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1  E x e c u t i v e  S u m m a r y  

This deliverable reports on studies carried out within RobotCub during the fourth project 
year concerning imitation scenarios involving interaction kinesics and attention. This 
work contributes to our understanding of the synchronization and mirroring interaction 
aspects in human-humanoid teaching and collaborative scenarios. Specifically, the work 
covers (a) the development of a new method for identifying similarity and synchronous 
behaviour in human-humanoid imitative interaction, (b) dynamical system modulation for 
robot skill acquisition from kinesthetic demonstrations, and (c) the relationship between 
the quality of imitation and attention behaviour in experiments where subjects imitate 
simple arm movements. The method in (a) is directly relevant for autonomously 
detecting synchronization and mirroring, the method in (b) for the matching of kinesics 
in humanoid imitation of humans,  and  (c) for the understanding of the role of kinesics 
in human-human imitation and lessons for ontogenetic humanoid robotics. 
 

2  A  M e t h o d  f o r  I d e n t i f y i n g  S i m i l a r i t y  a n d  S y n c h r o n o u s  
B e h a v i o u r  b e t w e e n  a  H u m a n  a n d  a  R o b o t   

At UNIHER a new method has been developed for identifying similarity and 
synchronous behaviour between a human and a robot interacting with each other, 
based on information theoretical methods developed by UNIHER in WP3 and WP6. We 
report on studies carried out which enable robots to identify similarity and synchrony 
between their actions and human actions. We consider this work to be stepping stone 
towards enabling a robot to learn socially from interaction with people. Being able to 
identify similarity and synchronicity (including when both human and robot actions are 
similar and perfectly asynchronous i.e. mirrored but perfectly out-of-phase) is important 
in allowing the robot to recognize human actions which are matching its own. It has 
been suggested that the identification of ‘like me’ in interaction may not only represent a 
salient event in the social development of an infant (cf. Meltzoff and Moore 1992), but, 
from the perspective of social robots (Dautenhahn 1994,1995), may enable a robot to 
engage in ‘meaningful’ interactions with its social environment as a key ingredient of 
learning in a social context.  
 
A method for identifying these similar and synchronous actions is described here. While 
the method is not directly based on neurobiological modeling, we nevertheless employ a 
technique using computational principles that have been shown to model the 
perception-action loop of an agent acting in its environment in the language of 
information theory (Klyubin et al. 2004). Thus, the approach is deeply biologically 
inspired, but not on the level of neurons but on the more abstract level of information. 
The method employs the idea of similarity using information distance, previously 
described by Crutchfield (1990) and based on information theory (Shannon 1948). 
Information distance metrics have also been used in RobotCub work at UNIHER on 
sensorimotor map learning (WP3, e.g. D3.2, Olsson et al. 2006) and interaction history 
architecture for ontogeny based on grounded experiences (WP6, e.g. D6.4).  
Information distance is used here to capture the spatial and temporal relationships 
between behavioural events of interacting agents. Here the method is applied to a new 
context: namely, to particularly identify similarity and synchronicity instead of using it as 
a general correlation between sensor data. The experimental results suggest that this 
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method can indeed be employed successfully to identify similar and synchronous 
actions in human and robot imitation behaviour. Distinguishing informational matching in 
the interaction of an autonomous humanoid with a human via such methods is expected 
to help leverage social learning and communicative interaction in humanoid-human 
interactions in a manner to similar to the well-known naturally occurring mirroring and 
synchronization cues prevalent in non-verbal and verbal human-human interactions, 
including imitative interactions. 
 
This work thus introduces a similarity identification method using an Information 
Distance methodology. We demonstrate that this method can successfully identify the 
similarity and synchronicity of behaviour between a human and a robot. We suggest 
that the application of appropriate binning strategies is the key factor that drives the 
effectiveness of this method. Experiments are carried out that initially validate the 
method on simulated data and then subsequently use real-world imitation game data. 
The results indicate that the method is able to correctly identify both perfectly 
synchronous and perfectly asynchronous imitating actions, distinguishing these from 
behaviour that is not mirrored or synchronized.   Details of this work are presented in 
Appendix A (Shen et al 2008). 
 

3  I m i t a t i o n ,  A t t e n t i o n  a n d  R o b o t  L e a r n i n g  v i a  
K i n e s t h e t i c  D e m o n s t r a t i o n s   

Work conducted at EPFL as part of WP5 is summarized in the papers attached in 
Appendices B and C (Hersch et al 2008, Just et al 2008). The latter is joint work with 
UNIFE. The first study is directly relevant for the matching of kinesics in humanoid 
imitation of humans and the latter to the understanding of the role of kinesics in human 
imitation.  
 
In (Hersch et al 08), we further applied the Gaussian Mixture Modeling approach to 
learning tasks in acceleration space and compared to previous work of ours applying 
the same approach to learning tasks in velocity space. Results show that modeling in 
acceleration space allows to have a much more flexible model of the dynamics of the 
movements, and, most importantly, to be able to learn different dynamics depending on 
the location in space. 
 
In (Just et al 2008), we investigate how control of simple point-to-point reaching 
movements could be modulated in imitation. In collaboration with the University of 
Ferrara, EPFL conducted a user-study in which subjects were asked to imitate in 
differed imitation reaching movements. We contrasted three conditions: transitive 
versus intransitive movements (directed or not at an object); left hand versus right hand 
motion; normal and abnormal movements. In the abnormal case, the demonstrator lifted 
the elbow exaggeratedly compared to normal. Subjects were unaware of the three 
conditions. 
 
Kinematic data of the arm and direction of the imitator's gaze during the whole motion 
were recorded. Analysis of the data shows that there are mainly two categories of 
subjects: the "good" imitators and the "poor" imitators. In the first category ("good" 
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imitators), subjects reproduce accurately the kinematic features of the demonstrator's 
movements across all trials. In contrast the second category, ("poor" imitators), subjects 
reproduced the kinematic features of the movements only once their attention 
has been attracted to the arms of the experimenter by an unusual event (such swapping 
from using the right arm to using the left arm). 
 
Fine analysis of the gaze direction across the different conditions show that there is a 
correlation between visual perception and reproduction of kinematic features of the 
movements. The accuracy of the reproduction is enhanced when the subject's attention 
is more spread out across the whole arm's motion. 
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Abstract— This paper introduces a similarity identification method using an 
Information Distance methodology. We demonstrate that this method can 
successfully identify the similarity and synchronicity of behavior between a 
human and a robot. We suggest that the application of appropriate binning 
strategies is the key factor that drives the effectiveness of this method. 
Experiments are carried out that initially validate the method on simulated data 
and then subsequently use real-world imitation game data. The results indicate 
that the method is able to correctly identify both perfectly synchronous and 
perfectly asynchronous imitating actions.  

1 Introduction 

In order to exploit the opportunities that robots may offer in our daily lives, Human-
Robot Interaction (HRI) has become an important topic [1].  A major research area in 
HRI is imitation behavior between humans and robots. A robot imitating a human 
may learn new skills, but also be able to engage more effectively in social interaction. 
Thus, a significant amount of effort has been devoted to this research topic (see, for 
example, [2, 3, 4, 5, 6, 7]) building on previous research in developmental psychology 
(such as facial imitation in infants and neonates [8]). Our current research focuses on 
preparatory works required to e.g. replicate human-infant experiments on the “like 
me” problem (see [9, 10, 11]).  

In this paper we report on studies carried out which enable robots to identify 
similarity and synchrony between their actions and human actions. For example, a 
robot and human both waving their hands would indicate similarity of action, both 
waving in a mirror-like way would indicate synchronicity. We consider this work to 
be a stepping stone towards enabling a robot to learn socially from interaction with 
people. Being able to identify similarity and synchronicity (including when both 
human and robot actions are similar and perfectly asynchronous i.e. mirrored but 
perfectly out-of-phase) is important in allowing the robot to recognize human actions 
which are matching its own. It has been suggested that the identification of ‘like me’ 
in interaction may not only represent a salient event in the social development of an 
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infant (cf. [8]), but, from the perspective of social robots [9, 10], may enable a robot 
to engage in ‘meaningful’ interactions with its social environment as a key ingredient 
of learning in a social context. A method for identifying these similar and 
synchronous actions is described here1. While the method is not directly based on 
neurobiological modeling, we nevertheless employ a technique using computational 
principles that have been shown to model the perception-action loop of an agent 
acting in its environment in the language of information [12]. Thus, the approach is 
biologically inspired, but not on the level of neurons but on the more abstract level of 
information. The method employs the idea of similarity using information distance, 
previously described by Crutchfield [13] and based on information theory [14]. 
Information distance is used here to capture the spatial and temporal relationships 
between events. Relevant research using the information distance methodology as 
applied and further developed in developmental robotics in our research group has 
been described in, for example, [15, 16, 17]. In order to be consistent with this 
particular research approach, we utilize the same method but apply it to a different 
context, namely to particularly identify similarity and synchronicity instead of using it 
as a general correlation between sensor data. The experimental results suggest that 
this method can successfully identify similar and synchronous actions in human and 
robot imitation behavior.  

This paper will explain the similarity identification method in section 2. In section 
3 initial validation experiments using this method are described followed by actual 
experiments on a robot platform. In Section 4 the experimental results are analyzed 
and we discuss these results and future work in section 5.   

2 Similarity Identification Using Information Distance 

The similarity identification method introduced here calculates the information 
distance between human and robot body part trajectories to yield an indication of their 
similarity. The numeric size of the information distance value gives an indication of 
similarity, thus the more similar the behaviors, the lower the value. Similarly, a higher 
value for information distance indicates less similar behaviors.   

The flow chart in Figure 1 shows the general approach of the similarity method. In 
this flow chart, circles and ellipses represent data components; rectangles with solid 
lines represent core processing components and rectangles with dashed lines represent 
optional processing components.  

The general approach of this similarity method involves three stages: data 
collection, which consists of the first three components in the flow chart; pre-
processing, which consists of the middle four components; and the information 
distance calculation, which consists of the last two components.  These stages will 
now be described in more detail below. 
 

                                                           
1 Note, our intention is not to propose a new method that outperforms others, but to 

demonstrate that a method based on information distance is suitable for the task of behaviour 
similarity detection, an approach that we are also using for other tasks in our computational 
robot control architectures.  
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Fig. 1 The Similarity Method General Approach Flow Chart 

2.1 Data Collection 

In the data collection stage, a time window is used to store body parts’ trajectory data 
of both the human and robot captured from sensors (including the internal states of 
the robot). For every time step, the time window is updated with the latest trajectory 
data collected.  

The time window is a two dimensional array. One dimension is the number of time 
steps of the trajectory that the window can keep (treated as a row). The other 
dimension is the number of data items that are being tracked (treated as column). For 
example, if the spatial data currently being tracked is the 3-D co-ordinates of the hand 
position of both robot and human experimenter (x, y, z co-ordinates of the robot hand 
position and x, y, z co-ordinates of the human hand position) and the trajectory that is 
being kept is the most recent 50 time steps then a 50*6 array is allocated as the size of 
the time window. The size of the time window is fixed once allocated and uses a 
First-In- First-Out buffer to store new sensory data as it is recorded. Therefore, for 
each time step, the data at the back end of the window will be considered out of data 
and disposed of, with newly updated data added to the front end of the time window.  

2.2 Binning Strategy 

The data in the time window will be allocated into different bins according to its value 
and the binning strategy. Note that not all the data will be pre-processed at the same 
time. Every time the pre-process procedure is called, only two selected data columns 
are used. Similarly, every time the information distance calculation procedure is 
called, only two selected data columns are used. This is because the information 
distance can only be calculated between two items.  
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The binning strategy component is used to extract data distribution features. These 
features are recorded using a frequency distribution matrix and two bin frequency 
distribution arrays, which will be described below. They are the critical source of 
information to conduct the information distance calculation.  

The bin frequency distribution matrix tracks how many times data items of bin x in 
column A appear together with data items of bin y in column B. The bin frequency 
distribution arrays track the number of times data items of each bin in their own 
column have appeared. 

The two new binning strategies used in this similarity identification method, which 
we call Partial-Adaptive Binning Strategy and Complete-Adaptive Binning Strategy 
are both developed from the binning strategies described by Olsson [15], Static 
Binning Strategy and Adaptive Binning Strategy. However, they have significant 
differences due to the nature of the data in our research. In Olsson’s work, the data 
represent pixel values of a robot’s vision system, which have similar inputs. However, 
in the studies presented here, the input data are from different sources and may derive 
from different modalities. Therefore, there may be large variances in the data 
captured. Using the original binning strategies may cause a loss of a significant 
amount of information.  

The newly developed binning strategies have three common factors: ‘column-based 
independence’, ‘adaptive bin ranges’ and ‘tendency separation’. ‘Column-based 
independence’ means each column has an independent bin range. ‘Adaptive bin 
range’ means the bin range is determined by the maximum and minimum data entry 
within the same column. These two features cater for the fact that different columns 
contain data from different sensors and the range of their data values may have 
significant differences. Therefore, the features of different columns may be omitted if 
all the columns use the same bin range. ‘Tendency separation’ means the tendency of 
a data item (i.e. whether the next data item in the same column has a larger or smaller 
value than the current one) is considered in the bin allocation process. Practically, 
each bin is split into two bins: a rising bin and a descending bin. Once a data item is 
allocated into a bin, the tendency of this data item is examined. If the tendency is 
rising or staying still, the data is assigned to the rising bin. Otherwise, it will be 
assigned to the descending bin. Tendency separation is used to reduce the impact of 
the delay (or time-shift) between one agent imitating another’s behavior. For example, 
there might be a slight delay between a human copying the actions of a robot, or vice-
versa. 

An example of time shift impact is presented in Figure 2. Curve A and curve B are 
identical except curve B is slightly shifted. Although point a and point b on curve B 
have the same value, the difference between their corresponding points (c and d) on 
curve A is significant. If only data value is considered, point a and point b will be 
allocated to the same bin.  However, the bins that a and b belong to have the same 
chance of corresponding to the two bins that c and d belong to. Consequently, this 
one-to-many relationship causes an ambiguity and omits the fact that there is one-to-
one relationship existing if the slope factor is considered. Figure 3 shows a robot and 
human forearm X-axis trajectory (where a human was attempting to replicate a robot 
movement) and illustrates the existence of this time shift impact in real life. During 
the imitation interaction, it is almost impossible to synchronize robot and human 
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behavior perfectly. There are always some differences in timing between the two 
behaviors.  

 

 
 

Fig. 2 Time Shift Impact Example 
 

 

 
 

Fig. 3 Robot and Human Forearm X-axis Trajectory 
 
The difference between the partial-adaptive binning strategy and the complete-

adaptive binning strategy is whether the bin size can adapt to the incoming data. The 
partial-adaptive binning strategy has a fixed bin size which only varies as the 
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consequence of the variance of the bin range.  The complete-adaptive binning strategy 
allows the bin size to vary in order to ensure that each bin has the same number of 
data items. 

The application of different binning strategies may entirely change the output results 
from the information distance calculation. As a binning strategy is applied prior to the 
input of the information distance calculation, changes made to the binning strategy 
will cause changes to the data distribution features extracted. Hence, the choice of the 
binning strategy will have an impact on the final output of the entire approach. 

2.3 Pre- and Post-binning optimization 

This sub-section introduces the processing components of the pre-processing stage 
excluding the binning strategy component. There are two optional optimization 
components in this stage. The one prior to the binning strategy component is called 
pre-binning-optimization and the other is called post-binning-optimization.  

The purpose of pre-binning-optimization is to reduce the impact of errors occurring 
during the data collection stage (such as sensor misdetection). The pre-binning-
optimization component consists of two optional sub-components: curve smoothing 
and normalization.   

Curve smoothing filters the “zig-zag” parts of the human forearm X-axis trajectory 
curve (illustrated in a ellipse in Figure 3). These “zig-zag” parts may arise from two 
factors: either the human imitation behavior is not performed smoothly, or the sensors 
are affected by environmental noise.  This may confuse the binning strategy 
component in detecting the forearm movement tendency. The current strategy applied 
to curve smoothing is to take the average value of the original data point and its 
neighbors as the new data point. The effect of this curve smoothing approach is 
presented in Figure 4.  

 

 
 

Fig. 4 The Effect of Curve Smoothing 
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Normalization reduces the impact of inconsistent amplitude, which can be 
observed in Figure 3. Whether it is appropriate to apply the normalization sub-
component depends on the nature of incoming data. If the incoming data curve is 
supposed to have consistent amplitude, normalization may filter the error in 
amplitude. Otherwise, application of normalization may cause misleading results. The 
general strategy is:  

 
1. set the nearest ‘hill’ to 1 and the nearest ‘valley’ to 0;  
2. the normalized value of the data between hill and valley = (current data value 

– original valley data value) / (original hill data value – original valley data 
value) 

 
The purpose of post-binning-optimization is to reduce the data distribution range 

and therefore enhance the one-to-one relationship between bins from the two data 
columns being compared. The stronger the one-to-one relationship between two bins 
is, the more likely they are to be correlated. The higher the correlation of the bins 
between two data columns, the more likely the two data columns are correlated. That 
is, in the context of this paper, these two data columns are “similar”.   

The current post-binning-optimization methodology we use is called “winner take 
neighbors”. If bin a in column A appears with bin b in column B more often than any 
other bin in column B, then bin b will add the number of times its two neighbor bins 
in column B appear with bin a to its own number. Thus, the one-to-one relationship 
between bin a and bin b is enhanced.  

2.4 Information Distance Calculation 

The calculation of information distance between two data columns, usually a pair of 
corresponding behavior components from the human and robot behavior respectively 
(for example, the x co-ordinates of the human forearm position and the x co-ordinates 
of the robot forearm position), is based on the information metric described by 
Crutchfield [13]. The information distance between two data columns X and Y is 
defined as the sum of two conditional entropies of these two columns [15]. It can be 
calculated using the following formula [15]:  

 
))()((),(*2),( YHXHYXHYXd +−=   (1) 

 
The entropies presented in the above formula can all be derived from the data 

distribution features extracted using binning strategies. The joint entropy of column X 
and Y can be calculated using the frequency distribution matrix and the entropy of X 
and Y can be calculated from frequency distribution arrays. For more details of the 
information distance calculation, please refer to [15] and [16].  
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3 Experimental Setup 

The robot used in the following experiments is a minimally expressive humanoid 
robot called KASPAR, and was developed by the Adaptive Systems Research Group 
at the University of Hertfordshire. KASPAR is a child-sized humanoid robot with 14 
degrees of freedom (8 in head and 6 in arms) [18]. The robot has been designed 
specifically for the purpose of engaging people in socially interactive behaviour. The 
robot is e.g. able to perform certain face, head and arm gestures that have been used in 
human-humanoid imitation games e.g. with children (see figure. 5 and [19]).  

 

 
 

Fig. 5: KASPAR (The KASPAR figure is sourced from [18]) 
 
A marker-detection toolkit ARToolkit [20] is used in the experiments to detect 

human body parts. Other object detection approaches such as face detection, color 
object detection and gray-scale object detection have also been explored. However, 
the marker-detection approach using ARToolkit is relatively reliable and it can return 
an object’s spatial data to track the position of the object. 

As a starting point in the investigation of the method presented, the behavior to be 
imitated is not expected to be complex. Therefore, the behavior chosen involves only 
forearm waving while the upper arm is kept stationary. This reduces the complexity 
of the imitation. The correspondence problem [21] in the imitation behaviors is solved 
explicitly by mapping human elbow joint angles to robot elbow servo readings.      

4 Experiment Results and Analysis 

The first set of experiments was conducted to validate the similarity identification 
method.  Please note that in the validation experiments, no optional optimization 
strategy is applied because all these three experiments are testing the most basic 
theoretical method.  

4.1 Similarity Identification Method Validation Experiments 

In order to validate whether this similarity identification model can at least process 
the data in the right way, a validation process was conducted.  
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4.1.1 Random Data Validation 
The first step of validation is to use randomly generated data columns to check 
whether the similarity identification model using the partial-adaptive binning (SIM-
PB) or complete-adaptive binning (SIM-CB) can identify identical data columns. The 
results show that both SIM-PB and SIM-CB can find identical data columns as the 
resulting information distance between them is 0. 

4.1.2 Artificial Data Validation 
The second step of validation is to use 3-D co-ordinates generated by Matlab [22] 
which models the waving behaviors between the human and the robot. Compared 
with the recorded data from the experiments, the modeled data is a much simpler. In 
this model, the waving behavior of the human and the robot are completely 
synchronized. There is very little difference between the 3-D position co-ordinates of 
the human and robot forearm caused by the different arm length settings. The results 
show that both SIM-PB and SIM-CB can identify very similar behaviors as the 
resulting information distance between them is 0.  

4.1.3 Sine Curve Data Validation 
The third step in the validation is to use sine curve data to check how SIM-PB and 
SIM-CB can handle time step shifts. That is, SIM-PB and SIM-CB will calculate the 
information distance between the original sine curve and the shifted sine curve. The 
time step shifts are used to simulate behavioral delay problems in real life. If SIM-PB 
and SIM-CB can successfully identify similar curves with a small number of time step 
shifts, it is very likely that they can also identify reasonably delayed imitation 
behaviors. A sine curve was chosen because it is an ideal continuous periodic data 
model and the repeated waving behavior is also continuous and periodic. In this 
validation step, the number of time steps shifted will continuously increase until one 
entire period is shifted. The performance of SIM-PB and SIM-CB is recorded during 
shifting. An example of shifted sine curve is presented in Figure 6.  

 

 
 

Fig. 6 Sample Sine Curve Used in Sine Curve Data Validation 
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A result of the validation of SIM-PB is shown in Figure 7. Please note that 

although there are some special cases due to the assignment of data entries with the 
same value into the same bin regardless of whether this bin has reached its capacity 
limit, in general the results outlined are similar to the curve in Figure 7. 

 

 
 

Fig. 7 Sine Curve Data Validation Result 
 
 

 
 

Fig. 8 Relationship between Bins at A Local Minimum  
 
From this figure (which shows the SIM-CB results, SIM-PB gave similar results 

but is not shown) it is clear that there are three points during the entire process where 
the information distance between the two curves falls to a low value. As one entire 
period of the sine curve has 120 time steps, at the 1st time step and 121th time step, 
the two sine curves are actually on top of each other. That is why the information 
distance between them is 0. At the 61th time step, when the two sine curves are 
completely out of phase (become perfectly asynchronous), the information distance 
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between them also goes down. As both mappings (completely in phase and out of 
phase) indicate the existence of information correlation, the validation can be 
considered as successful. Thus the method serves to indicate both when the human is 
(mirror) matching the actions of the robot, and also when the human is matching but 
is perfectly out of phase, both of which may be considered to be synchronous 
behaviors. In addition, it also shows that the method is sensitive to the delay because 
once there is a small number of time step shifts, the information distance rises 
immediately (and effectively means that the human and the robot are not 
synchronized).  The local minimums in the curve indicate the existence of strong one-
to-one relationship. An example is shown in Figure 8.  Bin 0, 1, 2, 3 are the 
descending bins in Figure 8 and bin 7, 6, 5, 4 are the corresponding rising bins. 

4.2 Experiments Using Imitation Game Data 

The above validation demonstrated that the performance of SIM-PB and SIM-CB met 
the requirements, i.e. they can successfully identify very similar or identical data 
columns. Therefore, this similarity identification model was then applied to real 
human-robot interaction data.  

The data used for these experiments were the recordings of three imitation game 
scenarios.  In the first scenario, the human experimenter imitated the forearm waving 
behavior of the robot (called synchronous imitation). In the second scenario, the 
human experimenter was imitating the forearm waving behavior of the robot, 
however, in a different direction (called out of phase imitation – or perfectly 
asynchronous behavior). In the third scenario, the human experimenter does not do 
anything when the robot is moving and waves when the robot is doing nothing (called 
unsynchronized behavior). The results achieved are shown in Figure 9.  

 

 
 

Fig. 9 Result of Experiments Using Imitation Game Data 
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The results shown in Figure 9 imply the similarity identification model can 
successfully identify the similarity between robot and human imitation behavior as 
both the synchronous and out-of-phase imitation curves are visibly separated from the 
unsynchronized behavior curve. There are two noticeable phenomena: 1) the 
unsynchronized behavior information distance curve is significantly higher than the 
synchronized imitation curve and the out-of-phase imitation curve; 2) the 
synchronized imitation curve is close to the out-of-phase imitation curve. The first 
phenomenon matches the result expected from information distance calculation: 
events having less similarity have higher information distance values and vice versa. 
The second phenomenon matches the results in Figure 7: when two curves are closer 
to synchronized or completely out of phase, the information distance between them is 
lower.  

The positive results in the experiments also suggest the importance of the binning 
strategies. If improper binning strategies are used in this model then the results may 
be very different. The results presented in Figure 10 are derived from the same 
similarity identification model except for a change of the binning strategy component, 
in this case the strategy lacks the tendency separation feature. This weakens the one-
to-one correspondence between bins and therefore leads to a different result with less 
clear separations between the curves.  

 

 
 

Fig. 10 Results of Using an Improper binning strategy 

5 Discussion and Further Work 

The experimental results illustrated in section 4 indicate that using the method is able 
to correctly identify similarity and synchronous behavior between a human and a 
robot. In real-world human robot imitation interaction, an information distance 
threshold can be set to explicitly identify the similar and synchronous behaviors.  
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Therefore, a robot can recognize that a human’s action matches its own behavior if 
the current information distance is within the threshold limit. A mechanism of 
adapting the threshold is required because different experimental parameter settings 
and different binning strategies may change the range of information distance.  

People may argue what the proper binning strategy is for a particular experiment. 
Based on this study, a proper binning strategy should retain the most important 
correlation among the experimental data. Understanding the nature of the 
experimental data can help to choose or design a proper binning strategy. A validation 
process then needs to be applied to evaluate the results.  

Other approaches, such as Pearson’s correlation coefficient calculation, can also 
identify similar behaviors. However, in this paper, we are not attempting to compare 
methods, rather we are suggesting this method to complement other approaches. 
Additionally, we also find that the application of appropriate binning strategies is the 
key factor that drives the effectiveness of this method. It is because the binning 
strategy in this information distance method acts as an information filter. An 
inappropriate binning strategy can cause undesired information loss. Another critical 
issue of the binning strategy application, which is not presented in this paper, is the 
choice of the number of bins, where it can be argued as to the number of bins needed, 
there being no ideal number for all tasks.  

Building on the information distance method, further research will investigate how 
a robot can identify the existence and quality of imitation behaviors during human-
robot interaction. Having achieved the above stage, e.g. imitation games that replicate 
human-infant experiments on the “like me” problem will be conducted to investigate 
how a robot can acquire and develop social behavior through imitation interaction 
with humans.  
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Dynamical System Modulation for Robot Learning
via Kinesthetic Demonstrations

I. I NTRODUCTION

AS robots are progressively coming out of the controlled
environment of assembly lines to pervade the much

less predictable domestic environments, there is a need to
develop new kinds of controllers that can cope with changing
environments and that can be taught by unskilled human users.
In order to address this last issue,Programming by Demon-
stration (PbD) has emerged as a promising approach [1].
This approach differs significantly from classical approaches
to robot manipulation. Those approaches typically start by
modeling the task, the relevant elements of the environment
and the robot, as well as their dynamics. The problem is
then to find the adequate robot command that will bring the
whole system into a desired state specified by the programmer.
This is usually done by using the plant model and sensor
information to estimate the state of the world, and finding a
control law specifying the command adequate to various states
of the world. This law can be hard-coded, e.g. for juggling [2],
grasping [3], 2D pushing and throwing [4], or obstacle avoid-
ance for reaching [5]. But it can also be (partially) learned
from (possibly simulated) exploration, e.g. for stable grasping
[6] or object manipulation under wrench closure constraints
[7]. In PbD, the idea is to try to extract an adequate control
law from demonstrations of the task performed by a human.
The demonstrations can indeed provide useful information,
for example appropriate grasps in a grasping task [8] (see
[1] for a further discussion of the use of PbD for robot
control). PbD has been mostly used in two cases: for tasks
involving no or very loose interaction with the environment
(like writing, martial arts or communicative gestures) human
demonstrations are used to train a movement model, which
can be used to reproduce the task. Those movement models
(also used in computer animation or visual gesture recognition)
usually imply some averaging process (LWR [9], HSTMM
[10]), possibly in a latent space (GPLVM [11], ST-Isomap
[12]) or some probabilistic model like HMMs [13] or Bayesian
Networks [14]. And for more complex tasks, involving pre-
cise interactions with the environment, the robot learns from
examples how to sequence a set of hard-coded controllers
for a given task. This has been done using HMMs [15] or
knowledge-based systems [16].
In our work, we position ourselves in between those two
approaches. The tasks we consider (such as reach-to-grasp)
require some interaction with the environment, while remain-
ing relatively simple. Like the first approach, we train a motion
model for the task, and like the second approach, we also use a
hard-coded controller. We start with a basic built-in controller
consisting in a dynamical system with a single stable attractor.
We then learn a task model used to modulate the trajectories

generated by the dynamical system in a way appropriate for
a given task. This results in a general framework for learning
and reproducing goal-directed gestures, despite different initial
conditions and changes occurring during task execution. Inthis
respect it is an improvement on [17], which also learns reach-
to-grasp movements, but in a static setting.
The closest work to ours is [9], which uses a dynamical
system for goal-directed reaching. There, a desired trajectory
in joint space is obtained from a single demonstration and
is embedded in a dynamical system, which can reproduce
the qualitative features of this trajectory, while reaching a
somewhat different target from a different initial position. In a
previously published paper [18], we learned a velocity profile
from demonstrations and used it to modulate a dynamical
system acting on the end-effector. The novelty of the present
contribution with respect to those last two papers is the
following. First, while [9] learns a trajectory in joint space,
and [18] is controlling in task space, here we propose a
hybrid task and joint space controller, which can combine
the advantages of both. The second and more fundamental
difference lies in the level of generalization. Whereas [9] tries
to reproduce asingle joint angle trajectory, and [18] learns a
task specific velocity profile, here we learn a wholedynamical
systemcapturing thecorrelations across multiple variablesfor
a given task. This enables us to present results that are not
mere trajectory comparison (as in [9]), but that quantify the
adaptivity of our controller at the level of task success rate.
We show experimentally that modeling the task as a dynamical
system yields a more adaptive controller.
In those experiments, the motions are demonstrated to the
robot by a human user moving the robots’ limbs passively
(kinesthetic training). We consider two tasks, placing an object
into a box, and reaching-to-grasp a chess piece, see Fig. 2 for
illustrations of these two tasks.

II. OVERVIEW

The system is designed to enable a robot to learn to
modulate its generic controller to produce arbitrary goal-
directed motion. The model must be generic so as to repro-
duce the motion given different initial conditions and under
perturbations during execution. Moreover, the architecture of
the system must permit the use of different control variables
for encoding the motion. Here, we compare a motion encoding
either as a velocity profile or as an acceleration field. We refer
to those further as thevelocity model(see Section II-B) and
the acceleration model(see Section II-C).

A. System Architecture

The structure of the system is the same for both models
and is schematized in Fig. 1. During training, the relevant
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Fig. 1. The architecture of the system. During training the relevant variables
(end-effector’s position, velocity and acceleration) areextracted from the
demonstrations and used to train a GMM. During task execution, this model is
used to modulate a spring-and-damper system.ẋm is the end-effector velocity
specified by the task model.xg is the target location, andx∗, ẋ∗, θ̇∗ are
respectively the actual current end-effector’s position and velocity and the
joint angles’ velocities. The numbers in parentheses refer to the corresponding
equations in the text.

variables (end-effector velocity profiles for the velocitymodel,
or end-effector positions, velocities and accelerations for the
acceleration model) are extracted from the set of demonstrated
trajectories and used to train a Gaussian Mixture Model
(GMM) (see Table I). During reproduction, the trajectory is
specified by a spring-and-damper dynamical system modulated
by the GMM (see section III). The target is tracked by a
stereo-vision system and is set to be the attractor point of
the dynamical system. At each time step, the desired velocity
computed by the model is then fed to a PID controller for
execution. This does not hinder the online adaptation of the
movement.

B. Velocity Model

The first way to encode a motion in a GMM, is to consider
the velocity profile of the end-effector as a function of time
ẋ(t). Thus, the input variableζ is the time and the output
variableξ is the velocity, like in the following velocity model:

ẋ
m = F̃ẋ(t) (2)

In other words, the movement is modeled as a velocity profile,
given by a function of time, which is learned as described
in Table I. Here and henceforth,̇xm ∈ R

m is the end-
effector velocity specified by the task model.F̃ẋ is obtained
by applying (1) with the appropriate variables.

C. Acceleration Model

A second way of encoding a trajectory is to take as input the
positionx and velocityẋ, and as output the accelerationẍ. The
rationale of this is to consider a trajectory not as a function
of time, but as the realization of a second-order dynamical
system of the form:

ẍ
m = F̃ẍ(x, ẋ). (3)

Again, F̃ẋ is obtained by applying (1) with the appropriate
variables. The velocity specified by the acceleration modelis
then given by

ẋ
m = ẋ + τ F̃ẍ(x, ẋ), (4)

whereτ is the time integration constant (set to1 in this paper).
Since the positionx and velocityẋ depend on the acceleration
ẍ at previous times, this representation introduces a feedback
loop, which is not present in the representation given by (2).

III. M ODULATED SPRING-AND-DAMPER SYSTEM

We now show how the task model described above is used
to modulate a spring-and-damper dynamical system in order
to enable a (possibly redundant) robotic arm withn joints
to reproduce the task with sufficient flexibility. Although the
modulationẋm is in end-effector space, it is advantageous (for
avoiding singularity problems related to inverse kinematics
of redundant manipulators) to consider the spring-and-damper
dynamical system in joint angle variables:

θ̈s = α(−θ̇ + β(θg − θ)) (5)

whereθ ∈ R
n is the vector of joint angles (or arm configu-

ration vector). This dynamical system produces straight paths
(in joint space) to the targetθg, which acts as an attractor of
the system. This guarantees that the robot reaches the target
smoothly, despite possible perturbations.
The above dynamical system is modulated by the variable
ẋ
m given by the task model (2) or (4). In order to weigh

the modulation, we introduce a modulation factorγ ∈ R[0 1],
which weighs the importance of the task model relatively to
the spring-and-damper system. Ifγ = 0, only the spring-and-
damper system is considered, and whenγ = 1 only the task
model is considered. In order to guarantee the convergence
of the system toθg, γ has to tend to zero at the end of the
movement. In the experiments described here,γ is given by:

γ̈ = αγ(−γ̇ −
1

4
αγγ) with γ0 = 1, (6)

whereγ0 is the initial value ofγ andαγ ∈ R[0 1] is a scalar.
Sinceẋm lives in the end-effector space (and not in the joint

space), the modulation is performed by solving the following
constrained optimization problem.

θ̇ = argmin
θ̇

(1 − γ)(θ̇ − θ̇s)T
W̄θ(θ̇ − θ̇s) +

γ(ẋ − ẋ
m)T

W̄x(ẋ − ẋ
m) (7)

u.c. ẋ = Jθ̇, (8)

whereJ is the Jacobian of the robot arm kinematic function
K andW̄θ ∈ R

n×n andW̄x ∈ R
m×m are diagonal matrices

necessary to compensate for the different scale of thex and
θ variables. As a rough approximation, the diagonal elements
of W̄x are set to one and those of̄Wθ are set to the average
distance between the robot base and its end-effector.
The solution to this minimization problem is given by [20]:

θ̇ =
(

Wθ + J
T
WxJ

)−1(
Wθ θ̇

s + J
T
Wxẋ

m
)

(9)

where Wθ = (1 − γ)W̄θ, Wx = γW̄x. (10)

To summarize, the task is performed by integrating the
following dynamical system:

θ̈s = α(−θ̇ + β(θg − θ)) (11)

θ̇ =
(

Wθ + J
T
WxJ

)−1(
Wθ θ̇

s + J
T
Wxẋ

m
)

(12)



TABLE I

SUMMARY OF GAUSSIAN M IXTURE REGRESSION(GMR).

GMR is a method suggested by [19] for statistically estimating a functionFξ(ζ)
given by a “training set” ofN examples{(ζi, ξi)}N

i=1
, where ξi is a noisy

measurement ofFξ(ζi):
ξ

i
= Fξ(ζ

i
) + ǫ

i

(ǫi is the Gaussian noise). The idea is to model the joint distribution ofthe “input”
variableζ and an “output” variableξ as a Gaussian Mixture Model. If we join those
variables in a vectorυ = [ζT ξT ]T , it is possible to model its probability density
function as a mixture ofK Gaussian functions

p(υ) =

K
X

k=1

πkN
`

υ; µk, Σk), such that

K
X

k=1

πk = 1

where theπk ∈ [0 1] are the priors, andN (υ; µk, Σk) is a Gaussian function
with meanµk and covariance matrixΣk:

N
`

υ; µk, Σk) =
`

(2π)
d|Σk|

´

−

1

2 exp
`

−
1

2
(υ − µk)

T
Σ

−1

k (υ − µk)
´

,

whered is the dimensionality of the vectorυ. The mean vectorsµk and covariance
matricesΣk can be separated into their respective input and output components:

µk = [µ
T
k,ζ µ

T
k,ξ]

T
Σk =

„

Σk,ζ Σk,ζξ

Σk,ξζ Σk,ξ

«

The Gaussian Mixture Model (GMM) is trained using a standard E-M algorithm,
taking the demonstrations as training data. The GMM computes a joint probability
density function for the input and the output, so that the probabilityof the output
conditioned on the input are GMM. Hence, it is possible, after training, to recover
the expected output variablẽξ, given the observed input variableζ.

ξ̃ = F̃ξ(ζ) =

K
X

k=1

hk(ζ)
`

µk,ξ + Σk,ξζΣ
−1

k,ζ(ζ − µk,ζ)
´

, (1)

where thehk(ζ) are given by:

hk(ζ) =
πkN (ζ; µk,ζ , Σk,ζ)

P

K
k=1

πkN (ζ; µk,ζ , Σk,ζ)
.

The tilde (̃ ) sign indicates that we are dealing with expectation values.

where Wx and Wθ are given by (6) and (10), anḋxm is
given either by (2) (velocity model) or by (4) (acceleration
model). Integration is performed using a first-order Newton
approximation (̇θs = θ̇ + τ θ̈s).

Since the target location is given in cartesian coordinates,
inverse kinematics must be performed in order to obtain the
corresponding target joint angle configuration which will
serve as input of the spring-and-damper dynamical system.
In the case of a redundant manipulator (such as the robot
arm used in the following experiments) the desired redundant
parameters of the target joint angle configuration can be
extracted from the demonstrations. This is done by using the
GMR technique described in Table I to build a model of the
final arm configuration as a function of the target location.

Using an attractor system in joint angle space has the
practical advantage of reducing the usual problems related
to end-effector control, such as joint limit and singularity
avoidance. Equation 9, which is a generalized version of
the Damped Least Squares inverse [21] [22], is a way to
simultaneously control the joint angles and the end-effector,
imposing soft constraints on both of them. It is thus different
than optimizing the joint angles in the null space of the
kinematic function.

IV. EXPERIMENTS

A. Setup

We validate and compare the systems described in this paper
on two experiments. The first experiment involves a robot
putting an object into a box and the second experiment consists
in reaching and grasping for an object. Those experiments
were chosen because (1) they can be considered as simple
goal-directed tasks (for which the system is intended), (2)they
are tasks commonly performed in human environments and (3)
they presents a clear success or failure criterion.
All the experiments presented below are performed with a
Hoap3 humanoid robot acquired from Fujitsu. This robot has
four back-drivable degrees of freedom (dof) at each arm. Thus,

Fig. 2. The setup of the experiments. The top pictures show thefirst task and
the lower picture sow the second task Left: a human operator demonstrates
a task to the robot by guiding its limbs. Right: the robot performs the task,
starting from different initial positions.

the robot arms are redundant, as we do not consider end-
effector orientation. The robot is endowed with a stereo-vision
system enabling it to track color blobs. A color patch is fixed
on the box and on the object to be grasped, enabling their 3D
localization. Pictures of the setup are shown in Fig. 2.

1) Preprocessing:During the demonstrations, the robot
joint angles were recorded and the end-effector positions were
computed using the arm kinematic function. All recorded
trajectories were linearly normalized in time (T = 500 time
steps) and Gaussian-filtered to remove noise. The number of
Gaussian components for the task models were found using the
Bayesian Information Criteria (BIC) [23], and the parameter
values used wereαγ = 0.06, α = 0.12 andβ = 0.06.

B. Putting an object into a box

1) Description: For this task, the robot is taught to put an
object into the box (see Fig.2). In order to accomplish the
task, the robot has to avoid hitting the box while performing
the movement and must thus first reach up above the box and
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then down to the box. A straight line reaching will in general
cause the robot to hit the box while reaching and thus fail.

2) Training: A set of 26 kinesthetic demonstrations were
performed, with different initial positions and box locations.
The box was placed on a little table. Thus its location only
varies in the horizontal plane. Similarly, the initial position of
the object (and thus of the end-effector) lied on the table. The
set of demonstrated trajectories is depicted in Fig. 3, left. The
velocity models trained on this data are shown in Fig. 4, left.

C. Reach and Grasp

1) Description: In order to accomplish this task, the robot
has to reach and correctly place its hand to grasp a chess piece.
In other words it has to place its hand so that the chess piece
stands between its thumb and its remaining fingers, as shown
in Fig. 7, left. This figure illustrates that the approachingthe
object can only be done in one of two directions: downward
or forward. This task is more difficult than the previous one,
as the movement is more constrained. Moreover, a higher
precision is required on the final position, since the hand is
relatively small.

2) Training: A set of 24 demonstrations were performed
starting from different initial positions located on the horizon-
tal plane of the table. The chess piece remained in a fixed
location. Depending on the initial position, the chess piece
was approached either downward or forward (as illustrated
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on Fig. 7). The set of demonstrations is represented in Fig.
3, right. The resulting velocity model is shown in Fig. 4,
right. One can notice that there is no velocity feature that
is common to all demonstrated trajectories. The acceleration
model is shown in Fig. 5. This model captures well the fact that
the vertical acceleration component depends on the position in
the horizontal plane.

D. Results

Endowed with the system described above, the robot is
able to successfully perform both tasks. For the first task,
both the velocity and the acceleration models can produce
adequate trajectories (see Fig. 6, left for examples). The system
can adapt its trajectory online if the box is moved during
movement execution (see Fig. 6, right). For the second task,
examples of resulting trajectories are displayed in Fig. 7,right.
In order to evaluate the generalization abilities of the systems,
both tasks were executed from various different initial posi-
tions arbitrarily chosen on the horizontal plane of the table,
and covering the space reachable by the robot. Fig. 8 shows the
results and starting positions for both experiments. For the box
experiment (left), the velocity model was successful for 22out
of the 24 starting locations (91%). The two unsuccessful trials,
indicated by empty circles, correspond to initial positions close
to the work space boundaries. The acceleration model was
successful for all trials (100%).
For the chess piece experiment (Fig. 8, right), the velocity
model was successful for 5 out of 21 (24%) trials whereas the
acceleration model was successful for 18 trials (86%). This
performance gap is due to the fact that this task does not
require a fixed velocity modulation. The adequate modulation
depends on the position. This position-dependent modulation
can be captured by the acceleration model, but not by the
velocity model. As illustrated in Fig. 5, the acceleration model
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Fig. 7. Left: the chess piece to be grasped. For a successful grasp, the robot
has to approach it as indicated by the arrows. Right: resulting trajectories for
the grasping task, starting from two different initial positions. The acceleration
model (thick lines) adapts the modulation to the initial position, while the
velocity model (thin lines) starts upward in both cases. The trajectory produced
by the velocity model and starting left of the target is not successful.

is able to produce different velocity profiles, depending onthe
starting position and is thus more versatile than the velocity
model.

V. D ISCUSSION

Our results show that the framework suggested in this
paper can enable a robot to learn constrained reaching
tasks from kinesthetic demonstrations, and generalize them
to different initial conditions. Using a dynamical system
approach allows to deal with perturbations occurring during
the task execution. This framework can be used with various
task models and has been tested for two of them, the velocity
model and the acceleration model. The results indicate thatthe
velocity model is too simplistic if the task requires different
velocity profiles when starting from different positions in
the workspace. The acceleration model, which models the
task as a dynamical system rather than as a trajectory,
is more sophisticated and can model more constrained
movements. However, it may fail to provide an adequate
trajectory when brought away from the demonstrations in
the phase space(x, ẋ). Other regressions techniques, such
as LWR, could also be used. But if there are inconsistencies
across demonstrations, simple averaging may fail to provide
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Fig. 8. The robustness to initial end-effector position forboth tasks. The
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velocity model was successful. The circles (filled and non-filled) indicate all
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indicate the starting positions of the training set.

adequate solutions.
In its present form, the modulation factor between the
dynamical system and the task model (γ) is not learned.
Learning it from the demonstrations is likely to further
improve the performance of the system, especially for tasks
requiring a modulation at the end of the movement. It would
also be desirable to have a system that extracts the relevant
variables, and automatically selects the adequate model. A
first step in this direction has been taken in [24], where a
balance between different sets of variables is achieved.
Of course, the adequacy of this framework is restricted
to relatively simple tasks, such as those described in the
experiments. More complicated tasks, such as obstacle
avoidance in complex environments or stable grasping of
particular objects require a detailed model of the environment
and more elaborate planning techniques. The tasks considered
for this framework are those that cannot be accomplished
by simple point-to-point reaching, but still simple enough
to avoid the complete knowledge of the environment. But
this framework could be extended to learn more complicated
tasks. In a first step in this direction, [18] investigates how
Reinforcement Learning can deal with obstacle avoidance.
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Abstract

Imitation plays an important role in the development of human beings. During
childhood, it provides means to learn new motor skills. During adulthood, imita-
tion helps the acquisition of several skills without the time-consuming process of
trial-and-error learning. Several theories have been proposed to explain the process
of imitation, but the question remains opened. The present study investigates the
behavior of normal subjects during imitation of simple movements. Possible correla-
tion between quality of imitation and attention behavior will be studied to underline
a possible correlation.

Key words: imitation, goal-direct imitation, specular imitation, anatomic
imitation, VITE model, Lagrange optimization, gesture modeling

1 Introduction

Humans were thought to learn to imitate over the first years of life. But work
from Meltzoff [Meltzoff and Moore, 1977, 2002] has shown that even new-
borns can imitate body and facial movements at birth. Questions that arise
from the study of imitation are related to its underlying mechanisms. Melt-
zoff and Moore [Meltzoff and Moore, 1997] propose the Active Intermodal
Mapping (AIM) to explain facial imitation in infants. AIM hypothesizes that
the perception and production of actions can be represented within a com-
mon framework. This common framework, or “supramodal” representation,
permits newborns to perform a matching process between their own move-
ments and the ones they see. An infant’s own movements then provide some

nehaniv
Typewritten Text
APPENDIX C



proprioceptive information that can be compared to the visual target action.
Furthermore, AIM supposes a goal-directed matching process. Indeed, infants
will attempt novel means to reach similar actions, e.g. to obtain the same
effect as a tongue protruding to the side, infants will use a straight protruding
tongue associated with head rotated to the side.

To explain imitation, the direct matching approach has also been proposed.
This mechanism supposes that the observed action is directly linked to our
motor representation of the same action. The direct matching hypothesis is
closely related to the discovery of mirror neurons. The mirror system provides
a natural link between action understanding and imitation. Mirror neurons
were first discovered in monkeys’ brain. In area F5 of the monkey premotor
cortex [Rizzolatti et al., 1996, Rizzolati et al., 2002] neurons were found that
discharge both when the monkey performs an action and when he observes
a similar action made by conspecies or by the experimenter. These neurons
discharge during particular goal-directed hand movements such as grasping,
holding or manipulating some food or object.Evidence suggests that area F5
in monkeys’ brain correspond to an observation/execution matching system.

The direct matching hypothesis for imitation in humans supposes the exis-
tence of a mechanism similar to mirror neurons in monkeys. It supposes the
existence of a mechanism directly matching the observed action onto an in-
ternal motor representation of that action. The direct matching hypothesis
predicts that the areas where matching occurs must contain neurons that dis-
charge during action execution both when observing and executing the action.
Using functional magnetic resonance imaging, the authors in [Iacoboni et al.,
1999] showed an activation of the left frontal operculum (area 44) and the
right anterior parietal cortex (PE/PC). These findings indicate that these ar-
eas of the human brain have an imitation mechanism similar to mirror neurons
found in monkeys, as postulated by the direct matching hypothesis. The au-
thors proposed that the inferior frontal area describes the precise details of
the movement. In contrast, the parietal lobe area codes the precise kinesthetic
aspects of the movement.

Recent findings in the field of imitation do not fit with previously presented
theories of imitation. The work by Bekkering and colleagues [Bekkering et al.,
2000, Wohlschläger et al., 2003] show that children’s behavior when imitat-
ing does not always follow a direct visual-to-motor mapping between per-
ceived and imitated movements. The new theory they propose, called the goal-
directed (GOADI) theory of imitation, hypothesizes that imitation is guided
by cognitively specified goals. When observing and executing an action, imi-
tators do not imitate the observed movement as a whole, which would be the
expected outcome with previous theories of imitation, but instead decompose
the action into separate aspects. These aspects are following a predefined hi-
erarchy. At the top of the pyramid can be found the goal of the action. All
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the other aspects of the movement are seen as sub-goals, thus of less imitative
importance. In the presence of a target or object (transitive actions), experi-
ments show that movements seem to be imitated correctly with respect to the
goal, but the movement itself is frequently ignored. When dealing with intran-
sitive action, i.e. when there is no target/object at the core of the movement,
the movement itself tends to become the main goal of the action. In that case,
the particular kinematics of the movement are precisely reproduced.

In real life, children show a strong tendency to imitate actions as if looking in
a mirror (specular mode) rather than with the anatomically congruent hand
(anatomic mode). Furthermore, most studies on imitation have used mirror
imitation and very few experiments have been conducted to test whether a
difference exists between mirror and non-mirror imitation.Previous study [Ia-
coboni et al., 1999] shows patterns activity in the frontal opercular and poste-
rior parietal regions for both observed and executed actions. Koski et al. [Koski
et al., 2003] show that the activity in the frontal opercular and posterior
parietal regions varies as a function of the type of imitation, specular versus
anatomic mode, being performed. Their results show different neuron activity
in frontoparietal regions during different forms of imitative behavior. It en-
hances the importance of mirror neurons for imitating in the specular mode.
Franz et al. [Franz et al., 2007] provide further results on comparison of spec-
ular and anatomic modes for imitation. They hypothesize that in imitative
tasks involving both hands, both specular mode and anatomic mode are in
competition, and the shift from one type of imitation to the other depends on
the task, situation, and stimuli as well as the instructions given to the imitator.
They also showed that when using mirror imitation, the goal of the action (the
final target) is at the top of the hierarchy of movement aspects. These find-
ings provide more grounding for the GOADI theory of imitation [Bekkering
et al., 2000], but they also show that this tendency is inverted when dealing
with anatomic imitation. In this condition, the use of the anatomically correct
hand tends to take the first place in the hierarchy of imitation goals.Overall,
their findings suggest that specular and anatomic imitation are two distinct
processes and in consequence the two modes may obey different principles.

2 Materials and Methods

2.1 Subjects

Nine healthy subjects (4 females, 5 males, mean age 25 ± 4) volunteered to
perform a one-handed task consisting of point-to-point motions. All subjects
were right-handed (Edinburgh Handedness test [Oldfield, 1971]). They were
all naive regarding the purpose of the experiment. They reported no history
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of neurological or musculo-skeletal deficits. All had normal or corrected to
normal vision.

2.2 Procedure

Subjects were comfortably sitting on a chair in front of a table. They were
asked to maintain a steady trunk position all along the recording session. Each
hand movement started in the same rest position, with the right forearm lying
on the table, and it being perpendicular to the trunk. Subject’s left arm was
placed under the table and they were asked not to use it during experiments.
They were facing the demonstrator who had both arm placed on the table.
Figure 1 presents the set-up with the experimenter, on the right, showing a
movement to the subject, on the left.

Fig. 1. Experimenter (on the right) showing a movement to reproduce to the subject
(on the left).

Subjects were shown by the experimenter a series of movement to reproduce.
There were two conditions. In the first condition, movements were directed
towards an object placed 30 cm away from the subject, in the sagittal plane
(Figure 2). Both the subject and experimenter had a similar object placed
in front of them at the same time. In the second condition, subjects had
to reach in front of them and land their hand palm-down on the table. No
location on the table was specified in this second condition. We refer to these
two conditions respectively as transitive (Trans) and intransitive (Intrans)
movements in the rest of the paper.

For each condition, the subjects were shown two variants of the movements.
In the first variant (so-called “Elb”), the experimenter was exaggeratedly el-
evating the elbow throughout the motion. In the second variant (so-called
“Norm”), the experimenter was performing the motion in way as natural as
possible. Movements performed by the experimenter were thus of four types:
intransitive with normal kinematics (Intrans Norm), intransitive with an
exaggerated elevation of the elbow (Intrans Elb), transitive with normal
kinematics (Trans Norm) and transitive with an exaggerated elevation of
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Fig. 2. Left: Set-up seen from the right side with the subject in the rest position.
Right: upper view of the set-up with the position of the target when performing
transitive motions

the elbow (Trans Elb). For transitive actions, two objects were placed on
the table, one for the subject, the other one for the experimenter. The objects
were similar for both the subject and experimenter.

Intrans Norm Intrans Elb Trans Norm Trans Elb

Fig. 3. Snapshots of the four gesture types. From left to right: Intransitive action
with normal kinematics and with an exaggerated elevation of the elbow. Transitive
movement with normal kinematics and with an exaggerated elevation of the elbow.
One can see that for the “Elb” variant the elbow position is always higher than for
movements performed with normal kinematics for both the “Intrans” and “Trans”
conditions.

Subjects were shown a series of 128 movements (Table 1). They were explicitly
told to reproduce the movement as soon as possible once the experimenter
has shown them the movement. If the subject had questions about how to
reproduce the movements, they were just told to do it the way they thought
would be the most suitable to reproduce the movement.

Subjects Movements per session Recording sessions per subject

9 128 1
Table 1
Statistics of the database.

The experiment was decomposed in three distinct phases. In the first phase,
the experimenter showed the movements only with the right hand. In the sec-
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Fig. 4. Left: subject wearing markers on the right arm (markers are surrounded by
red squares). Right: shoulder-centered frame of reference.

ond phase, both right and left hand were used. As the subjects was asked
to perform movements only with the right hand, some confusion occured at
that point during experiment. When the experimenter first showed movements
with the left hand, subjects wanted also to switch hand to reproduce the move-
ment. As they were told to use only the right hand, they asked for additional
information about what to do. They were told to reproduce the movement
with their right hand and they were reminded to always use their right hand
in the remaining of the experiment. In the third and last phase, the experi-
menter again used only the right hand to perform the motions. These phases
are conceptually distinct in the design of the experiment but had no incidence
on the course of the experiment. In each phase, the experimenter was showing
the four motion types. The detailed scenario of the experiment is presented in
Appendix A. Subject’s gaze data were also recorded during the experiment.

2.3 Data acquisition

The trajectories in space of the shoulder, elbow and wrist were recorded by
using kinematics recording system formed by three ProReflex MCU1000 cam-
eras (QUALISYS AB, Sweden) detecting the 3D position of infrared reflecting
markers (n=4 for the subject and n=6 for the experimenter) positioned on the
left and right shoulders, right elbow and right wrist for the subject and exper-
imenter, as well as left elbow and left wrist for the experimenter. The position
of the markers was recorded at a frequency of 200 Hz during the execution of
the movements. Figure 4 presents one subject wearing the markers as well as
the shoulder-centered frame of reference used in the following of the paper to
calculate wrist and elbow trajectories.

Eye movements of the subject were recorded using a Tobii X50 eye tracker.
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2.4 Data analysis

All analyzes were performed using the Qualisys Track Manager (QUALISYS
AB, Sweden) and ClearView 2.5.1, plus custom software written in Matlab
(Mathworks, Natick, MA). Analysis was done solely on the reaching phase
of each movement (from the rest position to the target location in the case
of transitive gestures, and from the rest position to the hand placement on
the table in from of the subject for intransitive movements). Data were first
segmented manually to remove any irrelevant movement prior to the onset of
the reaching movement. We used only unfiltered raw values.
In order to analyze the gaze data, we decomposed the scene area into 4 main
zones: Face, Right Arm, Left Arm and Center Region. The Center Region
goes from the target position on the table to the hand not moving during the
movement. Figure 5 presents the four areas.

Fig. 5. Areas defined for the focus of attention of the subject while the experimenter
is demonstrating a movement.

Fixation analysis was performed with a fixation radius of 30 pixels and a
minimum fixation duration of 100 ms.

3 Results

3.1 Evolution of the elbow raise across phases

The quality of imitation can be assessed at two different levels. Firstly, the re-
production of the goal of the movement, i.e. reaching for an object (Trans) ver-
sus place the palm-down on the table (Intrans) is taken into account. Secondly,
we can study the reproduction of the kinematic features of the movements.
All subjects reproduced perfectly the change in condition of the movements
(Intrans versus Trans). We can thus say that all subjects reproduced very well
this characteristics of the motions during all three phases of the experiment.
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None of them performed an intransitive motion when a transitive one was
demonstrated and vice-versa. The presence or absence of the object was an
obvious characteristic of the motion and thus it was very difficult to mistake
one motion condition for the other.
The reproduction of the kinematic features of the movements in the first phase
of the experiment shows two main categories of subjects. The first category
includes Subjects 1 and 2 who already reproduce the two motion variants. The
remaining subjects belong the the second category. These subjects poorly re-
produce the exaggerated raise of the elbow in the Elb variant. Figure 6 presents
the mean raise of the elbow for the Norm and Elb variants of the movements
of the subject and experimenter for the Phase 1 of the experiment. On the
left graph, the difference between Norm and Elb movements is well defined
as the mean values of the elbow raise for the subject and experimenter are
comparable. Conversely in the graph on the right, mean value for the Norm
and Elb movements reproduced by the subjects are equal, thus not showing
any difference between the two motion variants.

Fig. 6. Mean value for the raise of the elbow for Norm and Elb movements for
both the subject and experimenter during Phase 1. On the left: subject reproducing
the different motion types accurately. On the right: subject poorly reproducing the
kinematic features of the movements

These results thus show that subjects have not equal imitation capabilities.
Results in Phase 1 demonstrate that the fine reproduction of motion is inher-
ently different from one subject to the other one.

We hypothesize that an unusual event can modify the reproduction capacities
of the subjects. In Phase 2 of the experiment, we thus introduced an unusual
event. In this phase, the experimenter switches between hands to show the
movements to the subject. Subjects 1 and 2, who were already reproducing
the exaggerated elevation of the elbow in Phase 1, are still showing strong
imitation skills. For all the other subjects, an improvement is visible in Phase
2. Figure 7 shows the evolution of the mean raise of the elbow across the
two phases for two different subjects. The graph on the left shows a subject
performing well on both Phases 1 and 2 of the experiment. The other graph
demonstrates a dramatic improvement in the reproduction of the reproduction
of the Elb variant of the movements.
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Fig. 7. Mean value for the raise of the elbow for Norm and Elb movements for
both the subject and experimenter during Phases 1 and 2. On the left: subject
reproducing the different motion types accurately across the two phases . On the
right: subject poorly reproducing the kinematic features of the movements during
Phase 1 but showing some improvement in Phase 2.

This improvement in the reproduction of the kinematic features of the move-
ments lasts until the end of the experiment (Figure 8), except for Subject 8
for whom the improvement is visible only during Phase 2.

Fig. 8. Left: comparison of the mean raise of the elbow for the Norm and ELb
movements for the subject (in light gray) and the experimenter (in dark gray). The
evolution of the raise of the elbow is shown separately for each phase of the experi-
ment. Right: Each dot corresponds to a single motion performed by the subject. The
blue area corresponds to the range of Norm movements shown by the experimenter.
The green ares corresponds to the Elb movements. The boundaries correspond to
the mean value of the raise of the elbow plus or minus two standard deviations.

The Pearson coefficient 1 between the raise of the elbow of the experimenter
and subject (Table 2) shows that a strong correlation exists between move-
ments performed by the experimenter and movements reproduced by Subjects
1 and 2 (ρ >= 0.9).

1 The Pearson coefficient is the sum of the products of the normalized values of the
two measures divided by the degree of freedom. The Pearson coefficient ranges from
+1 to -1. If ρ = 0, then there is no linear relationship between the two variables.
On the contrary, if |ρ| = 1, then there is a perfect linear relationship between the
two variables.
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Correlation ρ

Subject Total Phase 1 Phase 2 Phase 3

Sub.1 0.96 0.93 0.94 0.95

Sub.2 0.90 0.92 0.85 0.93

Sub.3 0.80 0.73 0.80 0.85

Sub.4 0.44 0.10 0.46 0.78

Sub.5 0.82 0.76 0.83 0.86

Sub.6 0.81 0.64 0.81 0.94

Sub.7 0.54 0.33 0.64 0.62

Sub.8 0.56 0.60 0.58 0.51

Sub.9 0.81 0.77 0.85 0.84
Table 2
Pearson coefficient between the raise of the elbow of the experimenter and subject.

Furthermore, the evolution of the Pearson coefficient along the three phases
of the experiment shows an increase of its value in Phase 2 for most of the
subjects.

If we now compare the reproduction of movements in Phases 1 and 3 of the ex-
periment, results show that an improvement of the reproduction of kinematic
features by the subject. These results

These results show that an unusual event is able to modify the imitation state
of the subject. In our case, the goal of this unusual event was to attract the
attention of the subject on the hand of the experimenter. Results showed that
this has also improved its capacities to reproduce accurately the kinematic
features of the movements described in this paper.

3.2 Focus of attention

Figure 9 presents the percentage of fixation time subjects spend on the area
of the arms of the experimenter.

From Phase 1 to Phase 2 of the experiment, the fixation time spent on the
arm regions (Right Arm and Left Arm) increases for every subject. This shows
that the unusual event introduced in Phase 2 has an effect on the attention
focus, attracting the subjects gaze on the arms of the experimenter. We have
shown in the previous Section that the unusual event introduced in Phase
2 had a positive effect on the reproduction of the kinematic features of the
movements. This improvement may be due to this switch in the attention
pattern that occurs during Phase 2.
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Fig. 9. Evolution of the percentage of fixation time spent on the arms of the exper-
imenter for each subject and each phase of the experiment.

The behavior of Subject 2 is an outlier as the fixation time spent on the
Right Arm and Left Arm area is close to zero. Most of the fixation points are
localized in the Center Region (Figure 10).

Fig. 10. Blue dots correspond to the focus points during an intransitive movement
with normal kinematics (Intrans Norm) for Subject 2.

A thiner analysis of the fixation points in the Center Region shows that most
of the fixation points are localized on the arm/wrist.

4 Discussion

• Unusual event implies a change in the behavior of the subject as the repro-
duction of kinematic features improves in Phase 2 of the experiment.
• Unusual event also implies a modification of the gaze of the subject as the

time spent fixating the arms of the experimenter increases.
• The displacement of the focus of attention is linked to the quality of the

reproduction of the kinematic features of the demonstrated motions.
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A Scenario of the Recordings

The recordings can be decomposed into three parts. In the first and last part,
the demonstrator is using only her right hand to perform the movements
whereas in the middle part, both right and left hands are used to perform
the actions. The first part consists of 32 gestures, the second of 64 gestures
and the last part of 32 gestures again. We use the following notation: R for
right hand, L for left hand, TR for transitive action and INT for intransitive, n
means with normal kinematics and e are gestures performed with an abnormal
elevation of the elbow.

Phase 1: R TR e - R INT n - R TR e - R INT n - R TR n - R INT n - R
TR e - R INT e - R INT e - R INT n - R TR e - R TR n - R TR e - R INT e
- R TR n - R TR n - R INT e - R INT n - R INT n - R TR n - R INT e - R
TR n - R INT n - R INT e - R TR e - R TR n - R INT e - R TR e - R INT
n - R TR n - R INT e - R TR e.

Phase 2: R INT n - L INT n - L TR e - L TR e - R INT e - R INT n - R TR
e - R INT n - L TR n - L INT e - L TR n - R TR e - R TR e - R INT e - R
INT n - L INT n - L INT e - R INT e - R TR n - L TR n - L INT e - L INT
n - R INT e - L TR n - L INT e - R TR n - L TR e - R INT e - L INT e - R
INT e - R TR e - L TR n - R TR n - L TR e - R TR n - L TR n - R INT e -
L TR e - R TR n - L TR n - L INT e - R INT n - L TR e - R TR n - R TR
n - L INT e - R INT n - L TR n - L INT n - L TR e - L INT n - L TR e - R
TR e - R TR n - L INT n - R INT n - R TR e - R INT n - R TR e - L INT e
- L INT n - R TR e - R INT e - L INT n.

Phase 3: R TR n - R TR e - R INT n - R TR e - R INT e - R TR e - R INT
n - R INT e - R INT n - R TR e - R INT n - R TR n - R TR n - R INT n -
R TR n - R INT e - R TR e - R INT n - R TR e - R INT e - R TR n - R TR
e - R TR e - R TR n - R INT e - R INT e - R INT n - R TR n - R TR n - R
INT n - R INT e - R INT e.
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