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1 Executive Summary

This deliverable reports on studies carried out within RobotCub during the fourth project
year concerning imitation scenarios involving interaction kinesics and attention. This
work contributes to our understanding of the synchronization and mirroring interaction
aspects in human-humanoid teaching and collaborative scenarios. Specifically, the work
covers (a) the development of a new method for identifying similarity and synchronous
behaviour in human-humanoid imitative interaction, (b) dynamical system modulation for
robot skill acquisition from kinesthetic demonstrations, and (c) the relationship between
the quality of imitation and attention behaviour in experiments where subjects imitate
simple arm movements. The method in (a) is directly relevant for autonomously
detecting synchronization and mirroring, the method in (b) for the matching of kinesics
in humanoid imitation of humans, and (c) for the understanding of the role of kinesics
in human-human imitation and lessons for ontogenetic humanoid robotics.

2 A Method for Identifying Similarity and Synchronous
Behaviour between a Human and a Robot

At UNIHER a new method has been developed for identifying similarity and
synchronous behaviour between a human and a robot interacting with each other,
based on information theoretical methods developed by UNIHER in WP3 and WP6. We
report on studies carried out which enable robots to identify similarity and synchrony
between their actions and human actions. We consider this work to be stepping stone
towards enabling a robot to learn socially from interaction with people. Being able to
identify similarity and synchronicity (including when both human and robot actions are
similar and perfectly asynchronous i.e. mirrored but perfectly out-of-phase) is important
in allowing the robot to recognize human actions which are matching its own. It has
been suggested that the identification of ‘like me’ in interaction may not only represent a
salient event in the social development of an infant (cf. Meltzoff and Moore 1992), but,
from the perspective of social robots (Dautenhahn 1994,1995), may enable a robot to
engage in ‘meaningful’ interactions with its social environment as a key ingredient of
learning in a social context.

A method for identifying these similar and synchronous actions is described here. While
the method is not directly based on neurobiological modeling, we nevertheless employ a
technique using computational principles that have been shown to model the
perception-action loop of an agent acting in its environment in the language of
information theory (Klyubin et al. 2004). Thus, the approach is deeply biologically
inspired, but not on the level of neurons but on the more abstract level of information.
The method employs the idea of similarity using information distance, previously
described by Crutchfield (1990) and based on information theory (Shannon 1948).
Information distance metrics have also been used in RobotCub work at UNIHER on
sensorimotor map learning (WP3, e.g. D3.2, Olsson et al. 2006) and interaction history
architecture for ontogeny based on grounded experiences (WP6, e.g. D6.4).
Information distance is used here to capture the spatial and temporal relationships
between behavioural events of interacting agents. Here the method is applied to a new
context: namely, to particularly identify similarity and synchronicity instead of using it as
a general correlation between sensor data. The experimental results suggest that this
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method can indeed be employed successfully to identify similar and synchronous
actions in human and robot imitation behaviour. Distinguishing informational matching in
the interaction of an autonomous humanoid with a human via such methods is expected
to help leverage social learning and communicative interaction in humanoid-human
interactions in a manner to similar to the well-known naturally occurring mirroring and
synchronization cues prevalent in non-verbal and verbal human-human interactions,
including imitative interactions.

This work thus introduces a similarity identification method using an Information
Distance methodology. We demonstrate that this method can successfully identify the
similarity and synchronicity of behaviour between a human and a robot. We suggest
that the application of appropriate binning strategies is the key factor that drives the
effectiveness of this method. Experiments are carried out that initially validate the
method on simulated data and then subsequently use real-world imitation game data.
The results indicate that the method is able to correctly identify both perfectly
synchronous and perfectly asynchronous imitating actions, distinguishing these from
behaviour that is not mirrored or synchronized. Details of this work are presented in
Appendix A (Shen et al 2008).

3 Imitation, Attention and Robot Learning via
Kinesthetic Demonstrations

Work conducted at EPFL as part of WP5 is summarized in the papers attached in
Appendices B and C (Hersch et al 2008, Just et al 2008). The latter is joint work with
UNIFE. The first study is directly relevant for the matching of kinesics in humanoid
imitation of humans and the latter to the understanding of the role of kinesics in human
imitation.

In (Hersch et al 08), we further applied the Gaussian Mixture Modeling approach to
learning tasks in acceleration space and compared to previous work of ours applying
the same approach to learning tasks in velocity space. Results show that modeling in
acceleration space allows to have a much more flexible model of the dynamics of the
movements, and, most importantly, to be able to learn different dynamics depending on
the location in space.

In (Just et al 2008), we investigate how control of simple point-to-point reaching
movements could be modulated in imitation. In collaboration with the University of
Ferrara, EPFL conducted a user-study in which subjects were asked to imitate in
differed imitation reaching movements. We contrasted three conditions: transitive
versus intransitive movements (directed or not at an object); left hand versus right hand
motion; normal and abnormal movements. In the abnormal case, the demonstrator lifted
the elbow exaggeratedly compared to normal. Subjects were unaware of the three
conditions.

Kinematic data of the arm and direction of the imitator's gaze during the whole motion
were recorded. Analysis of the data shows that there are mainly two categories of
subjects: the "good" imitators and the "poor" imitators. In the first category ("good"
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imitators), subjects reproduce accurately the kinematic features of the demonstrator's
movements across all trials. In contrast the second category, ("poor" imitators), subjects
reproduced the kinematic features of the movements only once their attention

has been attracted to the arms of the experimenter by an unusual event (such swapping
from using the right arm to using the left arm).

Fine analysis of the gaze direction across the different conditions show that there is a
correlation between visual perception and reproduction of kinematic features of the
movements. The accuracy of the reproduction is enhanced when the subject's attention
is more spread out across the whole arm's motion.
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Abstract— This paper introduces a similarity identificatiomethod using an

Information Distance methodology. We demonstratat tthis method can

successfully identify the similarity and synchratyicof behavior between a

human and a robot. We suggest that the applicaifoappropriate binning

strategies is the key factor that drives the eiffecess of this method.

Experiments are carried out that initially valid#te method on simulated data
and then subsequently use real-world imitation gdate. The results indicate
that the method is able to correctly identify barfectly synchronous and
perfectly asynchronous imitating actions.

1 Introduction

In order to exploit the opportunities that robotaynoffer in our daily lives, Human-
Robot Interaction (HRI) has become an importanictf}]. A major research area in
HRI is imitation behavior between humans and rabétsobot imitating a human
may learn new skills, but also be able to engageeraffectively in social interaction.
Thus, a significant amount of effort has been deddb this research topic (see, for
example, [2, 3, 4, 5, 6, 7]) building on previoase&arch in developmental psychology
(such as facial imitation in infants and neonads [Our current research focuses on
preparatory works required to e.g. replicate huinfamt experiments on the “like
me” problem (see [9, 10, 11]).

In this paper we report on studies carried out twwhémable robots to identify
similarity and synchrony between their actions &mdhan actions. For example, a
robot and human both waving their hands would imi@dicsimilarity of action, both
waving in a mirror-like way would indicate synchicity. We consider this work to
be a stepping stone towards enabling a robot tm Isacially from interaction with
people. Being able to identify similarity and syraticity (including when both
human and robot actions are similar and perfecgiynehronous i.e. mirrored but
perfectly out-of-phase) is important in allowingttobot to recognize human actions
which are matching its own. It has been suggestatithe identification of ‘like me’
in interaction may not only represent a salientnéwe the social development of an
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infant (cf. [8]), but, from the perspective of salciobots [9, 10], may enable a robot
to engage in ‘meaningful’ interactions with its Ed@nvironment as a key ingredient
of learning in a social context. A method for idgnhg these similar and
synchronous actions is described hekhile the method is not directly based on
neurobiological modeling, we nevertheless empldgchnique using computational
principles that have been shown to model the péirepction loop of an agent
acting in its environment in the language of infation [12]. Thus, the approach is
biologically inspired, but not on the level of nens but on the more abstract level of
information. The method employs the idea of sintyausing information distance
previously described by Crutchfield [13] and basmd information theory[14].
Information distance is used here to capture ttaiapand temporal relationships
between events. Relevant research using the infmmalistance methodology as
applied and further developed in developmental tiobdn our research group has
been described in, for example, [15, 16, 17]. ldeorto be consistent with this
particular research approach, we utilize the sarathad but apply it to a different
context, namely to particularly identify similarignd synchronicity instead of using it
as a general correlation between sensor data. Xperimental results suggest that
this method can successfully identify similar agdchronous actions in human and
robot imitation behavior.

This paper will explain the similarity identificati method in section 2. In section
3 initial validation experiments using this metha described followed by actual
experiments on a robot platform. In Section 4 tkpeeimental results are analyzed
and we discuss these results and future work itioses.

2 Similarity ldentification Using I nformation Distance

The similarity identification method introduced &eralculates the information
distance between human and robot body part trajestto yield an indication of their
similarity. The numeric size of the information tdisce value gives an indication of
similarity, thus the more similar the behaviorg thwer the value. Similarly, a higher
value for information distance indicates less saimidehaviors.

The flow chart in Figure 1 shows the general apghazf the similarity method. In
this flow chart, circles and ellipses represenadaimponents; rectangles with solid
lines represent core processing components arahigles with dashed lines represent
optional processing components.

The general approach of this similarity method Iage three stages: data
collection, which consists of the first three coments in the flow chart; pre-
processing, which consists of the middle four congms; and the information
distance calculation, which consists of the last @mponents. These stages will
now be described in more detail below.

1 Note, our intention is not to propose a new methioat outperforms others, but to
demonstrate that a method based on informatioardistis suitable for the task of behaviour
similarity detection, an approach that we are alsiog for other tasks in our computational
robot control architectures.
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Fig. 1 The Similarity Method General Approach Flow Chart

2.1 Data Collection

In the data collection stage, a time window is usestore body parts’ trajectory data
of both the human and robot captured from sensoctufling the internal states of
the robot). For every time step, the time windowslated with the latest trajectory
data collected.

The time window is a two dimensional array. One efision is the number of time
steps of the trajectory that the window can keepafed as a row). The other
dimension is the number of data items that aregowacked (treated as column). For
example, if the spatial data currently being tracisethe 3-D co-ordinates of the hand
position of both robot and human experimenter (3z go-ordinates of the robot hand
position and x, y, z co-ordinates of the human hawsltion) and the trajectory that is
being kept is the most recent 50 time steps thedré array is allocated as the size of
the time window. The size of the time window isefikonce allocated and uses a
First-In- First-Out buffer to store new sensoryadas it is recorded. Therefore, for
each time step, the data at the back end of thdomirwill be considered out of data
and disposed of, with newly updated data addededront end of the time window.

2.2 Binning Strategy

The data in the time window will be allocated idifferent bins according to its value

and the binning strategy. Note that not all theadaill be pre-processed at the same
time. Every time the pre-process procedure is dathaly two selected data columns
are used. Similarly, every time the informationtalice calculation procedure is

called, only two selected data columns are useds Ehbecause the information

distance can only be calculated between two items.
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The binning strategy component is used to extrata distribution features. These
features are recorded using a frequency distributi@trix and two bin frequency
distribution arrays, which will be described belowhey are the critical source of
information to conduct the information distanceccédtion.

The bin frequency distribution matrix tracks hownydimes data items of bin x in
column A appear together with data items of bimyolumn B. The bin frequency
distribution arrays track the number of times disans of each bin in their own
column have appeared.

The two new binning strategies used in this sintiladentification method, which
we call Partial-Adaptive Binning Strateggnd Complete-Adaptive Binning Strategy
are both developed from the binning strategies ridmst by Olsson [15]Static
Binning Strategyand Adaptive Binning StrategyHowever, they have significant
differences due to the nature of the data in oseaech. In Olsson’s work, the data
represent pixel values of a robot’s vision syste#nich have similar inputs. However,
in the studies presented here, the input datarane different sources and may derive
from different modalities. Thereforehere may be large variances in the data
captured. Using the original binning strategies ncayse a loss of a significant
amount of information.

The newly developed binning strategies have thoeencon factors: ‘column-based
independence’, ‘adaptive bin ranges’ and ‘tendeseparation’. ‘Column-based
independence’ means each column has an indepemhientnge. ‘Adaptive bin
range’ means the bin range is determined by thermar and minimum data entry
within the same column. These two features catethfe fact that different columns
contain data from different sensors and the ranfgéheir data values may have
significant differences. Therefore, the featureslifferent columns may be omitted if
all the columns use the same bin range. ‘Tendeapgration’ means the tendency of
a data item (i.e. whether the next data item insdm@e column has a larger or smaller
value than the current one) is considered in timediiocation process. Practically,
each bin is split into two bins: a rising bin andescending bin. Once a data item is
allocated into a bin, the tendency of this dataniis examined. If the tendency is
rising or staying still, the data is assigned te tising bin. Otherwise, it will be
assigned to the descending bin. Tendency separiatiosed to reduce the impact of
the delay (or time-shift) between one agent imitatinother’s behavior. For example,
there might be a slight delay between a human ogptyie actions of a robot, or vice-
versa.

An example of time shift impact is presented inudfgg2. Curve A and curve B are
identical except curve B is slightly shifted. Althgh pointa and pointb on curve B
have the same value, the difference between tloeiesponding pointsc(andd) on
curve A is significant. If only data value is cahsied, pointa and pointb will be
allocated to the same bin. However, the bins éhahdb belong to have the same
chance of corresponding to the two bins thandd belong to. Consequently, this
one-to-many relationship causes an ambiguity antisaime fact that there is one-to-
one relationship existing if the slope factor isisidered. Figure 3 shows a robot and
human forearm X-axis trajectory (where a human atssmpting to replicate a robot
movement) and illustrates the existence of thietghift impact in real life. During
the imitation interaction, it is almost impossilite synchronize robot and human
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behavior perfectly. There are always some diffegsnin timing between the two

behaviors.

- CUurve A CurveB

Fig. 2 Time Shift Impact Example
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Fig. 3 Robot and Human Forearm X-axis Trajectory

The difference between theartial-adaptive binning strategy and tleemplete-
adaptive binning strategis whether the bin size can adapt to the incordiaig. The
partial-adaptive binning strategyas a fixed bin size which only varies as the



6 Qiming Shen, Joe Saunders, Hatice K ose-Bagci, Kerstin Dautenhahn

consequence of the variance of the bin range. coh®lete-adaptive binning strategy
allows the bin size to vary in order to ensure #wth bin has the same number of
data items.

The application of different binning strategies nesafirely change the output results
from the information distance calculation. As arliimg strategy is applied prior to the
input of the information distance calculation, chas made to the binning strategy
will cause changes to the data distribution featendracted. Hence, the choice of the
binning strategy will have an impact on the finatput of the entire approach.

2.3 Pre- and Post-binning optimization

This sub-section introduces the processing comgsneithe pre-processing stage
excluding the binning strategy component. There tave optional optimization
components in this stage. The one prior to theibgmstrategy component is called
pre-binning-optimizatiorand the other is callgabst-binning-optimization

The purpose gpre-binning-optimizations to reduce the impact of errors occurring
during the data collection stage (such as sensgdetgction). The pre-binning-
optimization component consists of two optional -soimponentscurve smoothing
andnormalization

Curve smoothindilters the “zig-zag” parts of the human forearrraXis trajectory
curve (illustrated in a ellipse in Figure 3). Thégmg-zag” parts may arise from two
factors: either the human imitation behavior is petformed smoothly, or the sensors
are affected by environmental noise. This may weafthe binning strategy
component in detecting the forearm movement tendéFiwe current strategy applied
to curve smoothing is to take the average valu¢heforiginal data point and its
neighbors as the new data point. The effect of thisre smoothing approach is
presented in Figure 4.
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Fig. 4 The Effect of Curve Smoothing
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Normalization reduces the impact of inconsistent amplitude, Wwha@an be
observed in Figure 3. Whether it is appropriateapply the normalization sub-
component depends on the nature of incoming détthel incoming data curve is
supposed to have consistent amplitude, normalizaticay filter the error in
amplitude. Otherwise, application of normalizatimoay cause misleading results. The
general strategy is:

1. setthe nearest ‘hill' to 1 and the nearest ‘valtey0;

2. the normalized value of the data between hill a@itey = (current data value
— original valley data value) / (original hill datalue — original valley data
value)

The purpose opost-binning-optimizations to reduce the data distribution range
and therefore enhance the one-to-one relationstipve®en bins from the two data
columns being compared. The stronger the one-tor@iagionship between two bins
is, the more likely they are to be correlated. Hiigher the correlation of the bins
between two data columns, the more likely the tatadolumns are correlated. That
is, in the context of this paper, these two dataroas are “similar”.

The current post-binning-optimization methodologg use is called “winner take
neighbors”. If bina in column A appears with bimin column B more often than any
other bin in column B, then bimwill add the number of times its two neighbor bins
in column B appear with bia to its own number. Thus, the one-to-one relatignsh
between bira and binb is enhanced.

2.4 Information Distance Calculation

The calculation of information distance between tieda columns, usually a pair of
corresponding behavior components from the humanraelnot behavior respectively
(for example, the x co-ordinates of the human foreposition and the x co-ordinates
of the robot forearm position), is based on theorimfation metric described by
Crutchfield [13]. The information distance betwevo data columns X and Y is
defined as the sum of two conditional entropiesheke two columns [15]. It can be
calculated using the following formula [15]:

d(X,Y)=2*H(X,Y)—-(H(X)+H(Y)) (1)

The entropies presented in the above formula chbealderived from the data
distribution features extracted using binning sig&s. The joint entropy of column X
and Y can be calculated using the frequency digioh matrix and the entropy of X
and Y can be calculated from frequency distributiorays. For more details of the
information distance calculation, please referlts] jand [16].
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3 Experimental Setup

The robot used in the following experiments is aimally expressive humanoid
robot called KASPAR, and was developed by the Agapbystems Research Group
at the University of Hertfordshire. KASPAR is aldhsized humanoid robot with 14
degrees of freedom (8 in head and 6 in arms) [I8g robot has been designed
specifically for the purpose of engaging peoplsagially interactive behaviour. The
robot is e.g. able to perform certain face, heatlaam gestures that have been used in
human-humanoid imitation games e.g. with childsse(figure. 5 and [19]).

o

Fig. 5: KASPAR (The KASPAR figure is sourced from [18])

A marker-detection toolkit ARToolkit [20] is used ithe experiments to detect
human body parts. Other object detection approasbeb as face detection, color
object detection and gray-scale object detectiore t@dso been explored. However,
the marker-detection approach using ARToolkit Iatieely reliable and it can return
an object’s spatial data to track the positionhef dbject.

As a starting point in the investigation of the hmet presented, the behavior to be
imitated is not expected to be complex. Thereftre,behavior chosen involves only
forearm waving while the upper arm is kept statigndhis reduces the complexity
of the imitation. The correspondence problem [Rlthie imitation behaviors is solved
explicitly by mapping human elbow joint angles ¢dot elbow servo readings.

4 Experiment Resultsand Analysis

The first set of experiments was conducted to addicthe similarity identification
method. Please note that in the validation expemi®) no optional optimization
strategy is applied because all these three expatsnare testing the most basic
theoretical method.

4.1 Similarity Identification M ethod Validation Experiments

In order to validate whether this similarity idditi@tion model can at least process
the data in the right way, a validation process e@wlucted.



Acting and Interacting Like Me? A Method for Identifying Similarity and Synchronous
Behavior between a Human and aRobot 9

4.1.1 Random Data Validation

The first step of validation is to use randomly gexted data columns to check
whether the similarity identification model usingetpartial-adaptive binning (SIM-

PB) or complete-adaptive binning (SIM-CB) can idgnidentical data columns. The

results show that both SIM-PB and SIM-CB can fiddrntical data columns as the
resulting information distance between them is 0.

4.1.2 Artificial Data Validation

The second step of validation is to use 3-D coratdis generated by Matlab [22]
which models the waving behaviors between the huarah the robot. Compared
with the recorded data from the experiments, theetedl data is a much simpler. In
this model, the waving behavior of the human and tbbot are completely

synchronized. There is very little difference betwehe 3-D position co-ordinates of
the human and robot forearm caused by the diffeaentlength settings. The results
show that both SIM-PB and SIM-CB can identify vesinilar behaviors as the

resulting information distance between them is 0.

4.1.3 Sine Curve Data Validation

The third step in the validation is to use sineveudata to check how SIM-PB and
SIM-CB can handle time step shifts. That is, SIM-&&l SIM-CB will calculate the
information distance between the original sine euand the shifted sine curve. The
time step shifts are used to simulate behavionalydgroblems in real life. If SIM-PB
and SIM-CB can successfully identify similar curweith a small number of time step
shifts, it is very likely that they can also idépntireasonably delayed imitation
behaviors. A sine curve was chosen because it isleal continuous periodic data
model and the repeated waving behavior is alsoimemtiis and periodic. In this
validation step, the number of time steps shiftéll a@ntinuously increase until one
entire period is shifted. The performance of SIM-&&l SIM-CB is recorded during
shifting. An example of shifted sine curve is prasd in Figure 6.

Amplitude

Time Step

====(riginalSine Curve === Shifted Sine Curve

Fig. 6 Sample Sine Curve Used in Sine Curve Data Validatio
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A result of the validation of SIM-PB is shown ingkdre 7. Please note that
although there are some special cases due to signament of data entries with the
same value into the same bin regardless of whetiebin has reached its capacity
limit, in general the results outlined are simtiathe curve in Figure 7.
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Fig. 8 Relationship between Bins at A Local Minimum

From this figure (which shows the SIM-CB result$MS°B gave similar results
but is not shown) it is clear that there are ttpemmts during the entire process where
the information distance between the two curvels fal a low value. As one entire
period of the sine curve has 120 time steps, alL¢ihéime step and 121th time step,
the two sine curves are actually on top of eaclerotihat is why the information
distance between them is 0. At the"6dme step, when the two sine curves are
completely out of phase (become perfectly asynaus)) the information distance
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between them also goes down. As both mappings (etehp in phase and out of
phase) indicate the existence of information catieh, the validation can be
considered as successful. Thus the method senieditate both when the human is
(mirror) matching the actions of the robot, andalhen the human is matching but
is perfectly out of phase, both of which may be sidered to be synchronous
behaviors. In addition, it also shows that the mdtls sensitive to the delay because
once there is a small number of time step shiftg, information distance rises
immediately (and effectively means that the humard a&he robot are not
synchronized). The local minimums in the curvedate the existence of strong one-
to-one relationship. An example is shown in Fig&e Bin 0, 1, 2, 3 are the
descending bins in Figure 8 and bin 7, 6, 5, 4laecorresponding rising bins.

4.2 Experiments Using I mitation Game Data

The above validation demonstrated that the perfoc@af SIM-PB and SIM-CB met
the requirements, i.e. they can successfully ifientery similar or identical data
columns. Therefore, this similarity identificationodel was then applied to real
human-robot interaction data.

The data used for these experiments were the riegsraf three imitation game
scenarios. In the first scenario, the human erparter imitated the forearm waving
behavior of the robot (called synchronous imitatiom the second scenario, the
human experimenter was imitating the forearm wavbghavior of the robot,
however, in a different direction (called out ofagk imitation — or perfectly
asynchronous behavior). In the third scenario,thman experimenter does not do
anything when the robot is moving and waves wherrdibot is doing nothing (called
unsynchronized behavior). The results achievedlaog/n in Figure 9.

Information Distance Yalue
[~}

72
143
214
285
356
427
498
569
640
711
782
853
924
995

1066
1137
1208

Time Step

Synchronize Imitation = - = Unsynchronized Behaviour Outof Phase Imitation

Fig. 9 Result of Experiments Using Imitation Game Data
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The results shown in Figure 9 imply the similarigentification model can
successfully identify the similarity between rokatd human imitation behavior as
both the synchronous and out-of-phase imitationesiare visibly separated from the
unsynchronized behavior curve. There are two naliee phenomena: 1) the
unsynchronized behavior information distance cusvsignificantly higher than the
synchronized imitation curve and the out-of-phassitation curve; 2) the
synchronized imitation curve is close to the oupbése imitation curve. The first
phenomenon matches the result expected from intowmalistance calculation:
events having less similarity have higher informatdistance values and vice versa.
The second phenomenon matches the results in Figuwlen two curves are closer
to synchronized or completely out of phase, thermftion distance between them is
lower.

The positive results in the experiments also sugtesimportance of the binning
strategies. If improper binning strategies are usetthis model then the results may
be very different. The results presented in Figli@eare derived from the same
similarity identification model except for a changfethe binning strategy component,
in this case the strategy lacks the tendency stparature. This weakens the one-
to-one correspondence between bins and therefads t® a different result with less
clear separations between the curves.

|v'| -|‘-p_~._ ,'\-4
J F A

‘.’ M \\

Information Distance Value

—H N MmO A~ MOWN A~ MON AN =~ On A~ W
NN NOONMONOMANUT A OT AT RIS NS ™LWANO
AN M N DO~ O NNMSIErOR00 00 o
oA o o o = = o o O N
Time Step
= synchronize imitation == « Unsynchronized Behaviour Outof Phase Imitation

Fig. 10 Results of Using an Improper binning strategy

5 Discussion and Further Work

The experimental results illustrated in sectiomdidate that using the method is able
to correctly identify similarity and synchronousheior between a human and a
robot. In real-world human robot imitation interiact an information distance

threshold can be set to explicitly identify the #&&m and synchronous behaviors.
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Therefore, a robot can recognize that a humanisrachatches its own behavior if
the current information distance is within the #ireld limit. A mechanism of
adapting the threshold is required because diffezgperimental parameter settings
and different binning strategies may change thgeaf information distance.

People may argue what the proper binning stratedgri a particular experiment.
Based on this study, a proper binning strategy Ishoetain the most important
correlation among the experimental data. Understgndthe nature of the
experimental data can help to choose or desigoepibinning strategy. A validation
process then needs to be applied to evaluate shéise

Other approaches, such as Pearson’s correlatioffice calculation, can also
identify similar behaviors. However, in this papee are not attempting to compare
methods, rather we are suggesting this method topleanent other approaches.
Additionally, we also find that the application &bpropriate binning strategies is the
key factor that drives the effectiveness of thisthmd. It is because the binning
strategy in this information distance method acts am information filter. An
inappropriate binning strategy can cause undegimedmation loss. Another critical
issue of the binning strategy application, whicl@ presented in this paper, is the
choice of the number of bins, where it can be atqageto the number of bins needed,
there being no ideal number for all tasks.

Building on the information distance method, furthesearch will investigate how
a robot can identify the existence and qualityroftation behaviors during human-
robot interaction. Having achieved the above stagg,imitation games that replicate
human-infant experiments on the “like me” probleiifl e conducted to investigate
how a robot can acquire and develop social behati@ugh imitation interaction
with humans.
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Dynamical System Modulation for Robot Learning
via Kinesthetic Demonstrations

I. INTRODUCTION generated by the dynamical system in a way appropriate for
a given task. This results in a general framework for leanin
S robots are progressively coming out of the controlleahd reproducing goal-directed gestures, despite diffénéral
environment of assembly lines to pervade the mudaonditions and changes occurring during task executiothign
less predictable domestic environments, there is a needrégpect it is an improvement on [17], which also learns reach
develop new kinds of controllers that can cope with changing-grasp movements, but in a static setting.
environments and that can be taught by unskilled human.uséifse closest work to ours is [9], which uses a dynamical
In order to address this last issuerogramming by Demon- system for goal-directed reaching. There, a desired t@jec
stration (PbD) has emerged as a promising approach [1h joint space is obtained from a single demonstration and
This approach differs significantly from classical appluex is embedded in a dynamical system, which can reproduce
to robot manipulation. Those approaches typically start lilje qualitative features of this trajectory, while reachia
modeling the task, the relevant elements of the environmestmewhat different target from a different initial positidn a
and the robot, as well as their dynamics. The problem fgeviously published paper [18], we learned a velocity peofi
then to find the adequate robot command that will bring tHeom demonstrations and used it to modulate a dynamical
whole system into a desired state specified by the programnmstem acting on the end-effector. The novelty of the pitesen
This is usually done by using the plant model and senscontribution with respect to those last two papers is the
information to estimate the state of the world, and finding fallowing. First, while [9] learns a trajectory in joint spa,
control law specifying the command adequate to variougstatnd [18] is controlling in task space, here we propose a
of the world. This law can be hard-coded, e.qg. for juggling [2hybrid task and joint space controller, which can combine
grasping [3], 2D pushing and throwing [4], or obstacle avoidthe advantages of both. The second and more fundamental
ance for reaching [5]. But it can also be (partially) learnedifference lies in the level of generalization. Whereas @st
from (possibly simulated) exploration, e.g. for stablespiag to reproduce aingle joint angle trajectoryand [18] learns a
[6] or object manipulation under wrench closure constrintask specific velocity profildere we learn a wholdynamical
[7]. In PbD, the idea is to try to extract an adequate contreystencapturing thecorrelations across multiple variablder
law from demonstrations of the task performed by a humaa.given task. This enables us to present results that are not
The demonstrations can indeed provide useful informatiomere trajectory comparison (as in [9]), but that quantifg th
for example appropriate grasps in a grasping task [8] (sadaptivity of our controller at the level of task succes®.rat
[1] for a further discussion of the use of PbD for robowWe show experimentally that modeling the task as a dynamical
control). PbD has been mostly used in two cases: for taskgstem yields a more adaptive controller.
involving no or very loose interaction with the environmenin those experiments, the motions are demonstrated to the
(like writing, martial arts or communicative gestures) lamm robot by a human user moving the robots’ limbs passively
demonstrations are used to train a movement model, whiinesthetic training). We consider two tasks, placing bject
can be used to reproduce the task. Those movement modeis a box, and reaching-to-grasp a chess piece, see Fig. 2 fo
(also used in computer animation or visual gesture reciognit illustrations of these two tasks.
usually imply some averaging process (LWR [9], HSTMM
[10]), possibly in a latent space (GPLVM [11], ST-Isomap Il. OVERVIEW
[12]) or some probabilistic model like HMMs [13] or Bayesian The system is designed to enable a robot to learn to
Networks [14]. And for more complex tasks, involving premodulate its generic controller to produce arbitrary goal-
cise interactions with the environment, the robot learsnfr directed motion. The model must be generic so as to repro-
examples how to sequence a set of hard-coded controlléice the motion given different initial conditions and unde
for a given task. This has been done using HMMs [15] grerturbations during execution. Moreover, the architectf
knowledge-based systems [16]. the system must permit the use of different control varigble
In our work, we position ourselves in between those twi@r encoding the motion. Here, we compare a motion encoding
approaches. The tasks we consider (such as reach-to-gr&siler as a velocity profile or as an acceleration field. Werref
require some interaction with the environment, while remaito those further as theelocity model(see Section II-B) and
ing relatively simple. Like the first approach, we train a oot the acceleration mode{see Section II-C).
model for the task, and like the second approach, we also use a
hard-coded controller. We start with a basic built-in cotier ~ A. System Architecture
consisting in a dynamical system with a single stable atirac  The structure of the system is the same for both models
We then learn a task model used to modulate the trajectoraesd is schematized in Fig. 1. During training, the relevant



wherer is the time integration constant (setltan this paper).

kinesthetic target tracking execution by Since the positiox and velocityx depend on the acceleration
demonstrations (stereovision) the robot X at previous times, this representation introduces a feddba
T loop, which is not present in the representation given by (2)
trajectory feature & 4
©.ens~  task modulated [1l. M ODULATED SPRING-AND-DAMPER SYSTEM
model L— i . .
xm__| Spring and We now show how the task model described above is used
o GMR damper system . - .
GMM training R el BGEG to modulate a spring-and-damper dynamical system in order
. o E0} (=) . to enable a (possibly redundant) robotic arm withjoints
training | |t only in the case of the acceleration model€X€Ecution

to reproduce the task with sufficient flexibility. Althoughet
o em e ) -
Fig. 1. The architecture of the system. During training tHevant variables modulationx™ is in end-effector space, it is advantageous (for

(end-effector’s position, velocity and acceleration) @sracted from the avoiding singularity problems related to inverse kinegssmti

den:jonstrat(ijorlls and used to taaig a GMM. During tﬁsk ezec#MiMmodlel is  of redundant manipulators) to consider the spring-andmﬂm
used to modulate a spring-and-damper systefh.is the end-effector velocity ; o ; .

specified by the task modek® is the target location, angt*,x*, 6* are dynamical system in joint angle variables:

respectively the actual current end-effector’s position aelocity and the . .

joint angles’ velocities. The numbers in parentheses refée corresponding 0% = a(—0 + ﬁ(eg — 0)) (5)
equations in the text.

wheref € R™ is the vector of joint angles (or arm configu-
ration vector). This dynamical system produces straigthga

variables (end-effector velocity profiles for the veloaipdel, (in joint space) to the target, which acts as an attractor of

or end-effector positions, velocities and acceleratianrstfie the System. This guarantees that the robot reaches the targe
acceleration model) are extracted from the set of demdastraSM0Othly, despite possible perturbations. _
trajectories and used to train a Gaussian Mixture Mod&P€ above dynamical system is modulated by the variable
(GMM) (see Table I). During reproduction, the trajectory i&  9iven by the task model (2) or (4). In order to weigh
specified by a spring-and-damper dynamical system modLlaf8® Modulation, we introduce a modulation factoe Ry 1,

by the GMM (see section Ill). The target is tracked by which yvelghs the importance of the task model r_elatlvely to
stereo-vision system and is set to be the attractor point B SPring-and-damper systemff= 0, only the spring-and-

the dynamical system. At each time step, the desired vglocfi2mper system is considered, and wher: 1 only the task
computed by the model is then fed to a PID controller tgpodel is considered. In order to guarantee the convergence

execution. This does not hinder the online adaptation of tRE the system t@#, 4 has to tend to zero at the end of the
movement. movement. In the experiments described herés given by:

1
i Yy =o0y(=Y— ith 7o = 1, 6
B. Velocity Model ¥ =ay(=7 = Jay7) withy (6)

The first way to encode a motion in a GMM, is to consideiherey, is the initial value ofy anda, € Ry 4) is a scalar.
the velocity profile of the end-effector as a function of time Sincex™ lives in the end-effector space (and not in the joint
X(t). Thus, the input variablg is the time and the output SPace), the modulation is performed by solving the follgyin
variable¢ is the velocity, like in the following velocity model: constrained optimization problem.

X = Fy(t) ) 6= argmin (1—7)(0—6%)"Wo(6 - 6°) +
6
In other words, the movement is modeled as a velocity profile, (& — &™) T Wi (% — x™) @)

given by a function of time, which is learned as described « — 30 8
in Table I. Here and henceforttk™ € R™ is the end- e x =09 (8)
effector velocity specified by the task moddl, is obtained whereJ is the Jacobian of the robot arm kinematic function

by applying (1) with the appropriate variables. K andW, € R**" and W, € R™*™ are diagonal matrices
necessary to compensate for the different scale ofxtland
C. Acceleration Model 6 variables. As a rough approximation, the diagonal elements

A second way of encoding a trajectory is to take as input tif¢ Wx are set to one and those W are set to the average
positionx and velocityk, and as output the acceleratignThe distance between the robot base and its end-effector.
rationale of this is to consider a trajectory not as a fumctio! "€ solution to this minimization problem is given by [20]:

of time, but as the realization of a second-order dynamical ,; _ (W + JTWXJ)—l(WGés +ITW,™)  (9)
system of the form: _ -
where Wy = (1—-7)Wy, Wy =7Wy. (10)

~ To summarize, the task is performed by integrating the
Again, F; is obtained by applying (1) with the appropriatéollowing dynamical system:
variables. The velocity specified by the acceleration mdglel " .
then given by 0 = af-0+05(0%—-10)) (11)

X = %+ 73 (x, %), @) 6 = (Wy+ITW,J) " (Wyl° + ITW,%™) (12)



TABLE |
SUMMARY OF GAUSSIAN MIXTURE REGRESSION(GMR).

GMR is a method suggested by [19] for statistically estimating a funcferi¢) =T, W s = Bk Bkce
given by a ‘“training set” of N examples{(¢%, €)}N.,, where £* is a noisy Mk = e, Pre k= Ykt Bk
measurement ofF¢ (¢*): . . . . . .
57 _ ]_—g(c'i) + el The Gaussian Mixture Model (GMM) is trained using a standard E-M algorithm,

taking the demonstrations as training data. The GMM computes a joint pligbal
(¢! is the Gaussian noise). The idea is to model the joint distributiothefinpur” ~ density function for the input and the output, so that the probabifityhe output
variable¢ and an “output” variablé as a Gaussian Mixture Model. If we join those conditioned on the input are GMM. Hence, it is possible, after training, tovesc
variables in a vecton = [¢T¢7T]7, it is possible to model its probability density the expected output variablg given the observed input variable
function as a mixture o’ Gaussian functions

K
K K £=Fe(O) =D he(O(pre +ZpecTic(C—mre)s, @)
p(v) = Z 7rk./\f(v; Ik, X)), such that Z T =1 k=1

k=1 k=1 where thehy, (¢) are given by:

where therr,, € [0 1] are the priors, andV' (v; ux, Xx) is a Gaussian function

with meanyu, and covariance matriy: hi(C) = e N (G5 b 5 Do) )
., . 1 S S mN (G ke ¢ Bec)
N (v; pi, Bi) = ((2m)°|Bg|) "2 exp (- E(U — k) T (v = ), The tilde () sign indicates that we are dealing with expectation values.

whered is the dimensionality of the vectar. The mean vectorg;, and covariance
matricesX;, can be separated into their respective input and output components:

where W, and Wy are given by (6) and (10), an&™ is
given either by (2) (velocity model) or by (4) (acceleration
model). Integration is performed using a first-order Newton
approximation § = 6 + 7).

Since the target location is given in cartesian coordinates
inverse kinematics must be performed in order to obtain the
corresponding target joint angle configuration which will
serve as input of the spring-and-damper dynamical system.
In the case of a redundant manipulator (such as the robot
arm used in the following experiments) the desired redundan
parameters of the target joint angle configuration can be
extracted from the demonstrations. This is done by using the
GMR technique described in Table | to build a model of the
final arm configuration as a function of the target location.

Fig. 2. The setup of the experiments. The top pictures shovirsteéask and

Usi L | h éhe lower picture sow the second task Left: a human operatmodstrates
sing an attractor system In joint angle space has t Qask to the robot by guiding its limbs. Right: the robot perfs the task,

practical advantage of reducing the usual problems relat@gting from different initial positions.
to end-effector control, such as joint limit and singubarit
avoidance. Equation 9, which is a generalized version of

the Damped Least Squares inverse [21] [22], is @ way {Re rohot arms are redundant, as we do not consider end-
simultaneously control the joint angles and the end-efect oo tor orientation. The robot is endowed with a steresievi
imposing soft constraints on both of them. It is thus différe oy stem enabling it to track color blobs. A color patch is fixed
than optimizing the joint angles in the null space of thgy, the hox and on the object to be grasped, enabling their 3D
kinematic function. localization. Pictures of the setup are shown in Fig. 2.
1) Preprocessing: During the demonstrations, the robot
IV. EXPERIMENTS joint angles were recorded and the end-effector positiosrew
A. Setup computed using Ithe alrm kinerlnati((j: function(. All recorded
. . s trajectories were linearly normalized in tim& & 500 time
We validate and compare the systems described in this pa) t%+ps) and Gaussian-filtered to remove noise. The number of

on two experiments. The first experiment involves a rObgaussian components for the task models were found using the

puttlng an objectinto a pox and the se.cond experiment C‘.anﬁayesian Information Criteria (BIC) [23], and the paramete
in reaching and grasping for an object. Those experlmer\l}%ues used were., = 0.06, o = 0.12 and 3 = 0.06
were chosen because (1) they can be considered as simple oo e R

goal-directed tasks (for which the system is intended)th{&y ) o

are tasks commonly performed in human environments and ) Putting an object into a box

they presents a clear success or failure criterion. 1) Description: For this task, the robot is taught to put an
All the experiments presented below are performed with abject into the box (see Fig.2). In order to accomplish the
Hoap3 humanoid robot acquired from Fujitsu. This robot haask, the robot has to avoid hitting the box while performing
four back-drivable degrees of freedom (dof) at each armsThihe movement and must thus first reach up above the box and



acceleration model vertical velocities

B

@3

200
time steps

trajectories

300

Fig. 3. The demonstrated trajectories for the box task (&ft) the grasping
task (right). Circles indicate starting positions.

“put object in box” task “grasp object” task

2 Fig. 5. Inthe center, the acceleration model for the secasid The ellipsoids
show the Gaussian components at twice their standard dmviadnly three

projections (out of nine) are shown. The vertical accelenastrongly depends
on the position in the horizontal plane. On the lower righto ttrajectories

encoded by this model but starting from different positionand B (indicated

by the crosses) are shown. The corresponding vertical iglpmfiles appear
on the upper right. They differ significantly, as the modela$ momogeneous
across the horizontal plane.

Iy
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time steps on Fig. 7). The set of demonstrations is represented in Fig.

Fig. 4. The velocity models for both tasks. The dots repreiemtraining 3 '1ght. The resulting velocity model is shown in Fig. 4,
data, the ellipses the Gaussian components and the thicktleetrajectory right. One can notice that there is no velocity feature that
obtained by GMR alone. The thick lines show that, for the ftesik, the i5 common to all demonstrated trajectories. The acceterati
horizontal components; and @2 are averaged out by the model, but the . . . .
vertical componenti; shows a marked upward movement. For the secodd0del is shown in Fig. 5. This model captures well the fact tha
task, all components are almost averaged out. the vertical acceleration component depends on the positio

the horizontal plane.

then down to the box. A straight line reaching will in genergh. Results
cause the robot to hit the box while reaching and thus fail.
2) Training: A set of 26 kinesthetic demonstrations were

: i - " X le to successfully perform both tasks. For the first task,
performed, with different |n|F|aI positions and_ box Iogcats. both the velocity and the acceleration models can produce
The box was placed on a little table. Thus its location onl

o X - L - gdequate trajectories (see Fig. 6, left for examples). Yaem
;/r?éliijgcth(z;];;ﬁl?:t;‘l tﬂzneeri di?le!i[l)yr,)tlri]: d'r;'::i:]?g"bg Tcan adapt its trajectory online if the box is moved during
set of demonstrated trajectories is depicted in Fig. 3, it movement execution (see Fig. 6, right). For the second task,

. ) . I examples of resulting trajectories are displayed in Figight.
velocity models trained on this data are shown in Fig. 4, I(aftln order to evaluate the generalization abilities of theays,

both tasks were executed from various different initialipos

C. Reach and Grasp tions arbitrarily chosen on the horizontal plane of the eabl

1) Description: In order to accomplish this task, the robotind covering the space reachable by the robot. Fig. 8 sh@ws th
has to reach and correctly place its hand to grasp a chess pieesults and starting positions for both experiments. Ferbibx
In other words it has to place its hand so that the chess piepgeriment (left), the velocity model was successful fooRp
stands between its thumb and its remaining fingers, as showirthe 24 starting locations (91%). The two unsuccessfalgyi
in Fig. 7, left. This figure illustrates that the approachthg indicated by empty circles, correspond to initial posif@ose
object can only be done in one of two directions: downwart the work space boundaries. The acceleration model was
or forward. This task is more difficult than the previous oneuccessful for all trials (100%).
as the movement is more constrained. Moreover, a highHesr the chess piece experiment (Fig. 8, right), the velocity
precision is required on the final position, since the hand msodel was successful for 5 out of 21 (24%) trials whereas the
relatively small. acceleration model was successful for 18 trials (86%). This

2) Training: A set of 24 demonstrations were performegerformance gap is due to the fact that this task does not
starting from different initial positions located on therizon- require a fixed velocity modulation. The adequate modufatio
tal plane of the table. The chess piece remained in a fixddpends on the position. This position-dependent modulati
location. Depending on the initial position, the chess @iecan be captured by the acceleration model, but not by the
was approached either downward or forward (as illustratedlocity model. As illustrated in Fig. 5, the accelerationdesl

Endowed with the system described above, the robot is
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Fig. 6. Left: end-effector trajectories of the robot puitithe object into
the box. The thin line corresponds to the velocity model arattiick line

corresponds to the acceleration model. Right: online trajg@daptation to a
target displacement using the velocity model. The circlegcatd to location
of the box, as tracked by the stereo-vision system. The thiek shows the
produced trajectory and the thin line shows the origingettary if the box

remained unmoved. Similar results were obtained with the aatdn model.

Fig. 7. Left: the chess piece to be grasped. For a successip gthe robot
has to approach it as indicated by the arrows. Right: regpttiajectories for
the grasping task, starting from two different initial gasis. The acceleration
model (thick lines) adapts the modulation to the initial posit while the
velocity model (thin lines) starts upward in both cases. Thettory produced
by the velocity model and starting left of the target is notcassful.

is able to produce different velocity profiles, dependingtum

success:

chess piece  [Success:
vel.model:91% t

vel.model: 24%
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Fig. 8. The robustness to initial end-effector position fath tasks. The
plots represent top views of the first (right) and second)(®fperiment. The
filled markers (circles or squares) indicate all initial pimsis for which the

velocity model was successful. The circles (filled and nded)l indicate all

initial positions for which the acceleration model was sssfal. The crosses
indicate initial end-effector position, for which both mdsid¢ailed. The dots
indicate the starting positions of the training set.

adequate solutions.

In its present form, the modulation factor between the
dynamical system and the task model) (is not learned.
Learning it from the demonstrations is likely to further
improve the performance of the system, especially for tasks
requiring a modulation at the end of the movement. It would
also be desirable to have a system that extracts the relevant
variables, and automatically selects the adequate model. A
first step in this direction has been taken in [24], where a
balance between different sets of variables is achieved.

Of course, the adequacy of this framework is restricted
to relatively simple tasks, such as those described in the
experiments. More complicated tasks, such as obstacle
avoidance in complex environments or stable grasping of
particular objects require a detailed model of the envirenim
and more elaborate planning techniques. The tasks coesider
for this framework are those that cannot be accomplished
by simple point-to-point reaching, but still simple enough

starting position and is thus more versatile than the vafocito avoid the complete knowledge of the environment. But

model.

V. DISCUSSION

this framework could be extended to learn more complicated
tasks. In a first step in this direction, [18] investigatesvho
Reinforcement Learning can deal with obstacle avoidance.

Our results show that the framework suggested in this

paper can enable a robot to learn constrained reaching
tasks from kinesthetic demonstrations, and generalizen the
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Abstract

Imitation plays an important role in the development of human beings. During
childhood, it provides means to learn new motor skills. During adulthood, imita-
tion helps the acquisition of several skills without the time-consuming process of
trial-and-error learning. Several theories have been proposed to explain the process
of imitation, but the question remains opened. The present study investigates the
behavior of normal subjects during imitation of simple movements. Possible correla-
tion between quality of imitation and attention behavior will be studied to underline
a possible correlation.

Key words: imitation, goal-direct imitation, specular imitation, anatomic
imitation, VITE model, Lagrange optimization, gesture modeling

1 Introduction

Humans were thought to learn to imitate over the first years of life. But work
from Meltzoff [Meltzoff and Moore, 1977, 2002] has shown that even new-
borns can imitate body and facial movements at birth. Questions that arise
from the study of imitation are related to its underlying mechanisms. Melt-
zoff and Moore [Meltzoff and Moore, 1997] propose the Active Intermodal
Mapping (AIM) to explain facial imitation in infants. AIM hypothesizes that
the perception and production of actions can be represented within a com-
mon framework. This common framework, or “supramodal” representation,
permits newborns to perform a matching process between their own move-
ments and the ones they see. An infant’s own movements then provide some
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proprioceptive information that can be compared to the visual target action.
Furthermore, AIM supposes a goal-directed matching process. Indeed, infants
will attempt novel means to reach similar actions, e.g. to obtain the same
effect as a tongue protruding to the side, infants will use a straight protruding
tongue associated with head rotated to the side.

To explain imitation, the direct matching approach has also been proposed.
This mechanism supposes that the observed action is directly linked to our
motor representation of the same action. The direct matching hypothesis is
closely related to the discovery of mirror neurons. The mirror system provides
a natural link between action understanding and imitation. Mirror neurons
were first discovered in monkeys’ brain. In area F5 of the monkey premotor
cortex [Rizzolatti et al., 1996, Rizzolati et al., 2002] neurons were found that
discharge both when the monkey performs an action and when he observes
a similar action made by conspecies or by the experimenter. These neurons
discharge during particular goal-directed hand movements such as grasping,
holding or manipulating some food or object.Evidence suggests that area F5
in monkeys’ brain correspond to an observation/execution matching system.

The direct matching hypothesis for imitation in humans supposes the exis-
tence of a mechanism similar to mirror neurons in monkeys. It supposes the
existence of a mechanism directly matching the observed action onto an in-
ternal motor representation of that action. The direct matching hypothesis
predicts that the areas where matching occurs must contain neurons that dis-
charge during action execution both when observing and executing the action.
Using functional magnetic resonance imaging, the authors in [lacoboni et al.,
1999] showed an activation of the left frontal operculum (area 44) and the
right anterior parietal cortex (PE/PC). These findings indicate that these ar-
eas of the human brain have an imitation mechanism similar to mirror neurons
found in monkeys, as postulated by the direct matching hypothesis. The au-
thors proposed that the inferior frontal area describes the precise details of
the movement. In contrast, the parietal lobe area codes the precise kinesthetic
aspects of the movement.

Recent findings in the field of imitation do not fit with previously presented
theories of imitation. The work by Bekkering and colleagues [Bekkering et al.,
2000, Wohlschldger et al., 2003] show that children’s behavior when imitat-
ing does not always follow a direct visual-to-motor mapping between per-
ceived and imitated movements. The new theory they propose, called the goal-
directed (GOADI) theory of imitation, hypothesizes that imitation is guided
by cognitively specified goals. When observing and executing an action, imi-
tators do not imitate the observed movement as a whole, which would be the
expected outcome with previous theories of imitation, but instead decompose
the action into separate aspects. These aspects are following a predefined hi-
erarchy. At the top of the pyramid can be found the goal of the action. All



the other aspects of the movement are seen as sub-goals, thus of less imitative
importance. In the presence of a target or object (transitive actions), experi-
ments show that movements seem to be imitated correctly with respect to the
goal, but the movement itself is frequently ignored. When dealing with intran-
sitive action, i.e. when there is no target/object at the core of the movement,
the movement itself tends to become the main goal of the action. In that case,
the particular kinematics of the movement are precisely reproduced.

In real life, children show a strong tendency to imitate actions as if looking in
a mirror (specular mode) rather than with the anatomically congruent hand
(anatomic mode). Furthermore, most studies on imitation have used mirror
imitation and very few experiments have been conducted to test whether a
difference exists between mirror and non-mirror imitation.Previous study [la-
coboni et al., 1999] shows patterns activity in the frontal opercular and poste-
rior parietal regions for both observed and executed actions. Koski et al. [Koski
et al., 2003] show that the activity in the frontal opercular and posterior
parietal regions varies as a function of the type of imitation, specular versus
anatomic mode, being performed. Their results show different neuron activity
in frontoparietal regions during different forms of imitative behavior. It en-
hances the importance of mirror neurons for imitating in the specular mode.
Franz et al. [Franz et al., 2007] provide further results on comparison of spec-
ular and anatomic modes for imitation. They hypothesize that in imitative
tasks involving both hands, both specular mode and anatomic mode are in
competition, and the shift from one type of imitation to the other depends on
the task, situation, and stimuli as well as the instructions given to the imitator.
They also showed that when using mirror imitation, the goal of the action (the
final target) is at the top of the hierarchy of movement aspects. These find-
ings provide more grounding for the GOADI theory of imitation [Bekkering
et al., 2000], but they also show that this tendency is inverted when dealing
with anatomic imitation. In this condition, the use of the anatomically correct
hand tends to take the first place in the hierarchy of imitation goals.Overall,
their findings suggest that specular and anatomic imitation are two distinct
processes and in consequence the two modes may obey different principles.

2 Materials and Methods

2.1 Subjects

Nine healthy subjects (4 females, 5 males, mean age 25 + 4) volunteered to
perform a one-handed task consisting of point-to-point motions. All subjects

were right-handed (Edinburgh Handedness test [Oldfield, 1971]). They were
all naive regarding the purpose of the experiment. They reported no history



of neurological or musculo-skeletal deficits. All had normal or corrected to
normal vision.

2.2 Procedure

Subjects were comfortably sitting on a chair in front of a table. They were
asked to maintain a steady trunk position all along the recording session. Each
hand movement started in the same rest position, with the right forearm lying
on the table, and it being perpendicular to the trunk. Subject’s left arm was
placed under the table and they were asked not to use it during experiments.
They were facing the demonstrator who had both arm placed on the table.
Figure 1 presents the set-up with the experimenter, on the right, showing a
movement to the subject, on the left.

Fig. 1. Experimenter (on the right) showing a movement to reproduce to the subject
(on the left).

Subjects were shown by the experimenter a series of movement to reproduce.
There were two conditions. In the first condition, movements were directed
towards an object placed 30 cm away from the subject, in the sagittal plane
(Figure 2). Both the subject and experimenter had a similar object placed
in front of them at the same time. In the second condition, subjects had
to reach in front of them and land their hand palm-down on the table. No
location on the table was specified in this second condition. We refer to these
two conditions respectively as transitive (Trans) and intransitive (Intrans)
movements in the rest of the paper.

For each condition, the subjects were shown two variants of the movements.
In the first variant (so-called “Elb”), the experimenter was exaggeratedly el-
evating the elbow throughout the motion. In the second variant (so-called
“Norm”), the experimenter was performing the motion in way as natural as
possible. Movements performed by the experimenter were thus of four types:
intransitive with normal kinematics (Intrans Norm), intransitive with an
exaggerated elevation of the elbow (Intrans Elb), transitive with normal
kinematics (Trans Norm) and transitive with an exaggerated elevation of



Subject in the rest position
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i Subject in the rest position

Fig. 2. Left: Set-up seen from the right side with the subject in the rest position.
Right: upper view of the set-up with the position of the target when performing
transitive motions

the elbow (Trans Elb). For transitive actions, two objects were placed on
the table, one for the subject, the other one for the experimenter. The objects
were similar for both the subject and experimenter.

Intrans Norm Intrans Elb Trans Norm Trans Elb

Fig. 3. Snapshots of the four gesture types. From left to right: Intransitive action
with normal kinematics and with an exaggerated elevation of the elbow. Transitive
movement with normal kinematics and with an exaggerated elevation of the elbow.
One can see that for the “Elb” variant the elbow position is always higher than for
movements performed with normal kinematics for both the “Intrans” and “Trans”
conditions.

Subjects were shown a series of 128 movements (Table 1). They were explicitly
told to reproduce the movement as soon as possible once the experimenter
has shown them the movement. If the subject had questions about how to
reproduce the movements, they were just told to do it the way they thought
would be the most suitable to reproduce the movement.

Subjects| Movements per session |Recording sessions per subject
9 128 1

Table 1
Statistics of the database.

The experiment was decomposed in three distinct phases. In the first phase,
the experimenter showed the movements only with the right hand. In the sec-
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Fig. 4. Left: subject wearing markers on the right arm (markers are surrounded by
red squares). Right: shoulder-centered frame of reference.

ond phase, both right and left hand were used. As the subjects was asked
to perform movements only with the right hand, some confusion occured at
that point during experiment. When the experimenter first showed movements
with the left hand, subjects wanted also to switch hand to reproduce the move-
ment. As they were told to use only the right hand, they asked for additional
information about what to do. They were told to reproduce the movement
with their right hand and they were reminded to always use their right hand
in the remaining of the experiment. In the third and last phase, the experi-
menter again used only the right hand to perform the motions. These phases
are conceptually distinct in the design of the experiment but had no incidence
on the course of the experiment. In each phase, the experimenter was showing
the four motion types. The detailed scenario of the experiment is presented in
Appendix A. Subject’s gaze data were also recorded during the experiment.

2.3  Data acquisition

The trajectories in space of the shoulder, elbow and wrist were recorded by
using kinematics recording system formed by three ProReflex MCU1000 cam-
eras (QUALISYS AB, Sweden) detecting the 3D position of infrared reflecting
markers (n=4 for the subject and n=6 for the experimenter) positioned on the
left and right shoulders, right elbow and right wrist for the subject and exper-
imenter, as well as left elbow and left wrist for the experimenter. The position
of the markers was recorded at a frequency of 200 Hz during the execution of
the movements. Figure 4 presents one subject wearing the markers as well as
the shoulder-centered frame of reference used in the following of the paper to
calculate wrist and elbow trajectories.

Eye movements of the subject were recorded using a Tobii X50 eye tracker.



2.4 Data analysis

All analyzes were performed using the Qualisys Track Manager (QUALISYS
AB, Sweden) and ClearView 2.5.1, plus custom software written in Matlab
(Mathworks, Natick, MA). Analysis was done solely on the reaching phase
of each movement (from the rest position to the target location in the case
of transitive gestures, and from the rest position to the hand placement on
the table in from of the subject for intransitive movements). Data were first
segmented manually to remove any irrelevant movement prior to the onset of
the reaching movement. We used only unfiltered raw values.

In order to analyze the gaze data, we decomposed the scene area into 4 main
zones: Face, Right Arm, Left Arm and Center Region. The Center Region
goes from the target position on the table to the hand not moving during the
movement. Figure 5 presents the four areas.

: _| s
Fig. 5. Areas defined for the focus of attention of the subject while the experimenter
is demonstrating a movement.

Fixation analysis was performed with a fixation radius of 30 pixels and a
minimum fixation duration of 100 ms.

3 Results

3.1  FEwvolution of the elbow raise across phases

The quality of imitation can be assessed at two different levels. Firstly, the re-
production of the goal of the movement, i.e. reaching for an object (Trans) ver-
sus place the palm-down on the table (Intrans) is taken into account. Secondly,
we can study the reproduction of the kinematic features of the movements.
All subjects reproduced perfectly the change in condition of the movements
(Intrans versus Trans). We can thus say that all subjects reproduced very well
this characteristics of the motions during all three phases of the experiment.



None of them performed an intransitive motion when a transitive one was
demonstrated and vice-versa. The presence or absence of the object was an
obvious characteristic of the motion and thus it was very difficult to mistake
one motion condition for the other.

The reproduction of the kinematic features of the movements in the first phase
of the experiment shows two main categories of subjects. The first category
includes Subjects 1 and 2 who already reproduce the two motion variants. The
remaining subjects belong the the second category. These subjects poorly re-
produce the exaggerated raise of the elbow in the Elb variant. Figure 6 presents
the mean raise of the elbow for the Norm and Elb variants of the movements
of the subject and experimenter for the Phase 1 of the experiment. On the
left graph, the difference between Norm and Elb movements is well defined
as the mean values of the elbow raise for the subject and experimenter are
comparable. Conversely in the graph on the right, mean value for the Norm
and Elb movements reproduced by the subjects are equal, thus not showing
any difference between the two motion variants.

Mean elevation of the elbow for Norm and Elb variarts Mean elevation of the elhow for Norm and Elb variants
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Fig. 6. Mean value for the raise of the elbow for Norm and Elb movements for
both the subject and experimenter during Phase 1. On the left: subject reproducing
the different motion types accurately. On the right: subject poorly reproducing the
kinematic features of the movements

These results thus show that subjects have not equal imitation capabilities.
Results in Phase 1 demonstrate that the fine reproduction of motion is inher-
ently different from one subject to the other one.

We hypothesize that an unusual event can modify the reproduction capacities
of the subjects. In Phase 2 of the experiment, we thus introduced an unusual
event. In this phase, the experimenter switches between hands to show the
movements to the subject. Subjects 1 and 2, who were already reproducing
the exaggerated elevation of the elbow in Phase 1, are still showing strong
imitation skills. For all the other subjects, an improvement is visible in Phase
2. Figure 7 shows the evolution of the mean raise of the elbow across the
two phases for two different subjects. The graph on the left shows a subject
performing well on both Phases 1 and 2 of the experiment. The other graph
demonstrates a dramatic improvement in the reproduction of the reproduction
of the Elb variant of the movements.
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Fig. 7. Mean value for the raise of the elbow for Norm and Elb movements for
both the subject and experimenter during Phases 1 and 2. On the left: subject
reproducing the different motion types accurately across the two phases . On the
right: subject poorly reproducing the kinematic features of the movements during
Phase 1 but showing some improvement in Phase 2.

This improvement in the reproduction of the kinematic features of the move-
ments lasts until the end of the experiment (Figure 8), except for Subject 8
for whom the improvement is visible only during Phase 2.

Mean elevation of the elbow for Nom and Elb variarts Subject 6: Raise of the elbow across phases
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Fig. 8. Left: comparison of the mean raise of the elbow for the Norm and ELb
movements for the subject (in light gray) and the experimenter (in dark gray). The
evolution of the raise of the elbow is shown separately for each phase of the experi-
ment. Right: Each dot corresponds to a single motion performed by the subject. The
blue area corresponds to the range of Norm movements shown by the experimenter.
The green ares corresponds to the Elb movements. The boundaries correspond to
the mean value of the raise of the elbow plus or minus two standard deviations.

The Pearson coefficient ! between the raise of the elbow of the experimenter
and subject (Table 2) shows that a strong correlation exists between move-
ments performed by the experimenter and movements reproduced by Subjects
1land 2 (p >=0.9).

I The Pearson coefficient is the sum of the products of the normalized values of the
two measures divided by the degree of freedom. The Pearson coefficient ranges from
+1 to -1. If p = 0, then there is no linear relationship between the two variables.
On the contrary, if |p| = 1, then there is a perfect linear relationship between the
two variables.



Correlation p
Subject|Total| Phase 1|Phase 2|Phase 3
Sub.1 [ 0.96 | 0.93 0.94 0.95
Sub.2 [ 0.90 | 0.92 0.85 0.93
Sub.3 | 0.80 | 0.73 0.80 0.85
Sub.4 | 0.44 | 0.10 0.46 0.78
Sub.5 [ 0.82 | 0.76 0.83 0.86
Sub.6 | 0.81 | 0.64 0.81 0.94
Sub.7 [ 0.54 | 0.33 0.64 0.62
Sub.8 | 0.56 | 0.60 0.58 0.51
Sub.9 | 0.81| 0.77 0.85 0.84

Table 2
Pearson coeflicient between the raise of the elbow of the experimenter and subject.

Furthermore, the evolution of the Pearson coefficient along the three phases
of the experiment shows an increase of its value in Phase 2 for most of the
subjects.

If we now compare the reproduction of movements in Phases 1 and 3 of the ex-
periment, results show that an improvement of the reproduction of kinematic
features by the subject. These results

These results show that an unusual event is able to modify the imitation state
of the subject. In our case, the goal of this unusual event was to attract the
attention of the subject on the hand of the experimenter. Results showed that
this has also improved its capacities to reproduce accurately the kinematic
features of the movements described in this paper.

3.2 Focus of attention

Figure 9 presents the percentage of fixation time subjects spend on the area
of the arms of the experimenter.

From Phase 1 to Phase 2 of the experiment, the fixation time spent on the
arm regions (Right Arm and Left Arm) increases for every subject. This shows
that the unusual event introduced in Phase 2 has an effect on the attention
focus, attracting the subjects gaze on the arms of the experimenter. We have
shown in the previous Section that the unusual event introduced in Phase
2 had a positive effect on the reproduction of the kinematic features of the
movements. This improvement may be due to this switch in the attention
pattern that occurs during Phase 2.

10
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Fig. 9. Evolution of the percentage of fixation time spent on the arms of the exper-
imenter for each subject and each phase of the experiment.

The behavior of Subject 2 is an outlier as the fixation time spent on the
Right Arm and Left Arm area is close to zero. Most of the fixation points are
localized in the Center Region (Figure 10).

[ Tracking by Tobi ]

Fig. 10. Blue dots correspond to the focus points during an intransitive movement
with normal kinematics (Intrans Norm) for Subject 2.

A thiner analysis of the fixation points in the Center Region shows that most
of the fixation points are localized on the arm/wrist.

4 Discussion

e Unusual event implies a change in the behavior of the subject as the repro-
duction of kinematic features improves in Phase 2 of the experiment.

e Unusual event also implies a modification of the gaze of the subject as the
time spent fixating the arms of the experimenter increases.

e The displacement of the focus of attention is linked to the quality of the
reproduction of the kinematic features of the demonstrated motions.
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A Scenario of the Recordings

The recordings can be decomposed into three parts. In the first and last part,
the demonstrator is using only her right hand to perform the movements
whereas in the middle part, both right and left hands are used to perform
the actions. The first part consists of 32 gestures, the second of 64 gestures
and the last part of 32 gestures again. We use the following notation: R for
right hand, L for left hand, TR for transitive action and INT for intransitive, n
means with normal kinematics and e are gestures performed with an abnormal
elevation of the elbow.

Phase 1: RTRe-RINTn-RTRe-RINTn-RTRn-RINTn-R
TRe-RINTe-RINTe-RINTn-RTRe-RTRn-RTRe-RINTe
-RTRn-RTRn-RINTe-RINTn-RINTn-RTRn-RINTe-R
TRn-RINTn-RINTe-RTRe-RTRn-RINTe-RTRe-RINT
n-RTRn-RINTe-RTRe.

Phase 2: RINTn-LINTn-LTRe-LTRe-RINTe-RINTn-RTR
e-RINTn-LTRn-LINTe-LTRn-RTRe-RTRe-RINTe-R
INTn-LINTn-LINTe-RINTe-RTRn-LTRn-LINTe-LINT
n-RINTe-LTRn-LINTe-RTRn-LTRe-RINTe-LINTe-R
INTe-RTRe-LTRn-RTRn-LTRe-RTRn-LTRn-RINTe-
LTRe-RTRn-LTRn-LINTe-RINITn-LTRe-RTRn-RTR
n-LINTe-RINTn-LTRn-LINTn-LTRe-LINTn-LTRe-R
TRe-RTRn-LINTn-RINTn-RTRe-RINTn-RTRe-LINTe
-LINTn-RTRe-RINTe-LINT n.

Phase 3: RTRn-RTRe-RINTn-RTRe-RINTe-RTRe-RINT
n-RINTe-RINTn-RTRe-RINTn-RTRn-RTRn-RINTn-
RTRn-RINTe-RTRe-RINTn-RTRe-RINTe-RTRn-RTR
e-RTRe-RTRn-RINTe-RINTe-RINTn-RTRn-RTRn-R
INTn-RINTe-RINT e.
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