
communicative ones? A positive answer to this
question arises, in our view, from the finding that
when observation of meaningless finger move-
ments is subtracted from observation of animal
hand-shadows, an activation of the left pars
opercularis persists.

The activation of Broca’s area during gestural
communication has already been shown in
deaf signers, both during production and percep-
tion. This was interpreted as a vicariant involve-
ment of Broca’s area because of its verbal
specialization (Horwitz et al., 2003). In other
terms, according to this interpretation, Broca’s
area is activated because, by signing, deaf
people express linguistic concepts. In our study

TABLE 1 (Continued )

MNI TAL

x y z x y z T-value

Amygdala

L �/34 �/6 �/16 �/34 �/6 �/13 3.70

Globus Pallidus

L �/24 �/10 �/4 �/24 �/10 �/3 4.93

Anterior Cingulate

BA 24

L �/4 36 8 �/4 35 6 4.70

Note : BA�/Brodmann area; R�/right hemisphere; L�/left hemisphere; x, y, z�/co-ordinates.
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participants were presented with communicative

hand gestures but, in contrast to studies investi-

gating deaf people, the gestures were non-sym-

bolic even if able to address in an unambiguous

way a specific concept (e.g., a barking dog). Thus,

we show here, the involvement of Broca’s region

can not be explained in terms of linguistic

decoding of the gesture meaning. Conversely,

the results indicate that Broca’s region is involved

in the understanding of communicative gestures.

Figure 2 (See opposite for caption)
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How can this ‘‘perceptual’’ function be recon-
ciled with the universally accepted motor role of
Broca’s area for speech? One possible interpreta-
tion is that Broca’s area, due to its premotor
origin, is involved in the assembly of meaningless
sequence of action units (whether finger or
phonoarticulatory movements) into meaningful
representations. This elaboration process may
proceed in two directions. In production, Broca’s
area recruits movement units to generate words/
hand actions. In perception, Broca’s area, being
the human homologue of monkey area F5,
addresses the vocabulary of speech/hand actions,
which form the template for action recognition.
Our hypothesis is that, in origin, Broca’s area
precursor was involved in generating/extracting
action meanings by organizing/interpreting motor
sequences in terms of goal. Subsequently, this
ability might have been generalized during the
evolution that gave this area the capability to deal
with meanings (and rules), which share similar
hierarchical and sequential structures with the
motor system (Fadiga, Craighero, & Roy, 2006).

This proposal is in agreement with fMRI
investigations that indicate that Broca’s area is
not always activated during speech listening. In a
recent experiment Wilson, Saygin, Sereno, and
Iacoboni (2004) carried out an fMRI study in
which subjects (1) passively listened to mono-
syllables and (2) produced the same speech
sounds. Results showed a substantial bilateral
overlap between regions activated during the
two conditions, mainly in the superior part of
ventral premotor cortex. Conversely, the activa-
tion of Broca’s region was present only in some of
the studied subjects, in our view because the task
did not require any meaning extraction. This
interpretation is in line with brain imaging studies
indicating that, in speech comprehension, Broca’s
area is mainly activated during processing of
syntactic aspects (Bookheimer, 2002). Luria
(1966) had already noticed that Broca’s area
patients made comprehension errors in syntacti-
cally complex sentences such as passive construc-

tions. Finally, data coming from cortical
stimulation of collaborating patients undergoing
neurosurgery, showed that the electrical stimula-
tion of the Broca’s area produced comprehension
deficits, particularly evident in the case of ‘‘com-
plex auditory verbal instructions and visual se-
mantic material’’ (Schaffler, Luders, Dinner,
Lesser, & Chelune, 1993). The data of the present
experiment, together with the series of evidence
presented above, are in agreement with those
theories on the origins of human language that
consider it as the evolutionary refinement of an
implicit communication system based on hand/
mouth goal-directed action representations
(Armstrong et al., 1995; Corballis, 2002; Rizzolatti
& Arbib, 1998). This possibility finds further
support from a recent experiment based on the
analysis of brain MRIs of three great ape species
(Pan troglodytes, Pan paniscus and Gorilla gor-
illa) showing that the extension of BA 44 is larger
in the left hemisphere than in the right. While a
similar asymmetry in humans has been correlated
with language dominance (Cantalupo & Hopkins,
2001), this hypothesis does not fit in the case of
apes. It might be, however, indicative of an initial
specialization of BA 44 for communication. In
fact, in captive great apes manual gestures are
both referential and intentional, and are prefer-
entially produced by the right hand. Moreover,
this right-hand bias is consistently greater
when gesturing is accompanied by vocalization
(Hopkins & Leavens, 1998).

In conclusion, our results support a common
origin for human speech and gestural commu-
nication in non-human primates. It has been
proposed that the development of human speech
is a consequence of the fact that the precursor of
Broca’s area was endowed, before the emergence
of speech, with a gestural recognition system
(Rizzolatti & Arbib, 1998). Here we have taken
a step forward, empirically showing for the
first time that human Broca’s area is not an
exclusive ‘‘speech’’ center but, most probably, a
motor assembly center in which communicative

Figure 2 (opposite). Results of the analysis focused on bilateral area 44. (A) Cytoarchitectonically defined probability map of the

location of left and right area 44, drawn on the Colin27T1 standard brain on the basis of Juelich-MNI database (Amunts et al., 1999).

The white cross superimposed on each brain indicates the origin of the co-ordinates system (x�/y�/z�/0). The correspondence

between colors and percent probability is given by the upper color bar. (B), (C) and (D), significant voxels (p B/.005, random effects

analysis) falling inside area 44, as defined by the probability map shown in (A), in the three contrasts indicated in the Figure. Color

bar: T-values. Note the similar pattern of right hemisphere activation in (B) and (C), the similar location of the posterior-dorsal

activation of the left hemisphere in (B) and (C), and the two additional foci in the pars opercularis and pars triangularis of Broca’s

area in (B). Note, in (D), the survival of the activation in pars opercularis , after subtraction of real hands from animal hand shadows.

When the reverse contrasts were tested (real animals vs. either animal shadows or real hands), the results failed to show any

significant activation within area 44.
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gestures, whether linguistic or otherwise, are
assembled and decoded (Fadiga et al., 2006). It
still remains unclear whether hand/speech motor
representations are mapped in this area according
to a somatotopic organization, or if Broca’s area
works in a supramodal way, by dealing with
effector-independent motor rules.

Manuscript received 31 May 2006

Manuscript accepted 1 August 2006

First published online 6 October 2006

REFERENCES

Amunts, K., Schleicher, A., Burgel, U., Mohlberg, H.,
Uylings, H. B., & Zilles, K. (1999). Broca’s region
revisited: Cytoarchitecture and intersubject varia-
bility. Journal of Comparative Neurology, 412, 319�
341.

Armstrong, A. C., Stokoe, W. C., & Wilcox, S. E.
(1995). Gesture and the nature of language. Cam-
bridge, UK: Cambridge University Press.

Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., &
Iacoboni, M. (2006). Lateralization of the human
mirror neuron system. Journal of Neuroscience,
26(11), 2964�2970.

Bookheimer, S. (2002). Functional MRI of language:
New approaches to understanding the cortical
organization of semantic processing. Annual Review
of Neuroscience, 25, 151�188.

Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L.,
Fogassi, L., Gallese, V., et al. (2001). Action
observation activates premotor and parietal areas
in a somatotopic manner: An fMRI study. European
Journal of Neuroscience, 13, 400�404.

Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravi-
nese, G., Benuzzi, F., et al. (2004). Neural circuits
involved in the recognition of actions performed by
nonconspecifics: An fMRI study. Journal of Cogni-
tive Neuroscience, 16, 114�126.

Cantalupo, C., & Hopkins, W. D. (2001). Asymmetric
Broca’s area in great apes. Nature, 414(6863), 505.

Chomsky, N. (1966). Cartesian linguistics. New York:
Harper & Row.

Corballis, M. C. (2002). From hand to mouth. The
origins of language. Princeton, NJ: Princeton Uni-
versity Press.

Decety, J., & Chaminade, T. (2003). Neural correlates
of feeling sympathy. Neuropsychologia, 41, 127�138.
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