

ROBotic Open-architecture Technology for

Cognition, Understanding, and Behavior

Project No. 004370

RobotCub

Development of a Cognitive Humanoid Cub

Instrument: Integrated Project
Thematic Priority: IST – Cognitive Systems

D8.5 The iCub manual

Due Date: Month 65

Submission date: Month 65

Start date of project: 01/09/2004 Duration: 65 months

Organisation name of lead contractor for this deliverable: DIST, University of Genova

Responsible Person: Giorgio Metta

Revision: 2.0
Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including the Commission Service)
RE Restricted to a group specified by the consortium (including the Commission Service)
CO Confidential, only for members of the consortium (including the Commission Service)

The iCub manual

Development of a Cognitive Humanoid Cub

Date: 03/01/2010
Version: No. 2.0

 Page 2 of 3

Table of Contents

1 Introduction .. 3

2 iCub manual .. 3

3 Annex .. 3

The iCub manual

Development of a Cognitive Humanoid Cub

Date: 03/01/2010
Version: No. 2.0

 Page 3 of 3

1 I n t r o d uc t i o n

This deliverable is an attempt to create the iCub user manual/technical manual. This
has been implemented as a set of Wiki pages since the updates are still frequent. It has
been decided to keep a linear structure with chapters and a limited number of hyperlinks
and cross-chapter references. The aim is to provide operational guidelines to the iCub
users by building a set of how-to’s. The second release of this manual is now available.
We have cleaned the content considerably during the last period.

2 i C u b m a n u a l

The iCub manual is meant to become the main entry point for the robot documentation.
It can be accessed online at: http://eris.liralab.it/wiki/Manual
Please refer to the online version for the most complete and up to date documentation
of the iCub.

3 A n n e x

A tentative “print” on a PDF file of the Wiki is included as Annex to the present
document. This has been composed manually from the existing manual which is much
bigger. Unfortunately, at the moment we don’t have an automatic tool to produce a
printable manual from the set of Wiki pages. This problem will be addressed
subsequently when the important information has been stabilized.

The iCub manual

The iCub

Manual

From Wiki for RobotCub and Friends

Motivations: This is the first draft of
the user-manual of the iCub. It
includes description of the
procedures to install and maintain
the platform, both at the hardware
and software level. The sections
describing the software will also
describe how to install and use what
is available with the robot and
provide guidelines on how to
develop new capabilities and
algorithms.

This document is an attempt in
coalescing the robot knowledge into
a linear document/manual.
Emphasis on linear.

How to contribute: we welcome
contributions and suggestions, but
please add new pages to Section 15.
From time to time we will incorporate new pages into the other sections of the manual.

Contents

1 One. Hardware of the iCub■
2 Two. Troubleshooting of the hardware■
3 Three. Calibration■
4 Four. Protocols■
5 Five. Kinematics and Dynamics■
6 Six. Software, Compiling YARP and iCub■
7 Seven. Software, YARP■
8 Eight. Software, dependencies■
9 Nine. Software, iCub■
10 Ten. Standardization of methods■
11 Eleven. Guidelines■
12 Twelve. Documentation■
13 Thirteen. Committing changes■
14 Fourteen. How to install the robot■
15 Fifteeen. Unofficial documentation■
16 Acknowledgments■

One. Hardware of the iCub

To obtain the CAD and 2D drawings describing the mechanical and electronic parts which are presented in
this chapter please follow this link. This section overlaps consistently with the Deliverable 8.1 (specifications
of the iCub open system). This section of the manual is meant to be used by first opening the bill of materials,

reading the component type and then consulting the corresponding description in the subsections below. For
certain component, a link to the vendor website is available.

The philosophy of this chapter is to provide links and references to the technical documentation and not
necessarily to substitute it.

Parts and specifications: see the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf)
extracted from the CAD

1.

Brushless motors 2.
DC motors 3.
Controller cards 4.
Motorola DSP and CodeWarrior 5.
Other boards datasheets 6.
Cameras 7.
Microphones 8.
Inertial sensing 9.
CAN bus interface for debugging (ESD) 10.
Quad-CAN bus interface 11.
Hall-effect readings, electronics 12.
Force/torque sensors, electronics 13.
Face specifications and control 14.
Cables 15.
Power supply 16.
Wiring, general diagrams and details of the connections 17.
Encoder magnets 18.
Springs, belts and cables 19.
CPU board PC104 20.
Ball bearings 21.
Commercial mechanical parts 22.
Commercial electronic parts 23.
iCub stand 24.
Other components: see the bill of materials (above) 25.

Two. Troubleshooting of the hardware

Connectors 1.
Cabling tools required: list as xls file
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/CablingTools.xls)

2.

Tendons and replacement 3.
Crimps 4.
Common problems and solutions 5.

Assembly instructions ■
Electrical wiring ■

Three. Calibration

DSP code: firmware versions
(http://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform/doc/manuals/RC_DIST_100_

1.

Other firmware code: more firmware in repository2.
Initial calibration of the iCub, purpose 3.

Legs Calibration Procedure
(http://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform/doc/manuals/RC_DIST

■

Arm Calibration Procedure
(http://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform/doc/manuals/ST2009_

■

Head Torso Calibration Procedure
(http://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform/doc/manuals/RC_DIST

■

Calibration files, details 4.

Available sensors, encoders, currents 5.

Four. Protocols

CAN bus protocol and messages: see here 1.
YARP protocols: port protocol (http://eris.liralab.it/yarpdoc/yarp_protocol.html) , name server protocol
(http://eris.liralab.it/yarpdoc/name_server.html)

2.

Other protocols 3.
Software and hardware tools to analyse the protocols 4.

Five. Kinematics and Dynamics

iCub joints specification: naming, conventions 1.
Note: the kinematic is not final yet. The robot is of course final, the documentation is to be
improved here.

■

iCub kinematics ICubForwardKinematics, D-H parameters (unmodified convention): 2.
Vergence, version and binocular disparity quantities for motor control Vergence, Version and
Disparity.

3.

iCub dynamics 4.
Simulators 5.
iKin (http://eris.liralab.it/iCub/dox/html/group__iKin.html) : library for forward\inverse kinematic and
control tasks; some iKin-based modules (e.g. iKinArmCtrl
(http://eris.liralab.it/iCub/dox/html/group__iKinArmCtrl.html)) are available as well. iKin requires
IPOPT (https://projects.coin-or.org/Ipopt) . Look how to install IPOPT here: Installing IPOPT.

6.

Six. Software, Compiling YARP and iCub

In this section we guide you through the installation process of the YARP and iCub software.

Important: the software can compile on different platform, however we support only Windows and Linux
Debian/Ubuntu. On Windows we support Visual Studio (>=8.0), on Linux gcc. See Section 15 for
(experimental) instructions for Mac OS X.

Follow these steps:

Prepare your system 1.
Libraries and Development Environment: Linux ■
Libraries and Development Environment: Windows ■
Get a Subversion client ■
Client typical flags for subversion ■
Check your system (optional) ■

Getting the software 2.
Getting YARP ■
Getting the iCub software ■

Setup your environment 3.
Compile environment (Linux, Windows) ■

CMake utility 4.
Some info about CMake and tips about CMake problems ■

How to compile everything: 5.
Compilation in Linux 1.
Compilation in Windows 2.

Compile YARP and the iCub software on the pc104 6.
Compilation on the pc104 ■

Seven. Software, YARP

The architecture (http://eris.liralab.it/yarpdoc/what_is_yarp.html) 1.

The YARP companion and YARP executables (http://eris.liralab.it/yarpdoc/yarp.html) 2.
Scriptable stuff 3.
CMake files, preparation (http://eris.liralab.it/yarpdoc/using_cmake.html) 4.
Basic OS classes (http://eris.liralab.it/yarpdoc/yarp_os.html) 5.
Basic communication classes (http://eris.liralab.it/yarpdoc/note_ports.html) 6.
Advanced OS classes 7.
Advanced communication classes (http://eris.liralab.it/yarpdoc/port_expert.html) 8.
Device drivers, existing (http://eris.liralab.it/yarpdoc/note_devices.html) 9.
Device drivers, how to write a new one (http://eris.liralab.it/yarpdoc/add_a_device.html) , tutorial on
building a new device in Yarp. Important: see also how to compile the iCub devices

10.

How to include a new device driver into YARP (and iCub) 11.
How to add a new carrier 12.
How to create a new Portable 13.
YARP documentation (http://eris.liralab.it/yarpdoc/index.html) , a general tutorial, and additional Wiki
pages on Yarp

14.

Eight. Software, dependencies

Compiling YARP and iCub requires some dependencies are met.

Device drivers 1.
Libraries, supported compilers and tools: 2.

List of Dependencies ■
Installation instructions: see Section 6.1 (Prepare your system). ■

Nine. Software, iCub

This section explains how the software is organized. Here you will find more details about how we the
repository, modules and applications.

The Linux on the pc104 1.
iCub architecture, an introduction 2.

iCub Software Architecture ■
iCub Cognitive Architecture ■
Software Implementation of the iCub Cognitive Architecture (version 1.0) ■

Automation 3.
Running applications ■

Software interface: standard port names for hardware devices 4.
Documentation of key modules 5.

iCubInterface2 (http://eris.liralab.it/iCub/dox/html/group__icub__iCubInterface.html)
documentation and configuration file description.

1.

Framegrabber parameters: Dragonfly Parameters 2.
Running devices for the iCub 3.
What runs on the PC104 CPU 4.
ControlBoard config file, interfaces and examples: motor control in yarp
(http://eris.liralab.it/yarpdoc/yarp_motor_control.html) and a simple tutorial on motor control

5.

Getting sensory data: inertia sensor, sound, images, encoders, forces, etc. 6.
Debugging tools 6.
Firmware: update tools and version descriptions. 7.
Starting up the iCub: see here 8.

Ten. Standardization of methods

Organization of the repository: 1.
Organization of sources, binaries, applications and config files ■
Here is a summary of the software development guidelines of the cognitive architecture ■

Cluster, example configuration and networking 2.

Some old material: click here ■
Modules, standardization, configuration 3.

How to write a module ■
Configuration and resource files ■
Module standards -- see http://eris.liralab.it/iCub/dox/html/module_standards.html and
http://eris.liralab.it/iCub/dox/html/icub_tutorial_module.html

■

Preparing scripts for an application 4.
Licensing 5.

Eleven. Guidelines

Here we describe better practices for software development on the iCub.

Coding styles 1.
Things to avoid 2.
Naming of ports, variables, scripts, modules, etc 3.

Module names in the iCub repository (and therefore module directory names as well) conform to
the convention 'wordOneWordTwo'. Changing the CVS structures requires some updates
(SUBDIRS, CMakeLists.txt's etc.) if they're not already that way. We moved the "qGui"s to the
gui folder, naming them 'guiXy' so if a user wants to look for a gui it is easy to type gui+<tab>
and all gui's show up (dropping furthermore the 'q' as it is not interesting for a user what library
is used).

■

Other conventions 4.

Twelve. Documentation

Compiling the documentation 1.
Writing new documentation 2.

About modules: http://eris.liralab.it/iCub/dox/html/module_documentation.html ■
About applications: http://eris.liralab.it/iCub/dox/html/application_documentation.html ■

Servers, online material 3.
Yarp: http://eris.liralab.it/yarp ■
iCub: http://eris.liralab.it/iCub ■

Documents that aren't connected to the source code 4.
Document location ■

Thirteen. Committing changes

Software 1.
Hardware 2.
Contributing to the Manual 3.

Fourteen. How to install the robot

How to install the robot: installing_icub 1.
Installation videos: 2.

video_1: How to remove the robot from the box and fix it on a table:
http://eris.liralab.it/misc/videos/video_1.wmv

■

video_2: How to connect the power suppliers: http://eris.liralab.it/misc/videos/video_2.wmv ■
video_3: how to set the power suppliers and how to connect the robot:
http://eris.liralab.it/misc/videos/video_3.wmv

■

Temporary page: upgrading repositories to svn: Upgrading the pc104 software repositories to
subversion

■

Fifteeen. Unofficial documentation

Place here pages contributed by users.

Testing the robot. Getting the attention system running 1.
Installation of the software on Mac OS X: 2.

Libraries and Development Environment: Mac OS X ■
Compile environment (Mac OS X) ■
Compilation in Mac OS X (experimental) ■

Tweaking particular modules for MacOS X: 3.
Getting the ARToolKit module to work on the Mac ■

SSH remote calls. Getting SSH to read your environment variables 4.

Acknowledgments

List people who contributed to this manual.

Retrieved from "http://eris.liralab.it/wiki/Manual"

This page was last modified 15:24, 16 December 2009.■
This page has been accessed 22,788 times.■
Content is available under GNU Free Documentation License 1.2.■
Privacy policy■
About Wiki for RobotCub and Friends■
Disclaimers■

1. Hardware of the iCub

Brushless motors

From Wiki for RobotCub and Friends

The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer

Manuf.
code
and
Data
sheet

Supplier Suppl.
Order code

Suppl.
Phone

number
Suppl. Email/Website

RBE-
01210_ROTOR

RBE-01210-
A rotor,

Kollmorgen -
Rotor for

frameless and
brushless

motor,
Tc=0.115Nm,

Ic=5.41A

Kollmorgen
RBE-

01210-
A rotor

Danahermotion
Subassembly

of RBE-
01210-A

+39
0362594260

Danahermotion
(http://www.danahermotion.it/dove.html)

info@danahermotion.it

RBE-
01210_STATOR

RBE-01210-
A stator,

Kollmorgen -
Stator for

frameless and
brushless

motor,
Tc=0.115Nm,

Ic=5.41A

Kollmorgen

RBE-
01210-

A
stator

Danahermotion
Subassembly

of RBE-
01210-A

+39 0362
594260

Danahermotion
(http://www.danahermotion.it/dove.html)

info@danahermotion.it

RBE-
01211_ROTOR

RBE-01211-
A,

Kollmorgen -
Rotor for

frameless and
brushless

motor,
Tc=0.223

Nm, Ic=5.81
A

Kollmorgen
RBE-

01211-
A rotor

Danahermotion
Subassembly

of RBE-
01211-A

+39 0362
594260

Danahermotion
(http://www.danahermotion.it/dove.html)

info@danahermotion.it

RBE-
01211_STATOR

RBE-01211-
A,

Kollmorgen -
Stator for

frameless and
brushless

motor,
Tc=0.223

Nm, Ic=5.81
A

Kollmorgen

RBE-
01211-

A
stator

Danahermotion
Subassembly

of RBE-
01211-A

+39 0362
594260

Danahermotion
(http://www.danahermotion.it/dove.html)

info@danahermotion.it

RBE513

RBE-00513-
A,

Kollmorgen -
Frameless

and brushless
motor

Kollmorgen
RBE-

00513-
A

Danahermotion RBE00513-
A

+39 0362
594260

Danahermotion
(http://www.danahermotion.it/dove.html)

info@danahermotion.it

More information on motors

The catalog with other specs of the RBE motors is available here ■

An example of the Brushless motors used in the iCub

Gears

The iCub mounts Harmonic Drive gears coupled with the Kollmorgen motors, both in
frameless version.
The table below reports the details. See the bill of materials

(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code Description Manufacturer Manuf.

code Supplier
Suppl.
Order
code

Suppl.
Phone

number
Suppl. Email/Website

CSD-14-
100-2A-R

CSD-14-
100-2A-R,
Harmonic

drive -
Gearbox

Harmonic
drive 604808

Harmonic
drive
Italia
S.r.l.

604808
+39 030

772
1588

Harmonic Drive
(http://www.harmonicdrive.de/contenido/cms/front_content.php?

idart=22&changelang=3)

CSD-17-
100-2A-R

CSD-17-
100-2A-R,
Harmonic

drive -
Gearbox

Harmonic
drive 405618

Harmonic
drive
Italia
S.r.l.

405618
+39 030

772
1588

Harmonic Drive
(http://www.harmonicdrive.de/contenido/cms/front_content.php?

idart=22&changelang=3)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Brushless_motors"

This page was last modified 10:45, 17 September 2009.■
This page has been accessed 2,270 times.■
Content is available under GNU Free Documentation License 1.2.■
Privacy policy■
About Wiki for RobotCub and Friends■
Disclaimers■

DC motors

From Wiki for RobotCub and Friends

The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities

RobotCub code Description Manufacturer
Manuf. code and

Data sheet
Supplier

Suppl. Order
code

Suppl.
Phone

number
Suppl. Email/Website

1319T012SR_IE2-
400_14-1-246

1319T012SR-IE2-
400+14/1-

246:1+2082,
Faulhaber - Brush
motor, gear box,
encoder with 500
mm cable length

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1319T012SR-IE2-
400+14/1-

246:1+2082
Servotecnica

1319T012SR-IE2-
400+14/1-

246:1+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

1319T012SR_IE2-
400_14-1-66

1319T012SR-IE2-
400+14/1-
66:1+2082,

Faulhaber - Brush
motor, gear box,
encoder with 500
mm cable length

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1319T012SR-IE2-
400+14/1-
66:1+2082

Servotecnica
1319T012SR-IE2-

400+14/1-
66:1+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

1331T012SR_IE2-
400_14-1

1331T012SR-IE2-
400+14/1-

159:1+2082,
Faulhaber - Brush
motor, gear box,
encoder with 500
mm cable length

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1331T012SR-IE2-
400+14/1-

159:1+2082
Servotecnica

1331T012SR-IE2-
400+14/1-

159:1+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

1717012SR_IE2-512_16-
7-246

1717T012SR-IE2-
512+16/7-

246:1+2082,
Faulhaber - Brush
motor, gear box,
encoder with 500
mm cable length

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1717T012SR-IE2-
512+16/7-

246:1+2082
Servotecnica

1717T012SR-IE2-
512+16/7-

246:1+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

1724T012SR_IE2-512

1724T012SR-IE2-
512+2082,

Faulhaber - Brush
motor, encoder
with 500 mm
cable length

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1724T012SR-IE2-
512+2082

Servotecnica
1724T012SR-IE2-

512+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

RC_TLR_007_P_006_00

1224M012S-
K380-

30B20+10/1-
256:1+K262,

Faulhaber - Brush
motor, gear box,
encoder with 450
mm cable length -

With modified
shaft (hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1224M012S-
K380-

30B20+10/1-
256:1+K262

Servotecnica

1224M012S-
K380-

30B20+10/1-
256:1+K262

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

RC_TLR_007_P_064_00

1016M012G-
K380-

30B19+10/1-
256:1+K262,

Faulhaber - Brush
motor, gear box,
encoder with 450
mm cable length -

With modified
shaft (hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1016M012G-
K380-

30B19+10/1-
256:1+K262

Servotecnica

1016M012G-
K380-

30B19+10/1-
256:1+K262

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

RC_TLR_007_P_066_00

1331T012SR-IE2-
400+14/1-

159:1+2082,
Faulhaber - Brush
motor, gear box,
encoder with 500
mm cable length -

With modified
shaft (hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1331T012SR-IE2-
400+14/1-

159:1+2082
Servotecnica

1331T012SR-IE2-
400+14/1-

159:1+2082

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

RC_TLR_009_P_050_00

1219M012G+10/1
-256:1, Faulhaber
- Brush motor and

gear box - With
modified shaft

(hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1219M012G+10/1
-256:1

Servotecnica
1219M012G+10/1

-256:1

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

RC_TLR_009_P_051_00

1016M012G+10/1
-256:1, Faulhaber
- Brush motor and

gear box - With
modified shaft

(hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1016M012G+10/1
-256:1

Servotecnica
1016M012G+10/1

-256:1

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

Example of the use of DC motors on the iCub

RC_TLR_010_P_009_00

1016M012G-
K380-

30B19+10/1-
1024:1+K262,

Faulhaber - Brush
motor, gear box,
encoder with 450
mm cable length -

With modified
shaft (hole)

Faulhaber
(http://www.faulhaber.com/n41659/n.html) .

1016M012G-
K380-

30B19+10/1-
1024:1+K262

Servotecnica

1016M012G-
K380-

30B19+10/1-
1024:1+K262

+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

GPL22R-343
GPL22R 3-343:1,
Gysin - Planetary

gearbox

Gysin (http://www.gysin.com/en/about-
us/address.html)

GPL22R 3-343:1 Servotecnica GPL22R 3-343:1
+39
0362
4921

Servotecnica
(http://www.servotecnica.it/inglese

Servo motor

There is also a Futaba servo motor that actuates the eyelids The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

FUTABA_S3111

S3111, Futaba -
Micro Servo
motor with J
Connector

Futaba

FUTM0047
(http://www.gpdealera.com/cgi-

bin/wgainf100p.pgm?
I=FUTM0047)

Tower
Hobbies

S3111
(http://www3.towerhobbies.com/cgi-

bin/wti0001p?&I=LXLLA8)

+39 0362
4921

Tower hobbies
(http://www.towerhobbies.com/)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/DC_motors"

This page was last modified 10:45, 17 September 2009.■
This page has been accessed 1,757 times.■
Content is available under GNU Free Documentation License 1.2.■
Privacy policy■
About Wiki for RobotCub and Friends■
Disclaimers■

The MCP and MC4 control pair

Example of mounting of the

BLL/BLP control cards

Controller cards

From Wiki for RobotCub and Friends

The controller cards are custom components. The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for
exact quantities.

RobotCub code Description Manufacturer Manuf.
code Supplier

Suppl.
Order
code

Suppl.
Phone

number

Suppl.
Email/Website

RC_DIST_001_P_202_00

BLL-001,
IIT -

Electronic
Board with

logic section
for BLP-001

power
driver

IIT
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bll/)

BLL-
001 MicroDesign BLL-

001
+39 010
6972471

Micro design
(http://www.micro

-design.it/)

RC_DIST_001_P_203_00

BLP-001,
IIT -

Electronic
Board with

power
driver for
brushless

motor,
power

supply 24-
48V

IIT
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/blp/)

BLP-
001 MicroDesign BLP-

001
+39 010
6972471

Micro design
(http://www.micro

-design.it/)

RC_DIST_001_P_200_00

MC4, IIT -
Controller
electronic

board

IIT
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/mc4/)

MC4-
001 MicroDesign MC4-

001
+39 010
6972471

Micro design
(http://www.micro

-design.it/)

RC_DIST_001_P_201_00

MCP, IIT -
Power

electronic
board

IIT
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/mcp/)

MCP-
001 MicroDesign MCP-

001
+39 010
6972471

Micro design
(http://www.micro

-design.it/)

An initial manual of the controllers is available from:iCub manuals repository (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/manuals/) in various formats
(WARNING: some text is in Italian)

■

The photo on the right shows the MC4 and MCP cards. In this configuration each MCP can power four MC4 which in turn can control four motors each. ■

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Controller_cards"

This page was last modified 10:46, 17 September 2009.■
This page has been accessed 1,389 times.■
Content is available under GNU Free Documentation License 1.2.■
Privacy policy■
About Wiki for RobotCub and Friends■
Disclaimers■

The block diagram of the DSP56F807

Motorola

From Wiki for RobotCub and Friends

The controller cards are built around the Freescale DSP 56F807 whose block diagram is
shown on the right.

Additional components

RobotCub
code Description Manufacturer Manuf.

code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

360

TTL-232R-
3V3, FTDI -

Converter
cable from
USB B to

serial,
L=350mm

FTDI
TTL-
232R-
3V3

Farnell

1329311 (http://it.farnell.com/ftdi/ttl-232r
-3v3/cavo-usb-livello-ttl-
convertitore/dp/1329311?

_requestid=2379181329311)

-
Farnell

(http://www.farnell.com/)

361

CWH-UTP-
ONCE-HE,
Freescale -

CodeWarrior
USB TAP,
Run control
for freescale
processors

Freescale

CWH-
UTP-

ONCE-
HE

Mouser
841-CWH-UTP-ONCE-HE

(http://it.mouser.com/Search/Refine.aspx?
Keyword=841-CWH-UTP-ONCE-HE)

- Mouser
(http://it.mouser.com/contact/)

More information

The compiler of the current firmware is the CodeWarrior compiler: follow this link
(http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CW-56800E-DSC&parentCode=null&nodeId=0127262E703BC3)
for more information

■

The DSP specs can be found here (http://www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=DSP56F807&webpageId=1143155762630726076045&nodeId=01624686365dlq62926045&fromPage=tax)

■

Plenty of documentation is also available on the Freescale website. For example the data sheet can be downloaded directly from: here
(http://www.freescale.com/files/dsp/doc/data_sheet/DSP56F807.pdf)

■

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Motorola"

This page was last modified 08:21, 21 August 2009.■
This page has been accessed 1,223 times.■
Content is available under GNU Free Documentation License 1.2.■
Privacy policy■
About Wiki for RobotCub and Friends■
Disclaimers■

the MCP and MC4 control pair

From Wiki for RobotCub and Friends

Each control card requires the acquisition of numerous commercial components. The bills of material are available
here (http://www.robotcub.org/iCubPlatform) from the SVN repository (this file is not uploaded yet).

Electronic boards

Several additional PCBs have been designed to fit the iCub. The table below reports the details. See the bill of
materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware
/bom/iCubBom_1.8.pdf?revision=750) for exact quantities.

More information

A collection of datasheets is available here (http://eris.liralab.it/misc/datasheets) for download.

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number

Suppl.
Email/Website

363

MAIS right
hand, IIT -
Electronic

board,
32-channel
miniature
ADC card

IIT
MAIS_000 (http://robotcub.svn.sf.net
/viewvc/robotcub/trunk/iCubPlatform

/hardware/mais/)
EES MAIS_000

+39
0106140492

EES
(http://www.ees.it

/contatti.html)

369

MAIS right
hand, IIT -
Electronic

board,
32-channel
miniature
ADC card

IIT
MAIS_000 (http://robotcub.svn.sf.net
/viewvc/robotcub/trunk/iCubPlatform

/hardware/mais/)
EES MAIS_000

+39
0106140492

EES
(http://www.ees.it

/contatti.html)

669

MAIS finger
connector,

IIT -
Connector
electronic
board for

Icub hands

IIT P2007_0000_RBCS_RC_MAIS_FC EES P2007_0000_RBCS_RC_MAIS_FC
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

362

STRAIN, IIT
- Electronic

board,
6-axial strain

gauges
amplification

card

IIT

STRAIN_000.pdf
(http://robotcub.svn.sf.net/viewvc/robotcub

/trunk/iCubPlatform/doc/manuals
/STRAIN_0000.pdf)

MU2007_RBCS_RC_STRAIN_0002.pdf
(http://robotcub.svn.sf.net/viewvc/robotcub

/trunk/iCubPlatform/doc/manuals
/MU2007_RBCS_RC_STRAIN_0002.pdf)

EES STRAIN_000
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

AEA

AEA-001,
IIT -

Electronic
board, 12-bit

digital
absolute

encoder with
spi interface,

power
supply

5V/3.3V

IIT
AEA-001 (http://robotcub.svn.sf.net
/viewvc/robotcub/trunk/iCubPlatform

/hardware/aea/)
EES AEA-001

+39
0106140492

EES
(http://www.ees.it

/contatti.html)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Other_boards"

This page was last modified 09:46, 17 September 2009.
This page has been accessed 817 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

the Dragonfly 2 camera

Cameras

From Wiki for RobotCub and Friends

iCub mounts two Dragonfly 2 cameras by PointGrey (http://www.ptgrey.com/products/dragonfly2/index.asp) The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

DR2-03S2C-EX-CS

DR2-03S2C-
EX-CS,

PointGrey -
Videocam

Dragonfly2
color extended

version,
640x480, 1/3,

CCD

Point Gray
Research

DR2-03S2C-EX-CS

PointGrey
(http://www.ptgrey.com

/products/dragonfly2
/index.asp)

sales@ptgrey.com

DR2-03S2C-EX-CS -
Point Gray Research

(http://www.ptgrey.com
/contact.asp)

348

ACC-01-2004,
PointGrey -
Ultra thin

firewire cable,
6-6 pin,

L=300mm

Point Gray
Research

ACC-01-2004

PointGrey
(http://www.ptgrey.com

/products/dragonfly2
/index.asp)

sales@ptgrey.com

ACC-01-2004 -
Point Gray Research

(http://www.ptgrey.com
/contact.asp)

345

ACC-01-5001,
PointGrey -
M12 Micro
Lens Holder
with IR Filter

support

Point Gray
Research

ACC-01-5001

PointGrey
(http://www.ptgrey.com

/products/dragonfly2
/index.asp)

sales@ptgrey.com

ACC-01-5001 -
Point Gray Research

(http://www.ptgrey.com
/contact.asp)

347

ACC-01-4000,
PointGrey -

Optics Micro
Lens 4MM

Point Gray
Research

ACC-01-4000

PointGrey
(http://www.ptgrey.com

/products/dragonfly2
/index.asp)

sales@ptgrey.com

ACC-01-4000 -
Point Gray Research

(http://www.ptgrey.com
/contact.asp)

356

ACC-01-9000,
PointGrey -
Ribbon flat
cable, 20

poles, 0.5mm

Point Gray
Research

ACC-01-9000

PointGrey
(http://www.ptgrey.com

/products/dragonfly2
/index.asp)

sales@ptgrey.com

ACC-01-9000 -
Point Gray Research

(http://www.ptgrey.com
/contact.asp)

217

82220-
CAML12,

Futura
elettronica -

Mini lens
CAML 12,

Focus 2.8mm,
Aperture 2.0

FuturaElettronica

82220-CAML12 (http://www.futurashop.it
/allegato/8220-

CAML12.asp?L2=ACCESSORI&
L1=CCTV%20-%20VIDEOSORVEGLIANZA&

L3=OTTICHE&cd=8220-CAML12&
nVt=&d=21,00)

FuturaElettronica 82220-CAML12
+39
0331

799775

Futura elettronica
(http://www.futurashop.it

/index.html)
futuranet@futuranet.it

More information

The cameras are available in kit version which must be purchased at least once to get the device drivers for Windows.

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Cameras"

This page was last modified 10:48, 17 September 2009.
This page has been accessed 1,563 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

Microphones

From Wiki for RobotCub and Friends

The iCub mounts two microphones in the ear. These are fixed to the external structure of the face. The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc
/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

MICRO_POM-2746L

POM-2746L-R,
ProjectsUnlimited
- Omnidirectional
microphone, 2V,
500uA, 60dB,
Diam.6mm H=

2.7mm

ProjectsUnlimited POM-2746L-R Digikey
668-1163-ND (http://search.digikey.com

/scripts/DkSearch
/dksus.dll?Detail&name=668-1163-ND)

-
Digikey (http://dkc1.digikey.com/us/en

/mkt/Contact.html?WT.mc_id=hp_ContactUsButton)

More information

More information are available from the IST report

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Microphones"

This page was last modified 10:48, 17 September 2009.
This page has been accessed 1,093 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The MTX inertial box

From Wiki for RobotCub and Friends

The inertial sensors of the iCub is the MTx from xsense. The cable provided by the
vendor is here replaced by a custom cable.
The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware
/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer
Manuf.

code
Supplier

Suppl. Order
code

Suppl.
Phone

number

Suppl.
Email/Website

MTX

MTx-28A33G25,
Xsens -

Miniature 3D
inertial tracker,
motion control

system

XSENSE
(http://www.xsens.com

/en/company-
pages/company

/distributors)

MTx
Leane
NET
S.r.l.

MTx-28A33G25
+39
0187

692070

Leane NET Srl
(http://www.leanenet.it

/contattaci.php)
info.sarzana@leane.it

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Inertial_sensing"

This page was last modified 10:49, 17 September 2009.
This page has been accessed 1,350 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The CAN-USB interface

The CAN-USB interface schematics

From Wiki for RobotCub and Friends

Although
the iCub
comes
with a
custom
quad-can
interface
card, for
debugging
it is
sometime convenient to have an extra can bus interface: Yarp has
a device driver for the ESD CAN bus mini controller.

The table below reports the details. See the bill of materials
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer Manuf. code Supplier
Suppl.
Order
code

Suppl.
Phone

number

Suppl.
Email/Website

91

ESD - USB to
CAN Interface,
from USB 1.1
to 9-pole male
DSUB, supply

via USB,
dimension

55x55x25 mm

ESD
C.2064.02

(http://www.usbtocan.com
/ProductInfo.htm)

ESD C.2064.02
+49 511
372980

ESD Inc.
(http://www.esd-
electronics.com/)

Information about the Yarp device driver and motor control interface can be found in the software documentation. For
example see:

Here (http://eris.liralab.it/iCub/dox/html/group__ecan.html) for the Yarp device driver
Here (http://eris.liralab.it/yarpdoc/yarp_motor_control.html) for the motor control interface

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/CAN_interface"

This page was last modified 10:49, 17 September 2009.
This page has been accessed 1,383 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The CFW-001 quad-can PC104 card

CFW card

From Wiki for RobotCub and Friends

The PC104 electronics is completed by a Quad-port CAN bus interface realized specifically for iCub (called CFW-001 card) which
comprises:

Four CAN bus ports
Two Firewire ports
Audio amplifier

The CFW-001 design and manual are in the CVS repository.

The major components of the CFW card are:

CAN chip: SJA 1000, (see data sheet here)
PCI-bridge: PLX chip (see data sheet here)
Firewire: Texas (see datasheet here)
Amplifiers (see datasheet here). For two electret condenser microphones see here

More information

The CFW-001 card is part of a wider set of components that provides a Pentium CPU to the iCub (embedded).
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number

163
SDCZ6-4096-E11,

Sandisk - USB
pen, 4GB

Sandisk SDCZ6-4096-E11 Distrelec

865161 (https://www.distrelec.it/ishopWebFront/catalog/product.do
/para/keywords/is/SanDisk_Cruzer_Micro_Titanium/and/language/is/it/and/shop

/is/IT/and/series/is/1/and/id/is/02/and/node/is/DD-24218/and/artView/is/true
/and/productNr

/is/865161.html;jsessionid=F62387956B325B8D2086F1376945350F.chdist144)

- Distrelec (

90

PicoPSU-
80-WI-32,

Minibox - DC-DC
ATX power
supply unit,

14-32V, 80W

Mini-box.com PicoPSU-80-WI-32 Mini-box.com PicoPSU-80-WI-32 (http://www.mini-box.com/PicoPSU-80-WI-32V) -
/site/resellers.html;jsessionid=0a0

212

CK-PB945+,
Embedded logic -

Cable set for
PC104

Motherboard
PB945+

Embedded
logic

CK-PB945+
(http://www.sisav.it
/schede/datasheet
/pb945plus.pdf)

Sistemi
avanzati

elettronici
CK-PB945+

+39 015
983206

Sistemi avanzati elettron

208

PB945+T7400,
Embedded logic -

PC104
Motherboard

PB-945+, with
Celeron Core

2Duo 2,16 Mhz

Embedded
logic

PB945+T740
Sistemi
avanzati

elettronici

PB945+ T740 (http://www.embedded-logic.com
/index.php?MENUE=Produkte&SUB=5&TYPE=PB945Plus)

+39 015
983206

Sistemi avanzati elettron

PB945+ wiki webpage: CPU board PC104

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/CFW_card"

This page was last modified 11:01, 17 September 2009.
This page has been accessed 1,695 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

Hall effect
sensors in
the iCub
brushless
motors

Hall effect sensors in the iCub hand

From Wiki for RobotCub and Friends

Hall effect sensors are used in the iCub to measure the position of those joints controlled with brushless motors.
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware
/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer
Manuf.

code
Supplier Suppl. Order code

Suppl.
Phone

number

Suppl.
Email/Website

SS495A

SS495A1,
Honeywell - Hall

effect sensor,
8.7mA,

4.5-10.5Vcc,
p.1.3mm, THD

Honeywell SS495A1 RS
216-6247 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=216-6247&x=0&y=0)

-
RS (http://www.rs-
components.com

/index.html)

Hall-effect sensors are used in the iCub to measure the position of the finger joint angles. Signals are acquired by the
MAIS card
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk
/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number

Suppl.
Email/Website

363

MAIS right
hand, IIT -
Electronic

board,
32-channel
miniature
ADC card

IIT

MAIS_000
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform
/hardware/mais/)

EES MAIS_000
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

Placement of the MAIS card
on the hand of the iCub

369

MAIS right
hand, IIT -
Electronic

board,
32-channel
miniature
ADC card

IIT

MAIS_000
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform
/hardware/mais/)

EES MAIS_000
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

669

MAIS finger
connector,

IIT -
Connector
electronic
board for

Icub hands

IIT P2007_0000_RBCS_RC_MAIS_FC EES P2007_0000_RBCS_RC_MAIS_FC
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

More informations

The picture below shows the layout of the MAIS card rendered on top of the CAD of the hand.
The size and shape of the MAIS PCB has been specifically trimmed to fit the available space on the back of the hand.

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Hall-effect_sensors"

This page was last modified 11:02, 17 September 2009.
This page has been accessed 1,116 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The F/T sensor of the iCub

From Wiki for RobotCub and Friends

The F/T sensor (6-dof) has been also design to fit the iCub. In particular,
the size of the sensor has been made compatible with an existing
commercial product.
On the other hand the electronics has been made to fit the sensor itself and
consequently reducing space.

The F/T sensor is based on semiconductor-based strain gauges.

The F/T sensor electronics is called STRAIN and it is available from the
iCubPlatform CVS module. In particular see here (http://robotcub.svn.sf.net
/viewvc/robotcub/trunk/iCubPlatform/hardware/strain/)

More documents are available here:
STRAIN_000.pdf (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/manuals
/STRAIN_0000.pdf)
MU2007_RBCS_RC_STRAIN_0002.pdf (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/doc/manuals/MU2007_RBCS_RC_STRAIN_0002.pdf)

There are four F/T sensors on the iCub located in the upper arms and upper legs respectively. This is an
unconventional placement that requires some extra computation to map the sensor's measurement to joint level
torque control.

Semiconductor stain gauges (http://www.microninstruments.com/store/ushapedgage.aspx)
F/T sensors are mounted by Micron Instruments: (http://www.microninstruments.com)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/FT_sensor"

This page was last modified 16:37, 20 August 2009.
This page has been accessed 1,145 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The iCub face

Face specs

From Wiki for RobotCub and Friends

Details of the face design and control are described in these two documents:

Expression control (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/manuals
/RC_IST_110_D_000_07_EXPRESSIONS_CONTROL.pdf)

Face design (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/manuals
/RC_IST_111_D_000_05_FACE_EXPRESSIONS_DESIGN.pdf)

Electronic boards

Following the links in the table below you will find informations, schematics, and gerber files of the expression control printed circuit board
and of the LED printed circuit boards.
The table reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number

Suppl.
Email/Website

EXPRESSIONS_CONTROL_BOARD

EXPRESSION,
IIT- Facial
expression
electronic

control board

IIT

EXPRESSIONS_CONTROL_BOARD
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform/hardware
/expression/)

EES EXPRESSIONS_CONTROL_BOARD
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

EXPRESSIONS_L_EYEBROW_BOARD

LED LEFT
EYEBROW,
IIT - Facial
expression

electronic led
board for left

eyebrow

IIT

EXPRESSIONS_L_EYEBROW_BOARD
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform/hardware
/led/)

EES EXPRESSIONS_L_EYEBROW_BOARD
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

EXPRESSIONS_R_EYEBROW_BOARD

LED RIGHT
EYEBROW,
IIT - Facial
expression

electronic led
board for right

eyebrow

IIT

EXPRESSIONS_R_EYEBROW_BOARD
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform/hardware
/led/)

EES EXPRESSIONS_R_EYEBROW_BOARD
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

EXPRESSIONS_MOUTH_BOARDS

LED MOUTH,
IIT - Facial
expression

electronic led
board for

mouth

IIT

EXPRESSIONS_MOUTH_BOARDS
(http://robotcub.svn.sf.net/viewvc

/robotcub/trunk/iCubPlatform/hardware
/led/)

EES EXPRESSIONS_MOUTH_BOARDS
+39

0106140492

EES
(http://www.ees.it

/contatti.html)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Face_specs"

This page was last modified 11:02, 17 September 2009.
This page has been accessed 1,131 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Special tiny wires have been used almost everywhere in the iCub. Please refer to the following table and the cabling bill of materials for further details.
The cabling bill of materials can be downloaded in Microsoft Excel format from here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/) .

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

66

5853-1
WH005,

Alpha wire -
Teflon

insulated
cable, 1 pole,

AWG26,
600V, white,
UL E20042

Alpha Wire 5853-1 WH005 RS
177-0839 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=1770839)

-
RS (http://www.rs-
components.com

/index.html)

67

5853-7
BR005, Alpha
Wire - Teflon

insulated
cable, 1 pole,

AWG26,
600V, brown,
UL E20042

Alpha Wire 5853-7 BR005 RS
177-0902 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=5853-7+BR005&x=16&y=16)

-
RS (http://www.rs-
components.com

/index.html)

72

5853-3
RD005,

Alpha Wire -
Teflon

insulated
cable, 1 pole,

AWG26,
600V, red, UL

E20042

Alpha Wire 5853-3 RD005 RS
177-0851 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=1770851&x=17&y=7)

-
RS (http://www.rs-
components.com

/index.html)

85

4xAWG32
TPU,

Industrifil -
Teflon

insulated
cable, 4
poles,

AWG32,
250V, with
braid, tape
and jacket

Industrifil
4xAWG32 TPU

(http://www.industrifil.com
/En/TPU32.php)

Industrifil 4xAWG32 TPU
+33 046
6886600

info@industrifil.com

70

5853-5
YL005, Alpha
Wire - Teflon

insulated
cable, 1 pole,

AWG26,
600V, yellow,

UL E20042

Alpha Wire 5853-5 YL005 RS
177-0889 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=5853-5+YL005&x=35&y=8)

-
RS (http://www.rs-
components.com

/index.html)

519

60.7001-22,
Multicontact -

PVC
insulated

cable, 1 pole,
AWG27,
150V, red

Multicontact 60.7001-22 Farnell
4326714 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=4326714)
-

Farnell
(http://www.farnell.com/)

518

60.7001-21,
Multicontact -

PVC
insulated

cable, 1 pole,
AWG27,

150V, black

Multicontact 60.7001-21 Farnell
4326702 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=4326702)
-

Farnell
(http://www.farnell.com/)

16
8xAWG32

TES,
Industrifil -

Industrifil
8xAWG32 TES

(http://www.industrifil.com
/En/TES32.php)

Industrifil 8xAWG32 TES
+33 046
6886600

info@industrifil.com

Teflon
insulated
cable, 8
poles,

AWG32,
150V, with
braid, tape
and jacket

17

6xAWG32
TES,

Industrifil -
Teflon

insulated
cable, 6
poles,

AWG32,
150V, with
braid, tape
and jacket

Industrifil
6xAWG32 TES

(http://www.industrifil.com
/En/TES32.php)

Industrifil 6xAWG32 TES
+33 046
6886600

info@industrifil.com

23

053787, Jst -
Ribbon flat
cable, 26

poles, pitch
1.27mm,
AWG30,

150V

JST 53787 RS
424-2012 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=424-2012)

-
RS (http://www.rs-
components.com

/index.html)

310

61.7605-21,
Multi contact

- Silicon
insulated

cable, 1 pole,
256x0.05mm,

AWG20,
1500V, black,
UL E120880,

L=25m

Multicontact 61.7605-21 Farnell
4326908 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=4326908)
-

Farnell
(http://www.farnell.com/)

311

61.7605-22,
Multi contact

- Silicon
insulated

cable, 1 pole,
256x0.05mm,

AWG20,
1500V, red,

UL E120880,
L=25m

Multicontact 61.7605-22 Farnell
4326910 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=4326910)
-

Farnell
(http://www.farnell.com/)

328

60.7003-21,
Multi contact

- PVC
insulated

cable, 1 pole,
66x0.07mm,

AWG23,
500V, black,
L=100000mm

Multicontact 60.7003-21 Farnell
4326751 (http://it.farnell.com/jsp/Cable/Single+Wire

/MC+(MULTI-CONTACT)/60.7003-21
/displayProduct.jsp?sku=4326751)

-
Farnell

(http://www.farnell.com/)

329

60.7003-22,
Multi contact

- PVC
insulated

cable, 1 pole,
66x0.07mm,

AWG23,
500V, red,

L=100000mm

Multicontact 61.7605-22 Farnell
4326751 (http://it.farnell.com/jsp/Cable/Single+Wire

/MC+(MULTI-CONTACT)/60.7003-21
/displayProduct.jsp?sku=4326751)

-
Farnell

(http://www.farnell.com/)

513

RJCAB-
V-1000,

Woodhead -
FTP-LAN

cable,
AWG26,

category 5e

Woodhead RJCAB-V-1000 RS
451-7035 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=451-7035&x=26&y=11)

-
RS (http://www.rs-
components.com

/index.html)

520

60.7001-24,
Multicontact -

PVC
Woodhead 60.7001-24 Farnell

4326738 (http://it.farnell.com/jsp/search
/productdetail.jsp?sku=4326738)

-
Farnell

(http://www.farnell.com/)

insulated
cable, 1 pole,

AWG27,
150V, yellow

521

60.7001-25,
Multicontact -

PVC
insulated

cable, 1 pole,
AWG27,

150V, green

Woodhead 60.7001-25 Farnell
4326740 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=4326740)
-

Farnell
(http://www.farnell.com/)

69

5853-4
GR005,

Alpha Wire -
Teflon

insulated
cable, 1 pole,

AWG26,
600V, green,
UL E20042

Alpha Wire 5853-4 GR005 RS
177-0867 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=1770867&x=32&y=15)

-
RS (http://www.rs-
components.com

/index.html)

71

5853-10
VI005, Alpha
Wire - Teflon

insulated
cable, 1 pole,

AWG26,
600V, violet,
UL E20042

Alpha Wire 5853-10 VI005 RS
177-0946 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=1770946&x=25&y=9)

-
RS (http://www.rs-
components.com

/index.html)

434

12xAWG38
TES,

Industrifil -
Teflon

insulated
cable, 12

poles,
AWG38,

150V, with
braid, tape
and jacket

Industrifil 12xAWG38 TES Industrifil 12xAWG38 TES
+33 046
6886600

info@industrifil.com

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Cables"

This page was last modified 08:00, 24 August 2009.
This page has been accessed 1,545 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

iCub uses two power supplies by Xantrex for the 12V and the 48V supplies respectively. Any other voltage required is generated internally
(e.g. 5 and 3.3V)
The following table summarizes the specific power supplies currently employed.

RobotCub
code

Description Manufacturer Manuf. code Supplier
Suppl. Order

code

Suppl.
Phone

number

Suppl.
Email/Website

205

XFR-1.2Kw-
35-35, Xantrex -
Power supply,
1,2 Kw, 0-35V,

0-35A,
44x430x509mm,
8.2kg, 19"rack

mount, 1U

Xantrex
(http://www.xantrex.com

/web/id/6/corp.asp)
XFR-1.2Kw-35-35 DQM-Yokogawa

XFR-1.2
Kw-35-35

+39
0125

564051

DQM s.r.l.
(http://www.dqm.it

/contacts.asp)

206

XFR-2.8Kw-
60-46, Xantrex, -

Power supply,
2,8 Kw, 0-60V,

0-46A,
89x430x534mm,

15kg, 19rack
mount, 2U

Xantrex
(http://www.xantrex.com

/web/id/6/corp.asp)
XFR-2.8Kw-60-46 DQM-Yokogawa XFR-2.8Kw-60-46

+39
0125

564051

DQM s.r.l.
(http://www.dqm.it

/contacts.asp)

More information

More information on these power supplies can be found on Xantrex website
(http://www.xantrexpowersupplies.com/)
See also this general datasheet
Here you can find a more powerful version

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Power_supply"

This page was last modified 16:41, 20 August 2009.
This page has been accessed 998 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The iCub

From Wiki for RobotCub and Friends

Wiring documentation is available from the SVN repository. There are typically
folders called "cabling" inside the main subassemblies (e.g. iCubPlatform/hardware
/head/cabling). The bill of materials is also available from the "bom" folder (e.g.
iCubPlatform/hardware/head/cabling/bom).

The starting point of the wiring manual is the general wiring schematics
(https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform
/hardware/cabling/RobotCubCabling.pdf)

The BOM files are available here (http://robotcub.svn.sf.net/viewvc/robotcub
/trunk/iCubPlatform/hardware/bom/) (In particular check the file
CablingBOM.xls)

And also:

Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/hardware/head/cabling/) for head cabling
Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/upperbody/cabling/) for upperbody
cabling
Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/lowerbody/cabling/) for lowerbody
cabling

All these documents are GPL/FDL as per the entire RobotCub documentation even if at the moment a proper header is not
available.

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Electrical_wiring"

This page was last modified 08:07, 24 August 2009.
This page has been accessed 1,003 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Encoder magnets are custom made. For size and dimensions please see the corresponding parts in the CVS repository (DXF files).
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for
exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl. Phone

number
Suppl.

Email/Website

MAGNET6MM

MPI - Magnetic NdFeB
cylinder, MPN35H,

Diam.6x2,5mm,
Toll.+/-0.1 mm,

Diametral magnetized

MPI

Cilindri in MPN35H
nichelati,

Dim.6x2.5mm,
Toll.+/-0.1 mm,

Magnetizzati
diametralmente

MPI

Cilindri in MPN35H
nichelati,

Dim.6x2.5mm,
Toll.+/-0.1 mm,

Magnetizzati
diametralmente

+39.02.93566034

MPI
(http://www.mpi.it

/contattaci.htm)
info@mpi.it

RC_TLR_009_P_011_00

MPI - Magnetic NdFeB
ring, MPN35H,

Diam.7.5x2.39x1.5mm,
Toll.+/-0.1 mm,

Diametral magnetized

MPI

Anelli in MPN35H
nichelati,

Dim.7.5x2.39x1.5mm,
Toll.+/-0.1 mm,

Magnetizzati
diametralmente

MPI

Anelli in MPN35H
nichelati,

Dim.7.5x2.39x1.5mm,
Toll.+/-0.1 mm,

Magnetizzati
diametralmente

+39.02.93566034

MPI
(http://www.mpi.it

/contattaci.htm)
info@mpi.it

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Magnets"

This page was last modified 11:03, 17 September 2009.
This page has been accessed 999 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware
/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier
Suppl.

Order code

Suppl.
Phone

number
Suppl. Email/Website

TEFLON_SHEATH

KT- 80 0025
4473,

Angst&Pfister -
Insulating sheat,
AWG22, inner

dia 0,709
-0/+0,102 mm,

material
thickness 0,152
-0/+0,102mm,

teflon,
transparent

Angst&Pfister
KT- 80 0025

4473
Angst&Pfister

KT- 80 0025
4473

(It is not a
standard
P/N. To

purchase it,
directly
contact

manufacturer
at the phone
number or
e-mail here
on the right)

+39
02300871

Angst&Pfister
(http://www.angst-pfister.com

/en/DesktopDefault.aspx
/tabid-1/)

i.canese@angst-pfister.it

LT017-180-156

T017180156 L,
MeterSpring -
Left torsion

spring

Spec T017180156 L Meterspring
T017180156

L
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

LT020-180-140

T020180140 L,
MeterSpring -
Left torsion

spring

Spec T020180140 L Meterspring
T020180140

L
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

LT14180_109

T014180109 L,
MeterSpring -
Left torsion

spring

Spec T014180109 L Meterspring
T014180109

L
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

RT017-180-156

T017180156 R,
MeterSpring -
Right torsion

spring

Spec T017180156 R Meterspring
T017180156

R
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

RT020-180-140

T020180140 R,
MeterSpring -
Right torsion

spring

Spec T020180140 R Meterspring
T020180140

R
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

RT14180-109

T014180109 R,
MeterSpring -
Right torsion

spring

Spec T014180109 R Meterspring
T014180109

R
+39

01523581

Meterspring
(http://www.meterspec.it

/spec-nel-mondo.php)
meter@meterspec.it

SHEATH

0443/0.25
/1.6/500,
Mollificio

Astigiano - Open
spiral spring
AISI302 inox
steel D ext=

1.6mm D wire=
0.25mm

L=500mm

Mollificio
Astigiano

0443/0.25
/1.6/500

Mollificio
Astigiano

0443/0.25
/1.6/500

+39
0141959623

+39
0141959904

info@mollificioastigiano.com

03M036001

CD360MXL025,
Taraffo -

Toothed belt,
plastic, Primitive

Sitspa CD360MXL025 Taraffo 360MXL025
+39

010713076

Sitspa
(http://www.sitspa.com

/en-US
/Sales_network_en.html)

lenght= 360 inch
dec, Pitch=

MXL, Width=
0.25 inch cent

03M053601

CD536MXL025,
Taraffo -

Toothed belt,
plastic, Primitive
lenght= 536 inch

dec, Pitch=
MXL, Width=
0.25 inch cent

Sitspa CD536MXL025 Taraffo 536MXL025
+39

010713076

Sitspa
(http://www.sitspa.com

/en-US
/Sales_network_en.html)

B73
B73, Taraffo -

Flange
Sitspa B73 Taraffo B73

+39
010713076

taraffo@taraffo.it

CG077063

CG077063,
Carlsthal -

Stainless steel
microcable,

costr. 0.63mm,
not coated

Carlstahl CG077063 Carlstahl CG077063
+49 7162
40072220

Carlstahl
(http://www.carlstahl.de

/welcome/)
joachim.frank@carlstahl.com

U7191215

U7191215,
Carlsthal -

Stainless steel
microcable,

costr. 7x19mm,
dia 1.2/1.5mm,

PA12, trasparent
coated, AISI
316, t/s 1770

N/mm4

Carlstahl U7191215 Carlstahl U7191215
+49 7162
40072220

Carlstahl
(http://www.carlstahl.de

/welcome/)
joachim.frank@carlstahl.com

U7191517

U7191517,
Carlsthal -

Stainless steel
microcable,

costr. 7x19mm,
dia 1.5/1.75mm,
PA12, trasparent

coated, AISI
316, t/s 1770

N/mm3

Carlstahl U7191517 CarlstahL U7191517
+49 7162
40072220

Carlstahl
(http://www.carlstahl.de

/welcome/)
joachim.frank@carlstahl.com

U7194561

U7194561,
Carlsthal -

Stainless steel
microcable,

costr. 7x19mm,
dia

0.45/0.61mm,
PA12, trasparent

coated, AISI
316, t/s 1770

N/mm2

Carlstahl U7194561 Carlstahl U7194561
+49 7162
40072220

Carlstahl
(http://www.carlstahl.de

/welcome/)
joachim.frank@carlstahl.com

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Springs%2C_belts_and_cables"

This page was last modified 11:03, 17 September 2009.
This page has been accessed 2,115 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends

Disclaimers

The PB945+T7400 board

From Wiki for RobotCub and Friends

Here there are more information about PC104 CPU board manufacturers and suppliers.
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

208

PB945+T7400,
Embedded logic -

PC104 Motherboard
PB-945+, with

Celeron Core 2Duo
2,16 Mhz

Embedded
logic

PB945+T740
Sistemi
avanzati

elettronici

PB945+ T740
(http://www.embedded-logic.com
/index.php?MENUE=Produkte&

SUB=5&TYPE=PB945Plus)

+39 015
983206

Sistemi avanzati elettronici
(http://www.embedded-

logic.com
/index.php?MENUE=Contact&

SUB=1)
sales@sisav.it

211

PB-1GB Sdram,
Embedded logic -
1GB DDR-RAM

So-DIMM / 200 pins
for PB945+

Embedded
logic

PB-1GB Sdram
Sistemi
avanzati

elettronici
PB-1GB Sdram

+39 015
983206

Sistemi avanzati elettronici
(http://www.embedded-

logic.com
/index.php?MENUE=Contact&

SUB=1)
sales@sisav.it

212

CK-PB945+,
Embedded logic -

Cable set for PC104
Motherboard

PB945+

Embedded
logic

CK-PB945+
Sistemi
avanzati

elettronici
CK-PB945+

+39 015
983206

Sistemi avanzati elettronici
(http://www.embedded-

logic.com
/index.php?MENUE=Contact&

SUB=1)
sales@sisav.it

633

CHSSPB945,
Embedded logic -

Chassis mounting kit
for PC104

Motherboard
PB945+

Embedded
logic

CHSSPB945
Sistemi
avanzati

elettronici
CHSSPB945

+39 015
983206

Sistemi avanzati elettronici
(http://www.embedded-

logic.com
/index.php?MENUE=Contact&

SUB=1)
sales@sisav.it

277

ICK PGA 17X17,
Fischer Elektronic -

Heatsink, PGA
8.6°C/W, Black

anodized aluminium,
Adhesive mount,

43.1x43.1x16.51mm

Fischer
elekronik

ICK PGA 17 X17
(http://www.farnell.com
/datasheets/17557.pdf)

Farnell

4620963 (http://it.farnell.com
/jsp/search

/productdetail.jsp?sku=4620963&
_requestid=507111)

+39 02
93995200

Farnell
(http://www.farnell.com/)

278

2321B-
TCM42S-TACH,

Aavid Thermalloy -
Fan for heatsink,
Adhesive mount,

43.2x41.3mm

Aavid
Thermalloy

2321B-
TCM42S-TACH

Farnell

430730 (http://it.farnell.com
/jsp/search

/productdetail.jsp?sku=430730&
_requestid=507237)

+39 02
93995200

Farnell
(http://www.farnell.com/)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/CPU_board_PC104"

This page was last modified 11:03, 17 September 2009.
This page has been accessed 1,195 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

Ball bearings

From Wiki for RobotCub and Friends

Here there are more informations about ball bearings manufacturers and suppliers.
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware
/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

604

604 2Z, Skf -
Radial ball

bearing
4x12x4mm

Skf (http://www.skf.com/portal
/skf/home)

604 2Z
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=true&

windowName=null&
perfid=101008&

prodid=1010086040)

Bierredi 604 2Z SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61800

61800, Skf -
Radial ball

bearing
10x19x5mm

Skf (http://www.skf.com/portal
/skf/home)

61800
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=true&

windowName=null&
perfid=101002&

prodid=1010021800)

Bierredi 61800 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61801

61801, Skf -
Radial ball

bearing
12x21x5mm

Skf (http://www.skf.com/portal
/skf/home)

61801
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010021801)

Bierredi 61801 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61803

61803, Skf -
Radial ball

bearing
17x26x5mm

Skf (http://www.skf.com/portal
/skf/home)

61803
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010021803)

Bierredi 61803 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61804

61804, Skf -
Radial ball

bearing
20x32x7mm

Skf (http://www.skf.com/portal
/skf/home)

61804
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010021804)

Bierredi 61804 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61900

61900, Skf -
Radial ball

bearing
10x22x6mm

SSkf (http://www.skf.com/portal
/skf/home)

61900
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101001&

prodid=1010011900)

Bierredi 61900 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61901

61901, Skf -
Radial ball

bearing
12x24x6mm

Skf (http://www.skf.com/portal
/skf/home)

61901
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101001&

prodid=1010011901)

Bierredi 61901 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

6001-QE6

6001Q, Skf -
Radial ball

bearing
12x28x8mm

Skf (http://www.skf.com/portal
/skf/home)

6001Q
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=105001&

prodid=1050010001)

Bierredi 6001Q SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

607-QE6

607QE6, Skf -
Radial ball

bearing
7x19x6mm

Skf (http://www.skf.com/portal
/skf/home)

607QE6
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=105001&

prodid=1050016070)

Bierredi 607QE6 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61805-Y

61805, Skf -
Radial ball

bearing
25x37x7mm

Skf (http://www.skf.com/portal
/skf/home)

61805
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010021805)

Bierredi 61805 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

61806-Y

61806, Skf -
Radial ball

bearing
30x42x7mm

Skf (http://www.skf.com/portal
/skf/home)

61806
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010021806)

Bierredi 61806 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

618-4
618/4, Skf -
Radial ball

bearing 4x9x3mm

Skf (http://www.skf.com/portal
/skf/home)

618/4
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010026184)

Bierredi 618/4 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

618-5

618/5, Skf -
Radial ball

bearing
5x11x3mm

Skf (http://www.skf.com/portal
/skf/home)

618/5
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010026185)

Bierredi 618/5 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

618-6
618/6, Skf - Micro
radial ball bearing

6x13x4mm

Skf (http://www.skf.com/portal
/skf/home)

618/6
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010026186)

Bierredi 618/6 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

618-8
618/8, Skf - Micro
radial ball bearing

8x16x4mm

Skf (http://www.skf.com/portal
/skf/home)

618/8
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010026188)

Bierredi 618/8 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

618-9
618/9, Skf - Micro
radial ball bearing

9x17x4mm

Skf (http://www.skf.com/portal
/skf/home)

618/9
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101002&

prodid=1010026189)

Bierredi 618/9 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

626-QE6

626QE6, Skf -
Radial ball

bearing
6x19x6mm

Skf (http://www.skf.com/portal
/skf/home)

626QE6
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

Bierredi 626QE6 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

windowName=null&
perfid=105001&

prodid=1050016260)

HK-1210_INA

HK1210, Skf -
Drawn cup needle

roller bearings,
6x12x10mm, open

ends, unsealed

Skf (http://www.skf.com/portal
/skf/home)

HK1210
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=146111&

prodid=146111015)

Bierredi HK1210 SKF
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

W_628_5_2Z

W628/5 2Z Skf -
Radial ball

bearing,
5x11x4mm

Skf (http://www.skf.com/portal
/skf/home)

W628/5 2Z
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101047&

prodid=1010476285)

Bierredi W628/5 2Z
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

W_628_8_2Z

W628/8 2Z Skf -
Radial ball

bearing
8x16x5mm

Skf (http://www.skf.com/portal
/skf/home)

W628/8 2Z
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=101048&

prodid=1010486288)

Bierredi W628/8 2Z
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

SKF_QJ205N2MA

QJ205
N2MA/C2L, Skf -
Four point contact

ball bearing,
25x52x15mm,

oblique

Skf (http://www.skf.com/portal
/skf/home)

QJ205 N2MA/C2L
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=129002&

prodid=1290020205)

Bierredi QJ205 N2MA/C2L
+39 010
6592011

Bierredi (http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

RMB_UL_255X

UL255X-
480-P5P-

6/15-L23, Myonic
- Radial ball

bearing,
5x2,5x1,5mm,

open ends

Myonic (http://www.myonic.com
/index.php?lang=2&

idcatside=13)

UL 255X-480-
P5P-6/15-L23

GMN
UL 255X-480-
P5P-6/15-L23

+39 02
76003865

GMN (http://www.gmn.de
/front_content.php?idcat=&

idart=90&lang=2)
info@gmnitalia.it

RMB_UL_407

UL407X-
480-P5P-

6/15-L23, Myonic
- Radial ball

bearing,
7x4x2mm, open

ends

Myonic (http://www.myonic.com
/index.php?lang=2&

idcatside=13)

UL407X-480-P5P-
6/15-L23

GMN
UL407X-480-P5P-

6/15-L23
+39 02

76003865

GMN (http://www.gmn.de
/front_content.php?idcat=&

idart=90&lang=2)
info@gmnitalia.it

RMB_ULKU_3006X

ULKU3006X-
480-P5P-

6/15-L23, Myonic
- Radial ball

bearing,
4,76x2,38x1,5mm,

open ends,
extended inner

ring

Myonic (http://www.myonic.com
/index.php?lang=2&

idcatside=13)
RMB_ULKU_3006X GMN RMB_ULKU_3006X

+39 02
76003865

GMN (http://www.gmn.de
/front_content.php?idcat=&

idart=90&lang=2)
info@gmnitalia.it

RMB_ULU_3006X

ULU3006X-
480-P5P-

6/15-L23, Myonic
- Radial ball

bearing,
4,76x2,38x1,5mm,

open ends,
extended inner

ring

Myonic (http://www.myonic.com
/index.php?lang=2&

idcatside=13)
RMB_ULU_3006X GMN RMB_ULU_3006X

+39 02
76003865

GMN (http://www.gmn.de
/front_content.php?idcat=&

idart=90&lang=2)
info@gmnitalia.it

RMB_ULU_3006X

ULU3006X-
480-P5P-

6/15-L23, Myonic
- Radial ball

bearing,
4,76x2,38x1,5mm,

open ends,
extended inner

ring

Myonic (http://www.myonic.com
/index.php?lang=2&

idcatside=13)
RMB_ULU_3006X GMN RMB_ULU_3006X

+39 02
76003865

GMN (http://www.gmn.de
/front_content.php?idcat=&

idart=90&lang=2)
info@gmnitalia.it

KAA-10-XLO

KAA10XLO,
Kaydon - Four

point contact ball
bearing,

35x25,5x4,76mm

Kaydon bearings
(http://www.kaydonbearings.com

/international.php)
KAA10XLO

MAGI
Srl

KAA10XLO
+39 02

55194708

MAGI Srl
(http://www.magicuscinetti.com

/contact.php)
info@magicuscinetti.com

KO2508XP0

K02508XPO,
Kaydon - Four

point contact ball
bearing,

41x25x8mm

Kaydon bearings
(http://www.kaydonbearings.com

/international.php)
K02508XPO

MAGI
Srl

K02508XPO
+39 02

55194708

MAGI Srl
(http://www.magicuscinetti.com

/contact.php)
info@magicuscinetti.com

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Ball_bearings"

This page was last modified 11:04, 17 September 2009.
This page has been accessed 600 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

Commercial mechanical parts

From Wiki for RobotCub and Friends

Here there are more informations about commercial mechanical parts manufacturers and suppliers.
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub code Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

H10--_-_NKM

KM0 Skf,
Bi.erre.di -
Locking nut

M10x0.75mm

Skf
(http://www.skf.com

/portal/skf/home)

KM0
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=267601&

prodid=267601000)

Bierredi KM0 SKF
+39 010
6592011

Bierredi
(http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

R10--_-_NMB

MB0 Skf,
Bi.erre.di -

Locking washer,
Int.

diameter=10mm,
Ext.

diameter=21mm

Skf
(http://www.skf.com

/portal/skf/home)

KM0
(http://www.skf.com
/skf/productcatalogue

/Forwarder?action=PPP&
lang=en&imperial=false&

windowName=null&
perfid=267601&

prodid=267601000)

Bierredi KM0 SKF
+39 010
6592011

Bierredi
(http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

RC_TLR_010_P_010_00

Cod 20 punzone
victoria

0.5X100,
Bi.erre.di. -
Dowel pin,

Diam.0.5x5mm,
from 0.5x100mm

Bierredi
Cod 20 punzone victoria

0.5X100
Bierredi Cod 20 punzone victoria 0.5X100

+39 010
6592011

Bierredi
(http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

RC_TLR_010_P_027_00

Cod 20 punzone
victoria

0.5X100,
Bi.erre.di. -
Dowel pin,

Diam.0.5x5mm,
from 0.5x100mm

Bierredi
Cod 20 punzone victoria

0.5X100
Bierredi Cod 20 punzone victoria 0.5X100

+39 010
6592011

Bierredi
(http://www.bierredi.it
/bierredi/contatti.htm)

info@bierredi.it

351

Spacer,
hexagonal, M3,
M/F, h=5mm,
stainless steel

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

352

Spacer,
hexagonal, M3,
M/F, h=15mm,
stainless steel

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

357

Spacer,
hexagonal, M3,
M/F, h=10mm,
stainless steel

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

19

Spacer,
hexagonal, M3,
M/F, h=20mm,
stainless steel

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

399

Spacer,
hexagonal, M2,5,

M/F, h=5mm,
stainless steel,
shortened male

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

549

Screw, hexagon
socket

countersunk
head, M3x23,5,
stainless steel,
DIN7991, ISO

10642, UNI5933

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

558

Spacer,
hexagonal, M2,5,

M/F, h=8mm,
stainless steel,
shortened male

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

47

Spacer,
hexagonal, M2,5,

F/F, h=8mm,
PVC

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

503

Spacer,
hexagonal, M3,

F/F, h=3mm,
PVC

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

690

Spacer,
hexagonal, M2,5,
M/F, h=5,5mm,

teflon

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

691

Spacer,
hexagonal, M2,5,

M/F, h=6mm,
teflon

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

692

Spacer,
hexagonal, M2,5,

M/F, h=8mm,
teflon

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

693

Screw, slotted
cheese head,

M2,5x4, teflon,
DIN84 A,
ISO1207,
UNI6107

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

688

Spacer,
hexagonal, M3
F/F, h=20mm,
stainless steel

Mitor system S.r.l.
Part made with custom

drawing
Mitor system

S.r.l.
-

+39 077
4635162

mitorsystem@tiscali.it

33

Hexagonal nut,
M2,5, steel A4,

DIN934,
ISO4032,
UNI5588

RS 248-4567 RS
248-4567 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=248-4567&x=0&y=0)

-
RS (http://www.rs-
components.com

/index.html)

V2_5-6--_-
_I1207_NYLON

Screw, slotted
countersunk

head, M2,5x6,
nylon, DIN84 A,

ISO1207,
UNI6107

Richco
(http://www.richco.se/)

NSE 1207 M2.5 6 Farnell
1261858 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=1261858&
_requestid=121882)

-
Farnell

(http://www.farnell.com/)

D2_5--_-
_I4032_NYLON

Hexagonal nut,
M2,5, nylon,

DIN934,
ISO4032,
UNI5588

Duratool 1110025 Farnell
7016931 (http://it.farnell.com/jsp/search

/productdetail.jsp?sku=7016931&
_requestid=252314)

-
Farnell

(http://www.farnell.com/)

D2_5--_-
_I4032_NYLON

Hexagonal nut,
M2,5, nylon,

DIN934,
ISO4032,
UNI5588

Richco
(http://www.richco.se/)

NSE 1207 M3 8 Farnell
1261872 (http://it.farnell.com/richco/nse-1207-

m3-8/set-vite-con-slot-testa-svasata
/dp/1261872?Ntt=1261872)

-
Farnell

(http://www.farnell.com/)

ORM0020_10

ORM 0020-10,
Monti&Barabino
- O-ring, 2x1mm,

plastic

Monti&Barabino ORM 0020-10 Monti&Barabino ORM 0020-10
+39 010
413341

info@montiebarabino.it

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Commercial_mechanical_parts"

This page was last modified 11:04, 17 September 2009.
This page has been accessed 845 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

Commercial electronic parts

From Wiki for RobotCub and Friends

Here there are more informations about commercial electronic parts manufacturers and suppliers.
The table below reports the details. See the bill of materials (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/bom/iCubBom_1.8.pdf) for exact quantities.

RobotCub
code

Description Manufacturer Manuf. code Supplier Suppl. Order code
Suppl.
Phone

number
Suppl. Email/Website

360

TTL-232R-3V3,
FTDI - Converter
cable from USB B

to serial,
L=350mm

FTDI
TTL-232R-3V3

(http://www.farnell.com
/datasheets/81225.pdf)

Farnell
1329311 (http://it.farnell.com/ftdi/ttl-232r-3v3/cavo-

usb-livello-ttl-convertitore
/dp/1329311?_requestid=237918)

-
Farnell

(http://www.farnell.com/)

161

UPM1E222MHD,
Nichicon -
Elettrolithic
Capacitor

2200uF, 25V,
THD,

Diam.12.5x18mm

Nichicon
UPM1E222MHD

(http://www.farnell.com
/datasheets/59460.pdf)

Farnell
8812519 (http://it.farnell.com

/jsp/Passive+Components/Capacitors/NICHICON
/UPM1E222MHD/displayProduct.jsp?sku=8812519)

-
Farnell

(http://www.farnell.com/)

427

DS18S20, Maxim
- 1-Wire

Parasite-Power
Digital

Thermometer,
TO-92

Maxim
DS18S20

(http://www.farnell.com
/datasheets/76928.pdf)

Farnell
9724761 (http://it.farnell.com/maxim/ds18s20

/termometro-digitale-18s20-to-92/dp
/9724761?_requestid=23547)

-
Farnell

(http://www.farnell.com/)

57

ECOS1JP222BA,
Panasonic -
Elettrolithic
Capacitor,

2200uF, 63V,
20%, THD,

Diam.22x30mm

Panasonic

ECOS1JP222BA (http://docs-
europe.electrocomponents.com

/webdocs
/00ba/0900766b800badcc.pdf)

RS
127-509 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=127509)

-
RS (http://www.rs-
components.com

/index.html)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Commercial_electronic_parts"

This page was last modified 11:04, 17 September 2009.
This page has been accessed 503 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

The I-cub stand is composed of two parts:
a vertical one, made of custom pieces (here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/tools/stand/) you can find its
mechanical drawings)
and a moving platform on wheels: the table below reports its commercial details. See the assembly drawing file for the items positions and aluminium
profiles lenght.

Item
number

Q.ty
to

order
Description Manufacturer

Manuf.
code

Supplier Suppl. Order code Suppl. Email/Website

1 3 pcs
Al profile
2mt lenght

Bosch Rexroth 3842528040 RS
390-0133 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=390-0133&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

2

1x
(100
pcs

pack)

M8x30
Hexagon

socket head
cap screws

Bossard
BN610

Art.1233459
Bossard

BN610 Art.1233459 (https://shop.bossard.com
/it/index.cfm?app_page=0:31004:30002:8382:1#)

Bossard
(http://www.bossard.com/)

3

1x
(10
pcs

pack)

10mm sliding
block M8

thread
Bosch Rexroth 3842528735 RS

390-0414 (http://it.rs-online.com/web/search
/searchBrowseAction.html?method=searchProducts&

searchTerm=390-0414&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

4 2 pcs
Wheel with

brake
diam.80mm

Bosch Rexroth 3842521686 RS
390-2268 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=390-2268&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

5 2 pcs
Wheel

diam.80mm
Bosch Rexroth 3842521684 RS

390-2274 (http://it.rs-online.com/web/search
/searchBrowseAction.html?method=searchProducts&

searchTerm=390-2274&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

6
12
pcs

Angle
bracket

45x45x45mm
with bolts

Bosch Rexroth 3842523561 RS
390-1805 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=390-1805&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

7 4 pcs

Angle
bracket

45x45x90mm
with bolts

Bosch Rexroth 3842523570 RS
390-1811 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=390-1811&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

8

1x
(10
pcs

pack)

Plastic cap Bosch Rexroth 3842511783 RS
390-0206 (http://it.rs-online.com/web/search

/searchBrowseAction.html?method=searchProducts&
searchTerm=390-0206&x=0&y=0)

RS (http://www.rs-
components.com

/index.html)

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/ICub_stand"

This page was last modified 09:09, 9 November 2009.
This page has been accessed 623 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

2. Troubleshooting of the hardware

From Wiki for RobotCub and Friends

1 Tendons
2 Building a tendon (replacement or spare)

2.1 Material for producing a brushless tendons (crimped)
2.2 Material and instructions for producing hand tendons
2.3 Material and instructions for producing wirst tendons
2.4 ICUB0 cables broken

At the moment tendons can be seen as a sort of mechanical fuses: when stressed with high forces, they break so as to
prevent other (more serious) damages to motors, gearboxes and other parts. You can find a list of all tendons length and
details on how to replace them at the following wiki page: Assembly instructions. In the present wiki page we describe
how to create new cables and suggest the proper tools to use.

There are three main types of tendons in the iCub. The first type of tendons are used in the bigger joints and are
characterized by two crimps on the two ends of the cable. They are typically used in the brushless motor (shoulders,
elbows, torso and legs). The second type of tendons are much smaller and characterized by the fact that they slide insdide
a tube coated with teflon. They are used to actuate the hand degrees of freedom. A third type of tendon is used to actuate
the wrist.

Replacing a brushless tendon with a new one is not that complicated and can be done by a "non-necessrily-skilled"
person. The following is needed:

a little bit of training (if you have an iCub then you have a skilled technician which has been trained at the IIT)
a press with suitable specs: oleodynamic press (15 ton. pressure)
crimps dxf_crimp1 (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/upperbody/mechanics
/shoulders/dxf/rc_tlr_003_p_101_00.dxf) proe_crimp2 (http://robotcub.svn.sf.net/viewvc/robotcub/trunk
/iCubPlatform/hardware/upperbody/mechanics/shoulders/proe/rc_tlr_003_p_101_00.drw.1) proe_crimp3
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/upperbody/mechanics/shoulders
/proe/rc_tlr_003_p_101_00.prt.1)
coated steel wires:

Producer: Carlstahl. Code: U7191215 stainless steel microcable, costr. 7x19, dia 1,2/1,5 mm PA 12
trasparent coated.
Producer: Carlstahl. Code: U7191517 stainless steel microcable, costr. 7x19, dia 1,5/1,75 mm PA 12
trasparent coated.

a mold of matrix for pressing the crimps dxf_mold1 (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform

/hardware/tools/crimping_tool/dxf/rc_tlr_999_a_001_00.dxf) dxf_mold2 (http://robotcub.svn.sf.net/viewvc/robotcub
/trunk/iCubPlatform/hardware/tools/crimping_tool/dxf/rc_tlr_999_p_001_00.dxf) dxf_mold3
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/tools/crimping_tool
/dxf/rc_tlr_999_p_002_00.dxf)

Unfortunately, instructions on how to replace these tendons are only in italian: italianCableManual.pdf
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/assembly/AssemblyInstructions_Italian.pdf) but there
are nice drawings that can be really helpful shoulderWiring.pdf (http://robotcub.svn.sf.net/viewvc/robotcub/trunk
/iCubPlatform/doc/assembly/ShoulderWiring_English.pdf) .

Replacing an hand tendon is quite complicated and in order to perform a good replacement quite a lof of practice is
required. The following is needed:

coated steel wires:
Producer: Carlstahl. Code: CG077063 stainless steel microcable, costr. 0,63 mm, not coated Carlstahl
Producer: Carlstahl. Code: U7194561 stainless steel microcable, costr. 7x19, dia 0,45/0,61 mm PA 12
trasparent coated.

teflon tube:
Producer: Angst-pfister. Product: TEFLON_SHEATH, Sheath teflon Zeus.

tube to be used as a guide for the tendon:
Producer: Mollifico Astigiano. SHEATH FINGERS CABLES SHEATHS

Instructions on how to replace hand tendons can be found here: tendonsHand2007.pdf (http://robotcub.svn.sf.net/viewvc
/robotcub/trunk/iCubPlatform/doc/assembly/tendonsHand2007.pdf)

Replacing an wrist tendon is modestly complicated. The following is needed:

coated steel wires:
Producer: Carlstahl. Code: CG077063 stainless steel microcable, costr. 0,63 mm, not coated Carlstahl

Instructions on how to replace wrist tendons can be found here: tendonsWrist.pdf (http://robotcub.svn.sf.net/viewvc
/robotcub/trunk/iCubPlatform/doc/assembly/tendonsWrist.pdf)

This is the history of the cables broken while debugging the prototype robot in Genoa. It is here for the records (and
affective reasons) since it is no longer updated.

ICUB0 cables broken Image:ICUB0 cables substitution.zip

Retrieved from "http://eris.liralab.it/wiki/Tendons_and_replacement"

This page was last modified 14:37, 15 September 2009.
This page has been accessed 1,209 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The iCub

From Wiki for RobotCub and Friends

Assembly manual (in Italian). This is a detailed assembly manual which still needs
to be translated (sorry). It consists of several PDFs and videos illustrating the
assembly of the various parts. These files are all available from the CVS repository
under the 'doc' section (root/doc).

The general assembly instructions are reported in: Assembly instruction
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/assembly
/AssemblyInstructions_Italian.pdf)

This is complemented by a set of photos and videos of the various stages of the
assembly. These can be browsed at: assembly manual link (http://eris.liralab.it
/misc/assemblymanual)

The length of the tendons cables is reported in: iCubCablesLength_Italian.pdf
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/assembly
/iCubCablesLength_Italian.pdf)

Details of the wiring of the shoulder are described in: ShoulderWiring_English
(http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/assembly/ShoulderWiring_English.pdf)

The description of the wiring of the hand cables is reported in: tendonsHand2007.pdf (http://robotcub.svn.sf.net/viewvc
/robotcub/trunk/iCubPlatform/doc/assembly/tendonsHand2007.pdf)

The description of the wiring of the wrist cables is reported in: tendonsWrist.pdf (http://robotcub.svn.sf.net/viewvc
/robotcub/trunk/iCubPlatform/doc/assembly/tendonsWrist.pdf)

All these documents are GPL/FDL as per the entire RobotCub documentation even if at the moment a proper header is not
available.

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Assembly_instructions"

This page was last modified 09:09, 24 August 2009.
This page has been accessed 972 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

The iCub

From Wiki for RobotCub and Friends

Wiring documentation is available from the SVN repository. There are typically
folders called "cabling" inside the main subassemblies (e.g. iCubPlatform/hardware
/head/cabling). The bill of materials is also available from the "bom" folder (e.g.
iCubPlatform/hardware/head/cabling/bom).

The starting point of the wiring manual is the general wiring schematics
(https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform
/hardware/cabling/RobotCubCabling.pdf)

The BOM files are available here (http://robotcub.svn.sf.net/viewvc/robotcub
/trunk/iCubPlatform/hardware/bom/) (In particular check the file
CablingBOM.xls)

And also:

Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/hardware/head/cabling/) for head cabling
Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/upperbody/cabling/) for upperbody
cabling
Here (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/hardware/lowerbody/cabling/) for lowerbody
cabling

All these documents are GPL/FDL as per the entire RobotCub documentation even if at the moment a proper header is not
available.

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Electrical_wiring"

This page was last modified 08:07, 24 August 2009.
This page has been accessed 1,003 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

3. Calibration

From Wiki for RobotCub and Friends

Here is a short list of the existing firmware for the various control and sensor cards of the iCub.

List of firmware source code repositories

The complete firmware of the iCub consists of:

control firmware for the BLL and MC4 control cards: see this page and the manual here
(http://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCubPlatform/doc/manuals
/RC_DIST_100_D_12_01_firmware_versions.doc) .
firmware of the STRAIN sensor card is available here (http://robotcub.svn.sourceforge.net/viewvc/robotcub/trunk
/iCub/src/firmware/strain/) (svn browsing).
firmware of the MAIS sensor card is availablehere (http://robotcub.svn.sourceforge.net/viewvc/robotcub/trunk
/iCub/src/firmware/mais/) (svn browsing).
firmware for the facial expressions control card.

Please note that the firmware folder (http://robotcub.svn.sourceforge.net/viewvc/robotcub/trunk/iCub/src/firmware/) in the
repository contains more code including libraries and loaders for the various cards.

Precompiled version

Precompiled versions of the firmware (ready to upload via the CanLoader) can be found in here
(http://robotcub.svn.sourceforge.net/viewvc/robotcub/trunk/iCub/src/firmware/build/) (svn repository).

Retrieved from "http://eris.liralab.it/wiki/More_firmware"

This page was last modified 21:28, 21 August 2009.
This page has been accessed 282 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

4. Protocols

From Wiki for RobotCub and Friends

Control CAN bus protocol description

CAN bus protocol from the CVS repository (http://www.robotcub.org/cvsweb/cvsweb.cgi/~checkout~/iCubPlatform
/doc/manuals/RC_DIST_100_D_12_01_canbus_protocol.doc?rev=1.6;content-type=application%2Fx-msword) .

CAN_BCAST Specifications: doc file

Detailed CAN bus protocol: doc file

Detailed CANLoader protocol: from the CVS repository (http://www.robotcub.org/cvsweb/cvsweb.cgi/iCubPlatform
/doc/manuals/RC_DIST_100_D_15_01_CANLOADER_PROTOCOL.doc?rev=1.1;content-type=application%2Fx-
msword) .

STRAIN board CAN bus protocol description

STRAIN card protocol: STRAIN_000.pdf (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform/doc/manuals
/STRAIN_0000.pdf)

Retrieved from "http://eris.liralab.it/wiki/CAN_protocol"

This page was last modified 23:54, 19 August 2009.
This page has been accessed 904 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

5. Kinematics and Dynamics

From Wiki for RobotCub and Friends

1 Naming convention
2 Head group
3 Left arm
4 Right arm
5 Torso
6 Left leg
7 Right leg
8 Device and Port view
9 Units

The iCub joints are organized into six sub-systems: the head, left arm, right arm, torso, left leg, and right leg.

The joints are numbered to give a natural open kinematic chain, with the base reference frame on the torso. 0 is the most
proximal joint, N_max the most distal joint. The key reference point on the body is the base of the neck.

The joint numbers are used when calling methods of the motor control device interfaces. A mechanism will be available
for mapping from joint identifiers to numbers. Joint identifiers are unique across the body, except for bilateral symmetry -
left or right is specified separately.

The head has 6 joints in the standard configuration (without the facial features).

Joint
number

Can
Address

Identifier Description Notes

0 3 neck_pitch Neck pitch
Assuming the standard definition of roll, pitch and yaw with respect
to a gravity oriented reference frame aligned with the torso main
dimensions

1 3 neck_roll Neck roll --

2 3 neck_yaw Neck yaw --

3 1 eyes_tilt Eyes tilt Common tilt of the eyes

4 1 eyes_version Eyes version
Common version, the eyes move together, synchronized in the DSP
controller (see also VergenceVersion)

5 1 eyes_vergence
Eyes
vergence

Vergence control, the eyes move together, synchronized in the DSP
controller (see also VergenceVersion)

The arm includes the hand for a total of 16 controlled degrees of freedom.

Joint
Number

Can
Address

Identifier Description Notes

0 x shoulder_pitch Shoulder pitch
Front-back movement when the arm is aligned with
gravity (post decoupling in firmware)

1 x shoulder_roll Shoulder roll
Adduction-abduction movement of the arm (post
decoupling in firmware)

2 x shoulder_yaw Shoulder yaw
Yaw movement when the arm principal axis is aligned
with gravity (post decoupling in firmware)

3 x elbow Elbow --

4 x wrist_prosup Wrist pronosupination Forearm rotation along the arm principal axis

5 x wrist_pitch Wrist pitch
when hand-wrist aligned with the arm principal axis:
i.e. this is relative to the forearm (not necessarily to
gravity). Decoupling made in firmware

6 x wrist_yaw Wrist yaw Decoupling made in firmware

7 x hand_finger
Hand finger
adduction/abduction

--

8 x thumb_oppose Thumb opposition --

9 x thumb_proximal
Thumb proximal
flexion/extension

Single tendon looped

10 x thumb_distal Thumb distal flexion
Single tendon + return spring for extension spanning
two physical joints

11 x index_proximal
Index proximal
flexion/extension

Single tendon looped

12 x index_distal Index distal flexion
Single tendon + return spring for extension spanning
two physical joints

13 x middle_proximal
Middle proximal
flexion/extension

Single tendon looped

14 x middle_distal Middle distal flexion
Single tendon + return spring for extension spanning
two physical joints

15 x pinky
Ring and little finger
flexion

Single tendon + return spring spanning six joints on
two fingers

The arm includes the hand for a total of 16 controlled degrees of freedom. The structure is identical to the left arm.

Joint number Identifier Description Notes

0 torso_yaw Torso yaw With respect to gravity

1 torso_roll Torso roll Lateral movement (after decoupling in firmware - differential joint)

2 torso_pitch Torso pitch Front-back movement (after decoupling in firmware - differential joint)

This refers to the new version which is not yet fully designed.

Joint number Identifier Description Notes

0 hip_pitch Hip pitch When the leg principal axis is aligned with gravity (front-back movement)

1 hip_roll Hip roll Lateral movement (when leg aligned with gravity)

2 hip_yaw Hip yaw Rotation along the leg/tight principal axis

3 knee Knee --

4 ankle_pitch Ankle pitch When the calf is aligned with gravity

5 ankle_roll Ankle roll When the calf is aligned with gravity

The structure is the same as the left leg.

The iCub user will be able to control all joints as they wish, if they wish. For each sub-system, the programmer will be
able to retrieve the control interfaces (http://eris.liralab.it/yarp/specs/dox/user/html/d5
/d63/group__dev__iface__motor.html) they need.

We expect that these control interfaces will normally be accessed remotely, for all but the tightest control loops. There will
be three ports per control group. For example, the head group will have three ports named as follows:

port name purpose

/icub/head/rpc:i commands that require replies

/icub/head/command:i streaming commands

/icub/head/state:o motor state information

A user can see the commands that the "rpc:i" port supports by using "yarp rpc" to send it the message "help", or browsing
to it via the address reported by "yarp where" and clicking "help". For example, typing:

 yarp rpc /icub/head/rpc:i

followed by:

 [set] [pos] 0 45

will command axis 0 of the head (neck_pitch) to 45 degrees. If no motion is seen, it may be necessary to "enable" the axis:

 [set] [aen] 0

where "aen" means "axis enable". The braces are optional. Of course, there are APIs for all such operations.

Here are the identifiers used in port names for the different control groups:

Part Side Identifier

head -- head

arm left left_arm

arm right right_arm

torso -- torso

leg left left_leg

leg right right_leg

All angles are given in DEGREES.

Retrieved from "http://eris.liralab.it/wiki/ICub_joints"

This page was last modified 15:44, 30 October 2009.
This page has been accessed 8,129 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

The iCub forward kinematics are described with respect to a (root) reference frame which is positioned at the level of the
waist in the center of the robot as represented in the following pic. (The x axis is in red. The y axis is in green. The z axis
is in blue.).

The origin of the root reference frame is a point on the axis of rotation of the torso pitch. Among all points in this axis,
the origin is located in the middle of the robot in between the two legs.

The z axis of the root reference frame is parallel to gravity but pointing upwards.1.
The x axis of the root reference frame points behind the robot.2.
The y axis of the root reference frame points laterally and is chosen according to the right hand rule.3.

Seven additional reference frames are defined with respect to this common root reference frame. The reference frames are

located as shown in the CAD figure. The x axis is in red. The y axis is in green. The z axis is in blue.

Left hand reference frame (see the CAD picture Media:LeftHandCADRefFrame.jpg)1.
Right hand reference frame (see the CAD picture Media:RightHandCADRefFrame.jpg)2.
Left foot reference frame (see the CAD picture Media:LegsCADRefFrame.jpg)3.
Right foot reference frame (see the CAD picture Media:LegsCADRefFrame.jpg)4.
Left eye reference frame (see the CAD picture Media:HeadCADRefFrame.jpg)5.
Right eye reference frame (see the CAD picture Media:HeadCADRefFrame.jpg)6.
Inertia sensor reference frame (see the CAD picture Media:InertiaCADRefFrame.jpg)7.

The roto-translation which converts a point in one of these reference frames to the root reference frame are given by the
following SE(3) matrices:

End effector Reference frame SE(3) Matrix Description Matlab files

All -> Root - Whole body (all reference frames) Media: ICubFwdKinNew.zip

Left hand -> Root T_RoLh ICubFowardKinematics_left Media: ICubFwdKinNew.zip

Right hand -> Root T_RoRh ICubFowardKinematics_right Media: ICubFwdKinNew.zip

Left foot -> Root T_RoLf iCubWaistLeftLegKinematics Media: ICubFwdKinNew.zip

Right foot -> Root T_RoRf iCubWaistRightLegKinematics Media: ICubFwdKinNew.zip

Left eye -> Root T_RoLe ICubHeadKinematics Media:ICubFwdKinNew.zip

Right eye -> Root T_RoRe ICubHeadKinematics Media:ICubFwdKinNew.zip

Inertia sensor -> Root T_RoIs iCubInertiaSensorKinematics Media:ICubFwdKinNew.zip

Each of these matrices is constructed with two steps. The first consists in a rigid roto-translation from the points in the root
reference frame to points in the 0th reference frame as defined by the Denavit-Hartenberg convention
(http://www.cs.dartmouth.edu/~donaldclass/Bio/current/Papers/chap3-forward-kinematics.pdf) . The second step
corresponds to the Denavit-Hartenberg description of the forward kinematic, i.e. the roto-translation from the 0th reference
frame to the nth reference frame being n the number of degrees of freedom.

Retrieved from "http://eris.liralab.it/wiki/ICubForwardKinematics"

This page was last modified 19:22, 18 March 2009.
This page has been accessed 4,579 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

VERGENCE ANGLE

Vg = L - R

where L is the angle of the left camera with respect to the homed optical axis (which is the cameras z-axis) as in the figure
above; R is the angle of the right camera with respect to the homed optical axis.

VERSION ANGLE

The version angle is the angle between the axis orthogonal to the baseline and passing through the baseline's midpoint and
a line connecting this midpoint and the vergence point. The version angle satisfies the following nonlinear relation:

tan(Vs) = (tan(L) + tan(R)) / 2;

However, the Firmware sends as version the following value:

Vs = (L + R) / 2,

which holds for small angles (where tan(x)≈x), so that even though there is no lack of information since L and R angles can
be accurately retrieved (see hereafter), the version Vs has physical meaning only for small values of Vs, L and R.

CONVERTING [VERGENCE|VERSION] TO [DECOUPLED L|R]

Combining the above equations yields:

L = Vs + Vg/2;

R = Vs - Vg/2;

DISPARITY

Disparity is defined as:

d = xl - xr

where xl is the left image normalized coordinate and xr is the right image normalized coordinate.

Object closer to the cameras than the current point of fixation, will elicit a positive disparity value.

Retrieved from "http://eris.liralab.it/wiki/Vergence%2C_Version_and_Disparity"

This page was last modified 12:32, 8 April 2009.
This page has been accessed 2,154 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

6. Software, Compiling YARP and iCub

From Wiki for RobotCub and Friends

These instructions explain how to set up your system to compile YARP and iCub. Here we assume you are using Debian
Stable or Ubuntu Gutsy. It should not be different to setup other Linux, by just by installing similar packages.

1 Development environment
2 Libraries

2.1 ACE
2.2 GUIS
2.3 Gnu Scientific Library
2.4 OpenCV
2.5 IPOPT

3 Simulator related packages

Install the following packages:

cmake (at least version 2.4)
g++

If you don't know what cmake is and you are wondering why you need to install cmake please wait until Section 6.6 of the
Manual. Of course you can jump there if you really can't wait.

Install the package:

 libncurses5-dev

ACE

To compile YARP you need ACE.

In Linux you have two options:

Get precompiled versions of ace that are distributed with your Linux (please check here.

 If you follow this procedure, all you need to do is to install the libace-dev package.

Compile ace from sources, if you follow this procedure do not forget to set the environment variable ACE_ROOT
to point to the directory where you have unpacked the sources. Compilation instructions are available here Installing

ACE.
Which version of ace should I use? Follow this link to find out what is the most suitable version of ace depending
on your system: Which version of ACE.

Environment variable you should have after this procedure: ACE_ROOT and LD_LIBRARY_PATH, only if you do
not use the precompiled packages.

GUIS

GUIS are written using GTK/GTKMM and QT.

GTKMM:

 libgtkmm-2.4-dev
 libglademm-2.4-dev

QT:

 libqt4-dev
 qt4-dev-tools
 libqt3-mt-dev
 qt3-dev-tools

Environment variable you should have after this procedure: nothing new.

Gnu Scientific Library

YARP and some modules in iCub make use of the Gnu Scientific Library. In Debian it is easy to install gsl through the
package:

 libgsl0-dev

You can also download the library directly from http://www.gnu.org/software/gsl/.

Environment variable you should have after this procedure: nothing new.

OpenCV

Software in iCub makes extensive use of opencv. In Debian just install:

 libcv-dev

Environment variable you should have after this procedure: nothing new.

IPOPT

Inverse kinematics modules need the IPOPT library. This is not a requirement but it could be a useful feature. See
instructions here:

Installing IPOPT

Environment variable you should have after this procedure: IPOPT_DIR

The simulator will also need ode and sdl. See the simulator instructions on how to do it, Simulator libraries.

Retrieved from "http://eris.liralab.it/wiki/PrepareLinux"

This page was last modified 18:15, 25 November 2009.
This page has been accessed 2,047 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

These instructions explain how to set up your system to compile YARP and iCub. Here we assume you are using Windows
Xp.

Important: in Windows cmake almost always use environment variables to check availability of the libraries and locate
them on the disk. Instructions for installation of each single library explain what environment variable you need.

1 Development environment
2 Libraries

2.1 ACE
2.2 GUIs
2.3 Gnu Scientific Library
2.4 OpenCV
2.5 IPOPT

3 Simulator related packages

You need:

cmake 2.6 (www.cmake.org)
Microsoft Visual Studio 2005 or 2008

If you don't know what cmake is and you are wondering why you need it, please wait until Section 6.6 of the Manual. Of
course you can jump there if you really can't wait.

ACE

In windows you have to get the sources and compiled ace on your system.

Which version of ace should I use? Follow this link to find out what is the most suitable version of ace depending
on your system: Which version of ACE.
Follow these instructions to compile ace: Compiling ACE.

Environment variable you should have after this procedure: ACE_ROOT

After this procedure you should have updated your system path to include: %ACE_ROOT%/lib

GUIs

GUIs are written using GTK+/GTKMM and QT.

GTK+ and GTKMM:

GTK on Windows

Environment variable you should have after this procedure: GTK_BASEPATH, GTKMM_BASEPATH

QT:

Qt on Windows

Environment variable you should have after this procedure: QTDIR

Gnu Scientific Library

YARP and some modules in iCub make use of the Gnu Scientific Library.

Follow instructions here:

Installing GSL on Windows

Environment variable you should have after this procedure: GSL_DIR

OpenCV

Software in iCub makes extensive use of opencv. Follow instructions here:

Installing OpenCV on Windows

Environment variable you should have after this procedure: OPENCV_DIR

After this procedure you should have updated your system path to include: %OPENCV_DIR%/bin

IPOPT

Inverse kinematics modules need the IPOPT library. This is not a requirement but it could be a useful feature. See
instructions here:

Installing IPOPT

Environment variable you should have after this procedure: IPOPT_DIR

The simulator will also need ode and sdl. See the simulator instructions on how to do it, Simulator libraries.

Retrieved from "http://eris.liralab.it/wiki/PrepareWindows"

This page was last modified 18:20, 25 November 2009.
This page has been accessed 1,805 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

To download the software you *probably* (see below) need a Subversion client (note, we moved from CVS to Subversion
in August 2009).

Linux distributions come with an svn client already installed. In the worst case you just need to install one using the
package manager (in Debian/Ubuntu apt-get install subversion).

In Windows you are free to pick any client you like. We suggest tortoisesvn, available from http://tortoisesvn.net/.

If you are not familiar with svn we suggest at least you learn the basics. Some instructions are available from the
sourceforge website:

 https://sourceforge.net/apps/trac/sourceforge/wiki/Subversion

A lot of more details (including a quick introduction) can be found instead here:

 http://svnbook.red-bean.com/

Important: the robotcub repository is now hosted by sourceforge. To commit changes to the repository you need a
sourceforge account. Follow instructions at: http://www.sourceforge.net. Still in sourceforge, send an email to the robotcub
project administrator to join the project.

Yes and no (but yes). You need Subversion to dowload and commit code to the repositories. At the moment you can
download precompiled versions of YARP (we provide instructions for doing this in the appropriate sections of the manual).
Precompiled versions of the RobotCub software are not available yet (although one day they will). So you definitely need
Subversion to get the iCub code.

In any case using svn allows you to:

get the most updated version of the code
contribute to the iCub code by committing to the repository

Retrieved from "http://eris.liralab.it/wiki/Getting_Subversion"

This page was last modified 03:24, 8 August 2009.
This page has been accessed 422 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

In Subversion each file can have a set of properties. Properties are used by svn to handle files appropriately (for example
svn tries to merge only text files but not binary/application files). Properties are stored in the repository and are usually set
when a new file is added and committed. If you do not plan to commmit files you can safely assume properties are already
correct in the repository and stop bothering reading this. However if you are going to commit files to the repository you
must configure your client correctly, see below.

For cvs users. The default behavior of svn differs from cvs, concerning how text and binary files are treated and
committed. This page gives more details on this; if you commit files to the repository (and you are not an experienced svn
user) please read this carefully and/or make sure you understand how to deal with file properties with svn. The following
discussion can be quite technical. If you are a naive svn user, just jump to the instructions at the end of this page (How
to configure your svn client).

Individual committers can configure SVN locally with an "auto-props" section to automate how properties are assigned to
new files they add/import. Once added/imported the properties stay the same; although they can be changed at any time,
we strongly recommend to set file properties correctly when files are added to the repository.

Typically you have to enable the auto-props with something like "enable-auto-props = yes" (depending on the client
program, see below for instructions). Then you might need to add rules on how to manage individual files (well, wildcards
are accepted). Here a list that we find useful for YARP/iCub.

This list also reflects how files should be in the repository. Take this list as a generic guideline, each file can of course
have particular properties depending on the situation.

Roughly speaking the meaning of the properties is:

eol-style=native: for text files this tells svn to convert end of line characters to match the client systems (Windows
or Unix). In this case svn will also try to merge differences when concurrent modifications have been made;

svn:mime-type=application/*: this tells svn that the file is binary and should not be touched. No end of line
conversion will be made. svn will not resolve conflicts, it will just make a copy of the locally modified file and
download the one from the repository.

As a general rule we use application/octet-stream for generic applications, and more specific tags when available
(application/x-msword, or postscript...), but it does not make much difference in this context.

 *.txt = svn:eol-style=native

 *.c = svn:eol-style=native
 *.cc = svn:eol-style=native
 *.cxx = svn:eol-style=native
 *.hpp = svn:eol-style=native
 *.cpp = svn:eol-style=native
 *.h = svn:eol-style=native
 *.hpp = svn:eol-style=native
 *.inl = svn:eol-style=native

 *.cmake = svn:eol-style=native
 *.glade = svn:eol-style=native
 *.gladep = svn:eol-style=native
 *.ui = svn:eol-style=native

 *.asv = svn:eol-style=native
 *.dat = svn:mime-type=application/octet-stream

 *.m = svn:eol-style=native
 *.mdl = svn:eol-style=native
 *.mat = svn:mime-type=application/octet-stream
 *.mexw32 = svn:mime-type=application/octet-stream

 *.wbt = svn:eol-style=native

 *.bat = svn:eol-style=native
 *.cmd = svn:eol-style=native
 *.sh = svn:eol-style=native;svn:executable
 *.py = svn:eol-style=native;svn:executable
 *.pl = svn:eol-style=native;svn:executable

 *.dsw = svn:eol-style=CRLF
 *.sln = svn:eol-style=CRLF
 *.dsp = svn:eol-style=CRLF

 *.mcp = svn:mime-type=application/octet-stream
 *.S = svn:mime-type=application/octet-stream
 *.mcw = svn:mime-type=application/octet-stream
 *.mptags = svn:eol-style=native
 *.tagsrc = svn:eol-style=native
 *.asm = svn:eol-style=native
 *.hex = svn:eol-style=native
 *.map = svn:eol-style=native
 *.mcs = svn:eol-style=native
 *.gld = svn:eol-style=native
 *.cww = svn:eol-style=native
 *.pjt = svn:eol-style=native
 *.PJT = svn:eol-style=native

 *.obj = svn.mime-type=application/octet-stream

 *.dox = svn:eol-style=native
 *.xml = svn:eol-style=native
 *.template = svn:eol-style=native
 *.ini = svn:eol-style=native
 *.cfg = svn:eol-style=native
 *.conf = svn:eol-style=native
 *.howto = svn:eol-style=native
 *.info = svn:eol-style=native

 *.html = svn:eol-style=native

 *.tex = svn:eol-style=native
 *.cls = svn:eol-style=native
 *.bib = svn:eol-style=native

 *.png = svn:mime-type=image/png
 *.jpg = svn:mime-type=image/jpeg
 *.bmp = svn:mime-type=image/bmp
 *.gif = svn:mime-type=image/gif

 *.pdf = svn:mime-type=application/pdf
 *.eps = svn:mime-type=application/postscript

 *.doc = svn:mime-type=application/x-msword
 *.dot = svn:mime-type=application/x-msword
 *.xls = svn:mime-type=application/x-excel
 *.ppt = svn.mime-type=application/x-mspowerpoint

 *.bin = svn:mime-type=application/octet-stream
 *.lib = svn:mime-type=application/octet-stream
 *.a = svn:mime-type=application/octet-stream
 *.exe = svn:mime-type=application/octet-stream
 *.dll = svn:mime-type=application/octet-stream

 *.gbr = svn:eol-style=native
 *.BOT = svn:eol-style=native
 *.ASB = svn:eol-style=native
 *.SSB = svn:eol-style=native
 *.AST = svn:eol-style=native
 *.DRD = svn:eol-style=native
 *.SST = svn:eol-style=native
 *.tap = svn:eol-style=native
 *.TOP = svn:eol-style=native
 *.SMB = svn:eol-style=native
 *.SMT = svn:eol-style=native

 *.MAX = svn:mime-type=application/octet-stream
 *.DSN = svn:mime-type=application/octet-stream
 *.DBK = svn:mime-type=application/octet-stream
 *.OPJ = svn:eol-style=native
 *.opj = svn:eol-style=native
 *.GTD = svn:eol-style=native
 *.dxf = svn:eol-style=native
 *.STEP = svn:eol-style=native
 *.BOM = svn:eol-style=native
 *.opj = svn:eol-style=native
 *.1 = svn:mime-type=application/octet-stream
 *.scl = svn:eol-style=native

 *.sch = svn:mime-type=application/octet-stream
 *.brd = svn:mime-type=application/octet-stream
 *.pcb = svn:mime-type=application/octet-stream

 Makefile = svn:eol-style=native
 README = svn:eol-style=native
 TODO = svn:eol-style=native
 COPYING = svn:eol-style=native
 ChangeLog = svn:eol-style=native
 INSTALL = svn:eol-style=native
 AUTHORS = svn:eol-style=native

This is clearly client dependent. The goal is to change a config file, in Linux this is usually $HOME/.subversion/config.

For Windows we provide an example of how to change the config file of TortoiseSVN:

launch Windows Explorer

Go to File > TortoiseSVN > Settings

Under "General" on the right panel, click "Edit" for "Subversion Configuration File:"

The configuration file needs to be changed as follow:

Uncomment the "enable-auto-props = yes" directive

Uncomment the [auto-props] directive

Copy the "List of Properties" from this page (above) to the end of the file, remove the existing list to avoid
duplications and make sure you remove the space before the wild-card (*)

Save

Retrieved from "http://eris.liralab.it/wiki/Subversion_client_flags"

This page was last modified 12:22, 30 November 2009.
This page has been accessed 1,026 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Compile tests of the software are performed periodically. Results are posted on the web together with the configuration of
the machine that performs the tests (packages, installed libraries and environment variables).

This configuration is the one that is most tested and less likely to have problems. You can use it as an example or
reference to configure your machines.

See: http://eris.liralab.it/iCub/dox/html/compile_status.html

Retrieved from "http://eris.liralab.it/wiki/Check_your_system_%28optional%29"

This page was last modified 13:43, 8 May 2009.
This page has been accessed 364 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Important: we now use Subversion. Instructions for getting the software from the repository have changed (see below).

Download YARP here: http://eris.liralab.it/yarp/specs/dox/download.html

You can get YARP with the command:

 svn co https://yarp0.svn.sourceforge.net/svnroot/yarp0/trunk/yarp2

This will download a directory called yarp2 containing software.

You need an svn client. Among the many alternatives we suggest you get tortoise SVN. Binaries for windows are available
here: http://tortoisesvn.net/.

Use file manager to browse to the location where you would like to download the code. Right click on an empty region of
the window and select "SVN checkout" from the contextual menu.

Type the following string in the entry "URL of repository":

 https://yarp0.svn.sourceforge.net/svnroot/yarp0/trunk/yarp2

No password or username will be required.

Retrieved from "http://eris.liralab.it/wiki/GettingYARP_svn"

This page was last modified 21:28, 5 August 2009.
This page has been accessed 501 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Getting the software from the snapshots
2 Getting the software using Subversion

2.1 Getting the repository for Linux
2.2 Getting the repository for Windows

The subversion repository contains the latest version of the code. From time to time we release a snapshot of the whole
repository in a single tar file.

Periodic snapshots of the repository are available here: http://eris.liralab.it/iCub/downloads/src/

There are three types of files:

iCub-src-x.y.z.tar.gz: the whole iCub repository version x.y.z
iCub-dep-x.y.z.txt: a list of the libraries that are required to compile the code in snapshot x.y.z (including yarp
version number).

These are instructions to get the RobotCub software repository using svn.

Important since August 5th 2009, repositories have been moved to SourceForge (www.sourceforge.net).

These instructions explain how to download the software using svn. We assume you already know what svn is and how to
use it.

 Important note for CVS users. To get the software you no longer need to have a
 user; however you do need one to commit changes to the repository. If you think
 you need a user follow instructions in Section 6 of the manual ("Prepare your system,
 get svn").

You need an svn client. svn is normally distributed with Linux, use your package manager to install it (Debian/Ubuntu
apt-get install subversion).

Pick the location where you would like to download the code.

At the console type:

 svn co https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub

this will create in the local directory a new directory called iCub that contains the software.

You need an svn client. Among the many alternatives we suggest you get tortoise SVN. Binaries for windows are available
here: http://tortoisesvn.net/.

Use file manager to browse to the location where you would like to download the code. Right click on an empty region of
the window and select "SVN checkout" from the contextual menu.

Type the following string in the entry "URL of repository":

 https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub

No password or username will be required.

Retrieved from "http://eris.liralab.it/wiki/Getting_the_iCub_software"

This page was last modified 14:19, 4 December 2009.
This page has been accessed 1,011 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Depending on the operating system you are using, instructions in Section 6.1 "Prepare you system" have required you to
set some environment variables. These depend on your system and your choices so we don't review them here. Just make
sure you followed the instructions correctly.

YARP and iCub software require another couple of environment variables. This applies to all systems.

YARP_ROOT= point to where Yarp was unpacked (used by various applications)
YARP_DIR= typically points to YARP_ROOT (used by CMake)
YARP_CONF= where the yarpserver configuration file can be stored
ICUB_ROOT= point to where iCub code was unpacked
ICUB_DIR= points to ICUB_ROOT

Note for Windows users: be sure to use C:/ (or whatever drive letter you need) and not C:\, e.g.
ICUB_ROOT=C:/iCub and not ICUB_ROOT=C:\iCub. The \ version works most of the time but not always. The
same applies for YARP.

New (since July 2009): if you have a robot, you also have to define:

 ICUB_ROBOTNAME= name of your robot (the directory in $ICUB_ROOT/app that stores your robot configuration fi

In Linux and Mac OS X you do this using the "export" command. In the case of Linux it is a good idea to place them in
your .bashrc file (or equivalent). In Windows environment variables are in the System Properties tab in the Control Panel.

Append ICUB_DIR/bin and YARP_DIR/bin to your PATH

Hint for Linux and Mac OS X:

export PATH=$PATH:$YARP_DIR/bin:$ICUB_DIR/bin

Hint for Windows: check the current value of PATH in the control panel and extend it.

Important: YARP_ROOT and YARP_DIR have different meaning, although here they point to the same place.
YARP_ROOT points to the location of the sources, YARP_DIR points to where you build your binaries. We here point
them to the same place (cmake calls this in source build, in general they could be different).

Similar considerations apply to ICUB_ROOT and ICUB_DIR.

Retrieved from "http://eris.liralab.it/wiki/Environment"

This page was last modified 09:17, 7 November 2009.
This page has been accessed 1,056 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Why CMake?
2 Install CMake
3 CMake in Windows
4 CMake in UNIX
5 An Example

We'd like you all to use the development environment you are used to, and not force you to switch to something else -- no
Linux/g++/emacs vs Windows/DevStudio vs Mac/... fights please!

To achieve this without complete chaos, we ask you to install "CMake". CMake lets us describe our programs and
libraries in a cross-platform way. CMake takes care of building the makefiles or workspaces needed by whatever
development environment you like to work in.

Read about CMake here: http://www.cmake.org/

Install CMake from here: http://www.cmake.org/HTML/Download.html

Tips for linux:
Debian Linux: apt-get install cmake (recommended)
Generic Linux: http://www.cmake.org/files/v2.4/cmake-2.4.6-Linux-i386.sh
SUSE Linux: add the GURU (http://en.opensuse.org/Additional_YaST_Package_Repositories#Guru) YAST
repository and use YAST for installing CMake or download directly the rpm from GURU website access
(http://linux01.gwdg.de/~pbleser/allpackages.php)
We've had reports that CMake has problems if you install it in one location and then try to run it via a
symbolic link from another location. We suggest you use a short script rather than a symbolic link if you
need to do something like this. For example, if the cmake binary is installed in /opt/cmake/bin/cmake and
you wish to execute it as /usr/local/bin/cmake, then make a script at /usr/local/bin/cmake with the contents:

 #!/bin/sh
 exec /opt/cmake/bin/cmake $*

On Windows, the easiest way to use CMake is via its GUI. After installing, you should have an icon for CMake in your
START menu. Click that, then fill in the path to your code, and the path you want CMake to build in (that can be the same
if you want). Click "configure". Depending on the project, configuration may involve several steps -- you may have to
answer new questions and click "configure" again. When the "OK" button becomes clickable, then CMake has enough

information to set up your project. Click "OK" and you're done. Project files of the type you specified should exist in the
build path you gave.

If you want to start over from the beginning with CMake, it is important to press the "delete cache" button to make it forget
everything you've told it.

On UNIX CMake can be used conveniently in two ways:

From the command line : type "cmake ."
Interactively: type "ccmake ."

If you are running CMake while in a directory different to where your code is, replace "." with the path to your code.

"ccmake" is very much like the Windows GUI, and you may need to iterate "configure" a few times before the option to
"generate" appears.

"cmake" doesn't ask questions, and just uses defaults. You can pass it values on the command line:

 cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .

The generated file "CMakeCache.txt" contains all settings stored by CMake. It can be useful to delete this if you want to
start over completely.

Create a new directory, something like $HOME/cmake/example or C:\cmake\example.

Inside that directory, create a file called "CMakeLists.txt". In it place the following:

 PROJECT(example)
 ADD_EXECUTABLE(example main.cpp)

In the same directory, create a file called "main.cpp". In it place the following:

 #include <stdio.h>
 int main() {
 printf("CMake the world a better place!\n");
 return 0;
 }

In UNIX, type "cmake ." in that directory, and then "make", and then "./example". Easy!

On Windows, run the CMake GUI, fill in the path to the example, click "configure", say what compiler you use, click
"configure" again if needed, then click "ok". Then run your compiler, and finally the program. Easy!

Notice that the abstract description of our project above can be shared by developers on Windows, Linux, ...

There's another example you can try here: http://www.cmake.org/HTML/Examples.html

For more examples, and details, see: http://www.linuxjournal.com/article/6700

Retrieved from "http://eris.liralab.it/wiki/CMake_icub"

This page was last modified 10:04, 10 August 2009.
This page has been accessed 885 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

CMake is currently having lots of trouble if you have " "s

pkg-config does not work well and cmake fails if GUI flag is turned on.

The emergency solution is editting yarp2/conf/FindGtkPlus.conf such as:

SET(GTKPLUS_LINK_FLAGS "-L/GTK/bin -lgtk-win32-2.0 -lglib-2.0 -lgdk-win32-2.0 -lgobject-2.0 -lgdk_pixbuf-2.0
SET(GTKPLUS_C_FLAGS "-I/GTK/include/atk-1.0 -I/GTK/include/pango-1.0 -I/GTK/include/gtk-2.0 -I/GTK/include/g
SET(GTKPLUS_INCLUDE_DIR "/GTK/include/atk-1.0 /GTK/include/pango-1.0 /GTK/include/gtk-2.0 /GTK/inlcude/glib-
IF (GTKPLUS_C_FLAGS)
 SET(GtkPlus_FOUND TRUE)
ELSE (GTKPLUS_C_FLAGS)
 SET(GtkPlus_FOUND FALSE)
ENDIF (GTKPLUS_C_FLAGS)

/GTK is GTK_BASEPATH.

Retrieved from "http://eris.liralab.it/wiki/CMake_problems"

This page was last modified 09:18, 18 July 2006.
This page has been accessed 1,599 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Important: we assume here that you have completed the previous steps in the manual (see Section 6.1 "Prepare Your
System" in the manual's main page).

Before you compile the code you need to generate make files.

Here we assume you have completed the previous steps (preparing your system, getting the software, setting up your
environment).

1 Compiling YARP
1.1 Create the YARP Makefiles
1.2 Compile
1.3 Example -- is YARP available?

2 Compile the iCub software
2.1 Generate makefiles
2.2 Compile

Run (don't forget to set the environment variables first):

 cd $YARP_ROOT
 ccmake ./

Choose the following options:

CMAKE_BUILD_TYPE, set to "Release" in case you'd like to optimize
CREATE_GUIS, set to ON
CREATE_LIB_MATH, set to ON

Important: CREATE_GUIS and CREATE_LIB_MATH require you have installed the libraries gtk and gsl (see
PrepareLinux)

Create the makefiles by selecting configure several times and then generate.

Installation: CMake automatically creates an install rule for target/project. In the documentation we assume you install
binaries in $YARP_ROOT/bin and $YARP_ROOT/lib. The compiler will build executables and libraries there, so you
don't need to perform the installation. You can instruct CMake so that it generates make/project files that install to other
places, for example $YARP_DIR/bin and $YARP_DIR/lib. You can do this by running cmake again and setting the
variable:

CMAKE_INSTALL_PREFIX to $YARP_DIR

When you do make install all binaries will be copied to $YARP_DIR/bin and $YARP_DIR/lib.

Of course you can customize the installation directory as you wish, however the remainder of the documentation assumes
the above configuration.

Depending on the hardware on your system you might want to compile additional device drivers. This is done for
example on the pc104. Instruction for doing this are reported elsewhere.

Now we are ready to compile. This is easy.

Run:

 cd $YARP_ROOT
 make

Now we're ready to run a simple Yarp code to test the installation so far. You might want to prepare a yarp.conf file in the
conf directory similar to this one:

127.0.0.1 10000

which tells Yarp (the server) to start on the localhost and respond to port 10000. This allows Yarp applications to find the
name server (see next chapter).

You can then try running the server. On a terminal window, type:

yarpserver &

and you should see:

yarp: Port /root active at tcp://127.0.0.1:10000 Name server can be browsed at http://127.0.0.1:10000/ yarp: Bootstrap
server listening at mcast://224.2.1.1:10001

if you type on a web browser http://127.0.0.1:10000 you get information about the name server (registered ports, info,
etc.).

For the time being we can just check functionality by running a simple example. On another terminal type:

yarp read /portread

on a third terminal:

yarp write /portwrite

and on yet another terminal:

yarp connect /portwrite /portread

you'll see the effect on the name server:

yarp: registration name /portwrite ip 127.0.0.1 port 10012 type tcp
yarp: registration name /portread ip 127.0.0.1 port 10002 type tcp

Now, anything typed on the yarp write will be sent and printed on the read side.

First you need to generate make files. In $ICUB_ROOT:

ccmake ./

You don't need particular options. If you want to compile using optimization just set:

CMAKE_BUILD_TYPE to "Release"

Other options are:

CREATE_GUIS_GTK
CREATE_GUIS_GTKMM
CREATE_GUIS_QT

These options are recommended, because they enable compilation of some useful GUIs. Important: these options can be
enabled only if you have installed the required libraries: gtk, gtkmm and qt (see PrepareLinux).

Similarly to YARP, by default make will build executables and libraries in $ICUB_ROOT/bin and
$ICUB_ROOT/lib. You can customize where "make install" will copy these files by setting:
CMAKE_INSTALL_PREFIX to something you like.

If you need to compile devices that provide interface to the hardware you can follow this link Compilation on the pc104

Compile the code.

 cd $ICUB_ROOT
 make

Retrieved from "http://eris.liralab.it/wiki/CompileLinux"

This page was last modified 17:50, 14 September 2009.
This page has been accessed 2,994 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends

Disclaimers

From Wiki for RobotCub and Friends

Important: we assume here that you have completed the previous steps in the manual (see Section 6.1 "Prepare Your
System" in the manual's main page).

Working on:

Vista (the worst possible situation)
Visual Studio 8

For other compilers, e.g. Visual Studio express, additional documentation is required. Note: Visual Studio express requires
the installation of the Windows Platform SDK. Visual Studio 8 comes pre-packed with the Platform SDK.

1 Compiling YARP
1.1 Create the YARP Makefiles
1.2 Compile

1.2.1 Example
2 Options
3 Compile the iCub software

3.1 Generate makefiles
3.2 Compile

Run CMake. Point the source code directory ("Where is the source code" entry in the gui) to %YARP_ROOT% (where
you put the YARP source files). Pick the directory in which you would like to generate project files ("Where to build the
binaries" entry in the gui). We call this directory YARP_DIR. The most common situation to use
YARP_DIR=YARP_ROOT, this is the assumption in this documentation.

Choose the following options:

CMAKE_BUILD_TYPE, set to "Release" in case you'd like to optimize
CREATE_GUIS, set to ON
CREATE_LIB_MATH, set to ON

Important: CREATE_GUIS and CREATE_LIB_MATH require you have installed the libraries gtk and gsl (see
PrepareWindows)

Create the makefiles by hitting configure several times and then ok.

Installation: CMake automatically creates an install rule for target/project. In the documentation we assume you install
binaries in %YARP_ROOT%/bin and %YARP_ROOT%/lib. The compiler will build executables and libraries there, so

you don't need to perform the installation. You can instruct CMake so that it generates make/project files that install to
other places, for example %YARP_DIR%/bin and %YARP_DIR%/lib. You can do this by running cmake again and setting
the variable:

CMAKE_INSTALL_PREFIX to %YARP_DIR%

When you do make install all binaries will be copied to %YARP_DIR%/bin and %YARP_DIR%/lib.

Of course you can customize the installation directory as you wish, however the remainder of the documentation assumes
the above configuration.

Depending on the hardware on your system you might want to compile additional device drivers. This is done for
example on the pc104. Instruction for doing this are reported elsewhere.

Now we are ready to compile. Open the YARP visual studio project file in %YARP_DIR% and compile it.

Example

Now we're ready to run a simple Yarp code to test the installation so far. You might want to prepare a yarp.conf file in the
conf directory similar to this one:

127.0.0.1 10000

// start network description, don't forget to separate "Node="
// and names with space
[NETWORK_DESCRIPTION]
[END]

which tells Yarp (the server) to start on the localhost and respond to port 10000. This allows Yarp applications to find the
name server (see next chapter).

You can then try running the server. On a terminal window, type:

yarpserver

and you should see:

yarp: Port /root active at tcp://127.0.0.1:10000 Name server can be browsed at http://127.0.0.1:10000/ yarp: Bootstrap
server listening at mcast://224.2.1.1:10001

if you type on a web browser http://127.0.0.1:10000 you get information about the name server (registered ports, info,
etc.).

For the time being we can just check functionality by running a simple example. On another terminal type:

yarp read /portread

on a third terminal:

yarp write /portwrite

and on yet another terminal:

yarp connect /portwrite /portread

you'll see the effect on the name server:

yarp: registration name /portwrite ip 127.0.0.1 port 10012 type tcp
yarp: registration name /portread ip 127.0.0.1 port 10002 type tcp

Now, anything typed on the yarp write will be sent and printed on the read side.

If you need to compile devices that provide interface to the hardware you can follow this link Compilation on the pc104

First you need to generate make files. Run cmake. Point both the source code and binary directories ("Where is the source
code" and "Where you put the source files" entries in the gui) to %ICUB_ROOT%. Important: the iCub software does not
allow to build binaries in a different directories.

You don't need particular options. If you want to compile using optimization just set:

CMAKE_BUILD_TYPE to "Release"

Other options are:

CREATE_GUIS_GTK
CREATE_GUIS_GTKMM
CREATE_GUIS_QT

These options are recommended, because they enable compilation of some useful GUIs. Important: these options can be
enabled only if you have installed the required libraries: gtk, gtkmm and qt (see PrepareWindows).

Similarly to YARP, by default make will build executables and libraries in %ICUB_ROOT%/bin and
%ICUB_ROOT%/lib. You can customize where "make install" will copy these files by setting:
CMAKE_INSTALL_PREFIX to something you like.

If you need to compile optional devices (for example devices that provide interface to the hardware) you can follow these
links:

CompileDevices

CompileiCubDevices

iCubModulesList

Open the project files in %ICUB_ROOT%, compile and install the executables.

Retrieved from "http://eris.liralab.it/wiki/CompileWindows"

This page was last modified 17:51, 14 September 2009.
This page has been accessed 1,737 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

The pc104 runs Linux Debian (Live).

Compilation on the pc104 follows the same procedure we saw in Section 6 of the manual. The main difference is that in
addition you need to enable certain flags in cmake that enable compilation of external modules. Some of these modules are
generic and open source and are available in YARP; others are available in iCub because they are specific to the robot and
in certain case require proprietary code (the API shipped with the hardware).

The Debian Live that comes with the robot should be configured correctly (in particular the environment of the iCub user).
For robots shipped after August 2009 the following steps have been already done for you. If you need to upgrade the
software on the pc104 (or you are upgrading from the CVS repository), you need to follow these instructions.

Before you go ahead make sure the Debian Live on the pc104 is configured to use SVN (image > 1.3). Section 9.1 gives
more details on the pc104 Debian Live and instructions on how to update it.

1 Optimization
2 List of modules
3 Compilation of modules

3.1 YARP modules
3.2 iCub modules
3.3 iCub 1.1 modules

Do not forget to enable optimization, this will improve performances a lot. In cmake for both YARP and iCub set:

 CMAKE_BUILD_TYPE: Release

You need the following modules:

serial and serialport: face expressions
xsensmtx: inertial sensor
canmotioncontrol: communication with the can bus
pcan: plx can interface
dragonfly2: cameras
portaudio: microphones

and the calibrators:

icubarmcalibrator
icubheadcalibrator

icublegscalibrator

For iCub 1.1 (force sensors and hand position sensors) users: see at the end of this page.

Some modules are compiled with YARP others, specific to the robot, are compiled with iCub.

YARP modules

 cd $YARP_DIR
 ccmake $YARP_ROOT

Set:

 CREATE_DEVICE_LIBRARY_MODULES:ON

Configure (hit c):

Now enable:

 ENABLE_yarpmod_serial
 ENABLE_yarpmod_serialport
 ENAVLE_yarpmod_portaudio

Configure and generate makefiles.

Compile YARP:

 make

To verify the procedure type:

 yarpdev --list

among the others the list should contains also the new devices:

 Device "serial", C++ class ServerInertial, is a network wrapper,
 Device "serialport", C++ class SerialDeviceDriver, wrapped by "serial"
 Device "portaudio", C++ class ...

iCub modules

The procedure in this case is similar. For licensing reasons not all the code is available in the repository. First you need to
get the device drivers for the ecan and pcan modules. We provide precompiled binaries for the pc104 here:

http://eris.liralab.it/iCub/downloads/drivers/linux

Get the version of the precompiled drivers that matches your system, probably: http://eris.liralab.it/iCub/downloads/drivers
/linux/pc104etchnhalf-bin-1.1.tgz

Download this in /usr/local/src/robot and unpack:

 tar xvf pc104etchnhalf-bin-1.0.tgz

this will create a directory called drivers that contains the libraries you need.

Now you are ready to compile the new modules.

 cd $ICUB_ROOT
 ccmake ./

The following options are as usual:

 CMAKE_BUILD_TYPE:Release
 CREATE_GUIS_GTK:ON
 CREATE_GUIS_GTKMM:ON

In addition enable compilation of modules, set:

 USE_ICUB_MOD:ON

Hit c to configure. A long list of devices (in the form of ENABLE_icubmod_*) will appear.

You need to enable:

 ENABLE_icubmod_pcan
 ENABLE_icubmod_canmotioncontrol

 ENABLE_icubmod_dragonfly2
 ENABLE_icubmod_logpolarclient
 ENABLE_icubmod_logpolargrabber
 ENABLE_icubmod_xsensmtx
 ENABLE_icubmod_icubarmcalibrator
 ENABLE_icubmod_icubheadcalibrator
 ENABLE_icubmod_icublegscalibrator

For iCub 1.1 (force sensors) users: see at the end of this page.

cmake should generate make files. Possible errors:

pcan/ecan fails to detect API(s): check that you have unpacked plxCanApi/esdCanApi in /usr/local/src/robot
/drivers. cmake uses the environment variables PLXCANAPI_DIR/ESDCANAPI_DIR to locate these libraries. If
you the pc104 has a Debian Live image >= 1.4 these should be already set, otherwise you have to do this manually.

compile:

 make

To verify the procedure type:

 icubmoddev --list

among the others the list should contains also the new devices:

 Device "dragonfly2", C++ class DragonflyDeviceDriver2, wrapped by "grabber"
 Device "pcan", C++ class PlxCan, has no network wrapper
 ...

iCub 1.1 modules

In iCub 1.1 (equipped with force sensors) add:

ecan
icubarmcalibratorj8
icubhandcalibrator

in cmake enable:

 ENABLE_icubmod_ecan
 ENABLE_icubmod_icubarmcalibratorj8
 ENABLE_icubmod_icubhandcalibrator

Retrieved from "http://eris.liralab.it/wiki/Compilation_on_the_pc104"

This page was last modified 20:05, 10 December 2009.
This page has been accessed 926 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

7. Software, YARP

From Wiki for RobotCub and Friends

1 Getting Started
2 Communicating
3 Image Processing
4 The Fake and Real Robot
5 Reference tutorials
6 Instructions for the Instructor

Installing YARP: Getting_YARPed

YARP Installation Check - make sure YARP is installed correctly on your computer.

YARP Server Check - make sure all the computers you are working with can find the YARP "name server".

YARP Read and Write - If you have two computers sitting beside each other on a local network, you can try
communicating between them using YARP. Maybe team up with a colleague for this.
For more explanation on what is going on here, read Port tutorial 1 (http://eris.liralab.it/yarp/specs/dox/user
/html/note_ports.html) .
Try out some examples in $YARP_ROOT/example/os/

Tips on finding YARP on your computer.
If you like, you can try playing a multi-user Game.

Working with Image Streams - get started on processing images from the robot or a simulation.

Then you can work on The Kibitzer, a project to process data coming from a robot head.

(Wait for a teaching assistant to ask you to read this section.)

Read information here on the Fakebot, a fake robot "head" to test on.

The real robot camera is at:

 /icub/cam/left

(Check with teaching assistant if the robot is really running before trying to connect).
Please use "mcast" (broadcast) when reading from the robot camera. This is more efficient when many people are
viewing it. All you need to do is add "mcast" to your connection commands:

 yarp connect /icub/cam/left /YOUR/PORT mcast

or from code:

 Network::connect("/icub/cam/left","/YOUR/PORT","mcast");

When you are ready to control the robot, and the teaching assistant says the robot is ready, read Output your target

Port tutorial 1 (http://eris.liralab.it/yarp/specs/dox/user/html/note_ports.html)
port tutorial 2 (http://eris.liralab.it/yarp/specs/dox/user/html/port_expert.html)
Official YARP documentation (http://eris.liralab.it/yarp/specs/dox/user/html/index.html)
Motor control
Device tutorial (http://eris.liralab.it/yarp/specs/dox/user/html/note_devices.html)

The notes here are to assist whoever is running this tutorial. Students can ignore this, unless they are interested in
what's running in the background.

You'll need to dedicate a computer to run some servers on. On that machine, do the following (instructions assume a Linux
machine):

Start a yarp server, if you don't have one running already in the lab.

 yarp server

Start a server for the online Game.

 cd $YARP_ROOT/example/game/game_server
 cmake .
 make
 ./game_server
 # game is available on port /game

Start a "fakebot" fake robot server.

 cd $YARP_ROOT/example/tutorial
 cmake .
 make
 # edit fakebot.ini, remove /USERNAME from port names if present
 ./run_fakebot --file fakebot.ini --name fakebot
 # fakebot is available on port /fakebot/camera, /fakebot/motor/rpc:i
 # type help to "yarp rpc /fakebot/motor/rpc:i

Start a "tracker" process - this isn't strictly necessary, but it gives a safe proxy for controlling the icub robot.

 cd $ICUB_ROOT/src/tracker
 cmake .
 make
 tracker --rel
 # students can send summer-school style messages to /tracker/pos

Make a view:

 yarpview --name /admin/view --out /admin/clicker

Connect things

 yarp connect /fakebot/camera /tracker/img
 yarp connect /tracker/img /admin/view
 yarp connect /admin/clicker /tracker/pos
 yarp connect /tracker/pos /fakebot/motor/rpc:i

Ideally, a physical robot will also be set up for the students to try things out on. There are no easy instructions on this, that
depends on you. The tutorial assumes the iCub robot is available, with images on port:

 /icub/cam/left

and that "summer school" format messages can be sent to control the head at:

 /icub/target

(see Output your target)

Retrieved from "http://eris.liralab.it/wiki/YARP_Tutorial"

This page was last modified 16:59, 25 January 2008.
This page has been accessed 10,164 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

8. Software, dependencies

From Wiki for RobotCub and Friends

In this section you find instructions to compile and install device drivers required to run the robot.

Code compilation on the pc104 is covered in Section 6.6.

You can install device drivers on your own machine by following instructions below.

1 Cameras
2 CAN bus
3 Inertial Sensor
4 Face expressions
5 Microphones

Cameras

Dragonfly cameras need the vendor's device driver in Windows or the firewire device drivers in Linux. See:

Linux
Windows

CAN bus

Proprietary device drivers for the esd can device:

Esd CAN bus on Linux
Esd CAN bus on Windows

plx device. This is available only for Linux. Since this device is used only on the pc104 we point you to Section
6.6.

Inertial Sensor

No special library is required. Just add the xsensmtx in iCub (as described in Section 6.6).

Face expressions

Facial expressions are controlled using serial and serialport modules in YARP, see instructions in Section 6.6.

Microphones

Add portaudio to YARP as in Section 6.6.

Retrieved from "http://eris.liralab.it/wiki/Device_drivers"

This page was last modified 12:12, 5 October 2009.
This page has been accessed 2,493 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Please try to respect this list of dependencies, it is important in order to develop code that can be integrated in the main
build. If you need to update this list, please let us know. We cannot guarantee that your request will be satisfied, but we
can update this list if there are good reasons. Please understand that we have to maintain this list as stable as possible and
that new dependencies create overhead to everyone. To us as maintainers because we have to keep up to date the list of
instructions for installing and compiling the libraries, to users because they have to install all the required dependencies to
build the code.

This is the list of dependencies for the iCub software. You should make sure your code compiles with the following
libraries. If you develop using more recent libraries please make sure to check that you do use only features that are
available in the releases listed below, otherwise it will not be possible to integrate your code.

GTK/GTKMM Rel. 2.4
QT3

Gnu Scientific Library, GSL Rel. 1.8

OpenCV 0.9

Open Dynamics Engine: ODE Rel. 0.10
Simple DirectMedia Layer: SDL Rel. 1.2
Interior Point OPTimizer library: Ipopt Rel. 3.5.0

Check also configuration of compile test servers: http://eris.liralab.it/iCub/dox/html/compile_status.html.

Make sure your code can be compiled with the following tools.

Compilers
Linux: gcc up to 4.4.1
Windows: Visual Studio 2005/2008

Tools, CMake:
Linux: version 2.4
Windows: version 2.6

Retrieved from "http://eris.liralab.it/wiki/List_of_Dependencies"

This page was last modified 16:00, 23 December 2009.
This page has been accessed 119 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

9. Software, iCub

From Wiki for RobotCub and Friends

1 Organization
1.1 Environment

2 Update the usb key on your pc104
2.1 Download
2.2 Burn a new image
2.3 Testing the new image

3 Startup scripts update
4 Further customization

This page is about the Debian Linux that runs on the pc104, a Live Debian customization (see http://debian-
live.alioth.debian.org).

From time to time images are updated. To determine what version of the image you are running you can have a look at the
following files in the root of the filesystem:

VERSION: contains the version of the image
ChangeLog: list changes to the image

The Linux on the pc104 is a Debian etch with kernel 2.6.24 (etchnhalf).

In the "open call" configuration it is built as follows:

static ip 10.0.0.2
users: icub and root

During boot a script mounts the directory from 10.0.0.1:/exports/code-pc104 to /usr/local/src/robot. This directory
contains other files used to finish the initialization, plus the code repositories.

 /usr/local/src/robot/yarp2: yarp repository
 /usr/local/src/robot/iCub: iCub repository

Environment

The environment of the user icub is configured as indicated in Section 6.1 (see ~/.bashrc). In addition since version 1.4 the
following environment variables have been added:

 ESDCANAPI_DIR=/usr/local/src/robot/drivers/esdCanApi
 PLXCANAPI_DIR=/usr/local/src/robot/drivers/plxCanApi

These directories are used by cmake to localize the APIs required to compile some of the modules that run on the pc104
(can bus devices). See Section 6.6 for details.

Download

First you need to download the new image. We provide the standard images that come with the robot here:
http://eris.liralab.it/iCub/downloads/pc104-images/

Images are as follows:

image.1.3-OC.img for "open call" robots. Configured for CVS.
image.1.4-OC.img for "open call" robots. Configured for SVN.

Burn a new image

This can be probably done in different ways. We provide instructions for Linux.

First you need to identify the device node that corresponds to your usb key. There are a couple of options:

Procedure 1. Type:

ls -la /dev/disk/by-id/usb-*

you will get something like:

lrwxrwxrwx 1 root root 9 2007-08-11 12:46
 /dev/disk/by-i/usb-Kingston_DataTraveler_II+_5B720CB323C1->../../sdc

here /dev/sdc is the device node of your usb key.

Procedure 2. Alternatively you can try unplugging and plugging in the usb key and see what happens in /dev/sd*.

Important: make sure you identify the device correctly, otherwise you risk to wipe the content of your hard drive. To be
sure you can try procedure 1 and 2 (above) a couple of time.

Now you can burn the new image by typing as root:

 dd if=IMAGE_FILE of=DEVICE_NODE

where IMAGE_FILE is the name of the new image (e.g. image.1.4-OC.img) and DEVICE_NODE is, for example,
/dev/sdc.

Important:

make sure that you overwrite the whole device, not just the first partition of it that you normally mount, i.e. /dev/sdx
instead of the more familiar /dev/sdx1.

Don't forget to unmount the usb key before unplugging it.

More instructions are available here: http://wiki.debian.org/DebianLive/Howto/USB

Testing the new image

Plug the usb key in the usb port of the pc104, and turn it on. Wait some time (2 minutes or so) and connect to the pc104
with ssh:

 ssh pc104

Before you do this, you need to fix or remove the known_hosts file:

 rm /home/icub/.ssh/known_hosts

Besides the usual initialization sequence the pc104 loads and executes a list of scripts that are in $ICUB_ROOT/../pc104
/hooks.

A copy of those scripts in also in the repository, you can update them from $ICUB_ROOT/pc104/startupscripts/opencall
/hooks:

cd $ICUB_ROOT
svn update
copy ./pc104/startupscripts/opencall/hooks/* ../pc104/hooks -r

Customize S08_robotname.sh according to your setup.

Unfortunately the current iCub Live is not writable. This means that all changes are lost when you reboot the pc104.
Making a writable partition is possible, but it proved to be harder than expected. We are working on this. In the meanwhile
there are a couple of options.

If you need to perform some operations at startup you can add or modify scripts in the $ICUB_ROOT/../pc104
/hooks directory. This directory is mounted from the remote server and is persistent. Scripts from the "hooks"
directory are executed in alphabetical order from /etc/rc.local as root.

You can rebuild your own version of the image (we can provide the configuration files/options if you like).

Retrieved from "http://eris.liralab.it/wiki/The_Linux_on_the_pc104"

This page was last modified 14:47, 9 December 2009.
This page has been accessed 931 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Software Architecture
2 Developing iCub Software with Yarp: A Novice User's View
3 Further information on Yarp
4 iCub specific material
5 RobotCub licenses

The RobotCub software architecture is based on YARP, an open-source
framework that supports distributed computation with an eye at robot
control and efficiency. In short, we decided to adopt YARP for
RobotCub while keeping the two project separated. Yarp is a set of
libraries which can be embedded in many different systems and robots,
while for the iCub we customize Yarp to handle its hardware and
devices. iCub's code is client code with respect to YARP.

YARP provides a set of protocols and a C++ implementation for:

Inter-process communication on a local network, in fact enabling parallel multi-processor computation.
Standardization of the hardware interface through run-time dynamically loadable modules.
Data types for images, vectors, buffers, etc.
Various interfaces to commonly used open-source packages (e.g. openCV).

To learn more about the philosophy of Yarp you can see the paper:

 G. Metta, P. Fitzpatrick, L. Natale. YARP: yet another robot platform.
 In the International Journal on Advanced Robotics Systems, Special Issue
 on Software Development and Integration in Robotics. March 2006.
 (pdf)

or a more recent submission:

 P. Fitzpatrick, G. Metta, L. Natale. Towards Long-Lived Robot Genes. March 2007.
 (pdf)

A manual including a description of Yarp's standard protocols is available:

Yarp reference manual (pdf) (http://eris.liralab.it/yarp/specs/dox/min/latex/refman.pdf)

And full documentation (online) from:

Yarp documentation (http://eris.liralab.it/yarp/specs/dox/user/html/index.html)
iCub software documentation (http://eris.liralab.it/iCub)

There are three ways you can view Yarp as an implementation platform for iCub software.

The first is to see it as a network of processes with which your code interfaces via ports using Yarp-compatible
iCub control and data acquisition protocols. These protocols are specific to the iCub. Your code should also be
written as a Yarp process, with a well-specified port-based interface protocol.

1.

The second is a device view. Here, your code is more closely coupled with Yarp. Yarp is simply a class hierarchy
and your iCub application code is directly linked with the Yarp objects, with control and data acquisition being
achieved by method invocation.

2.

Both of these views are remote views (in the sense that you can assume that all the iCub devices are set up and just
need to be polled). There is a third view that is local and it is a counter-part of the second - device - view above. In
this case, however, your iCub application software has much greater control but it also has much greater
responsibility for configuration of the iCub devices and for bootstrapping them.

3.

Most application developers will choose approach no. 1. Those who are particularly concerned about efficiency will
choose no. 2, and those with very strong timing constraints will choose approach no. 3.

Using view no. 1, an application will typically comprise several Yarp processes. This means that to run your iCub
application, you need to invoke each process and also instantiate the port-based communication between them. You can
instantiate the communications between the Yarp iCub processes with in-line code embedded in your software but the Yarp
philosophy is to decouple the process functionality from the specification of the inter-process (port-to-port) connections.
This encourages modular software with reusable processes that can be used in a variety of configurations that are not
dependent on the functionality of the process or embedded code. Thus, e.g., the processes might be invoked and the
connections instantiated using a script.

We plan on implementing the iCub cognitive architecture as a set of Yarp processes. That is, we expect that each of the
iCub phylogenetic abilities as well as the modules for their modulation, for prospection and anticipation, and for
self-modification, will be implemented as distinct Yarp processes.

For further information on how to obtain, compile, and use Yarp please see:

SourceForge.net (http://www.sf.net) .
This Wiki at RobotCub.
The Yarp home page (http://yarp0.sf.net) .

The RobotCub repository is described at:

Notes on CVS: RobotCub repository
iCub software documentation (http://eris.liralab.it/iCub)
Details are also available from Deliverable 8.2 (http://www.robotcub.org/index.php/robotcub/more_information
/deliverables/deliverable_8_2_pdf) and from Deliverable 7.3 (http://www.robotcub.org/index.php/robotcub
/more_information/deliverables/deliverable_7_3_pdf)
RobotCub CVS server (http://www.robotcub.org/iCub)
VVV Summer School 2006

RobotCub licenses (GPL/FDL) that also apply to software are available at:

FDL (http://www.robotcub.org/cvsweb/cvsweb.cgi/iCub/license/fdl.txt) .
GPL (http://www.robotcub.org/cvsweb/cvsweb.cgi/iCub/license/gpl.txt) .

Retrieved from "http://eris.liralab.it/wiki/Deliverable_8.3"

This page was last modified 14:39, 4 May 2009.
This page has been accessed 7,243 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Contents

1 The Evolution of the Architecture
2 Differences from previous version
3 Notes
4 Links

The Evolution of the Architecture

The iCub cognitive architecture is the result of a detailed design process founded on the developmental psychology and neurophysiology of humans,
capturing much of what is known about the neuroscience of action, perception, and cognition. This process and the final outcome is documented in
Deliverable D2.1: A Roadmap for the Development of Cognitive Capabilities in Humanoid Robots (http://www.robotcub.org/index.php/robotcub
/more_information/deliverables/deliverable_2_1_pdf) .

The architecture itself is realized as a set of YARP executables, typically connected by YARP ports. Early prototypes were developed at a RobotCub
project meeting at the University of Hertfordshire in July 2007 as an exercise in consolidating the software development effort of the project partners.
Several subsequent versions were produced at the RobotCub Summer School 2007 VVV '07. These prototypes were developed in parallel with the
D2.1 Roadmap effort mentioned above. These two strands of design effort converged in the cognitive architecture shown below (Version 0.4). Previous
versions can be accessed via the links at the end of the page. VVV '09 addressed the development of the architecture's (auto-associative) episodic and
(hetero-associative) procedural memories.

The immediate purpose in developing the cognitive architecture is to create a core software infrastructure for the iCub so that it will be able to exhibit a
set of target behaviours for an Empirical Investigations.

Differences from previous version

Removed the tracker (should be handled by attention/salience sub-system)
Removed the face localization (should be handled by attention/salience sub-system)
Removed the hand localization (should be handled by attention/salience sub-system)
Removed the sound localization (should be handled by salience module)
Removed the attention selection
Added Exogenous Salience and Endogenous Salience
Added Locomotion
Added Matching
Added Auto-associative episodic memory
Added Hetero-associative procedural memory
Added Affective state
Added Action selection

Notes

Gaze implies 7 DoF: head and eyes
Locomotion paradigm: “go where you are looking”
Reaching paradigm: “reach where you are looking”
Endogenous and exogenous salience implies salience based on internal and external events, respectively
Gaze, reaching, and locomotion motor activities condition endogenous salience: i.e. motor states condition attention
Sensory inputs condition exogenous salience: i.e. attention conditions motor states
Episodic memory is memory of autobiographical events. Initially, this is purely visual and implemented as an auto-associative memory. Later it
will be multimodal and will include sound as well as associated emotions. It will then have to be implemented as a hetero-associative network of
unimodal auto-associative memories.
Episodic memory storage is conditioned by poor matching and high salience
Procedural memory is defined to mean perception-action event sequence
Procedural memory recall:

Event A & Event D inputs recall sequence of intermediate events
Event A input recalls Event B (subsequent event)

Affective state is a competitive network of three motives:

Distraction (exogenous salience prevalent)
Curiosity / Exploration (endogenous salience prevalent)
Social engagement (exogenous and endogenous salience balanced)

Action selection is not a winner-take-all process: one or more actions are disinhibited
The developmental drive is to construct a procedural memory that improves prediction

A more detailed description of the behaviour of each module and circuit in this architecture will be added in due course (both here on the iCub wiki and
in Deliverable D2.1: A Roadmap for the Development of Cognitive Capabilities in Humanoid Robots (http://www.robotcub.org/index.php/robotcub
/more_information/deliverables/deliverable_2_1_pdf)).

Links

iCub cognitive architecture version 0.1
iCub cognitive architecture version 0.2
iCub cognitive architecture version 0.3
iCub cognitive architecture version 0.4

The following links are to early versions of the iCub "software architecture", a design for an iCub application (i.e. a set of YARP modules) that
approximated some of the elementary aspects of the iCub cognitive architecture which now supercedes them. These early versions have all now been
deprecated, as has the title "software architecture" in this context. Software Architecture now refers, as it originally did, to the YARP
(http://eris.liralab.it/wiki/Deliverable_8.3) system.

iCub software architecture version 0.1
iCub software architecture version 0.2
iCub software architecture version 0.3
iCub software architecture version 0.4

See also the current draft iCub YARP module specifications
iCub brain (http://eris.liralab.it/brain) - current source code documentation

[Episodic Memory Module (http://eris.liralab.it/iCub/dox/html/group__icub__episodicMemory.html)] and Episodic Memory Specification
[Procedural Memory Module (http://eris.liralab.it/iCub/dox/html/group__icub__proceduralMemory.html)] and Procedural Memory Specification

VVV09 Cognitive Architecture Group

Retrieved from "http://eris.liralab.it/wiki/ICub_Cognitive_Architecture"

This page was last modified 06:03, 30 December 2009.
This page has been accessed 1,219 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Software Implementation of the iCub Cognitive Architecture (version 1.0)

This is the addendum to the Deliverable 2.2 (http://www.robotcub.org/index.php/robotcub
/more_information/deliverables/deliverable_2_2_pdf) which is the first release of the iCub
Cognitive Architecture. An placeholder document has been added to the RobotCub.org
website with a pointer to this page. The demonstrations are provided here as videos.

The software implementation is a collection applications comprising YARP modules: each
application realizes a given behaviour and runs independently on the iCub. The applications
are available from the iCub applications (http://eris.liralab.it/iCub/dox
/html/group__icub__applications.html) documentation. The modules are described also in the iCub modules
(http://eris.liralab.it/iCub/dox/html/group__icub__module.html) documentation.

The final goal is to have an application which instantiates all the modules in the iCub Cognitive Architecture and which
realizes the behaviours encapsulated in Empirical Investigations. At that point, the software implementation will be
redesignated version 2.0.

Each application is described below, organized by workpackage.

1 Important note
2 Generic (WP7 & WP8)
3 Attention system (WP3)
4 Body schema (WP3 and WP5)
5 Crawling (WP3)
6 Drumming (WP3)
7 Cartesian control (WP3)
8 Affordances (WP4 & WP5)
9 Interaction histories (WP6)

Please note that often the browser won't display/embed your videos correctly because of coded and/or other player
incompatibilities. In that case, we recommend downloading them to your computer and then playing them from
there.

the iCub hands

the attention system

iCub reaching

These are older videos to show the functionality of the robot and they are typical
mechanical stress-tests.

The main Doxygen documentation of the basic control modules is available as the
iCub application called demoy3 and can be browsed here (http://eris.liralab.it
/iCub/dox/html/group__appdemos.html)

Videos:
icub_yoga.wmv (http://eris.liralab.it/misc/icubvideos/icub_exercising.wmv)
icub_hands.wmv (http://eris.liralab.it/misc/icubvideos/iCub_Oct07.3.wmv)

Paper:
G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori. The iCub humanoid robot: an open platform for
research in embodied cognition. In PerMIS: Performance Metrics for Intelligent Systems Workshop. Aug
19-21, 2008, Washington DC - USA -PDF- (http://www.robotcub.org/misc/papers
/08_Metta_Sandini_Vernon_etal.pdf)

The main Doxygen documentation of the attention system is available as the iCub
application called attention_distributed and can be browsed here
(http://eris.liralab.it/iCub/dox/html/group__icub__attention__distributed.html)

Video: iCub-attention.wmv (http://eris.liralab.it/misc/icubvideos/iCub-attention-
may14-2008.wmv)

Paper:
Ruesch J., Lopes, M., Hornstein J., Santos-Victor J., Pfeifer, R. Multimodal
Saliency-Based Bottom-Up Attention - A Framework for the Humanoid
Robot iCub. International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 2008.
pp. 962-967. -PDF- (http://www.robotcub.org/misc/papers/08_Ruesch_Lopes_Hornstein_Victor_Pfeifer.pdf)

The main Doxygen documentation of the body schema is available as the iCub
application called lasaBodySchema and can be browsed here (http://eris.liralab.it
/iCub/dox/html/group__lasabodyschema.html)

Videos:
bodyschema.avi (http://eris.liralab.it/misc/icubvideos/body_schema_sim.avi) ,
this video shows the learning procedure in simulation, or .wmv file
(http://eris.liralab.it/misc/icubvideos/body_schema.wmv) .
fingerreach.avi (http://eris.liralab.it/misc/icubvideos/icub_finger_s.avi) or
fingerreach.wmv (http://eris.liralab.it/misc/icubvideos/icub_finger_s.wmv) ,
learning to reach using a different effector (a different finger as the end-point).
gazing.avi (http://eris.liralab.it/misc/icubvideos/icub_gazing_s.avi) or gazing.wmv (http://eris.liralab.it
/misc/icubvideos/icub_gazing.wmv) , learning to gaze appropriately (head-eye coordination).
reaching.avi (http://eris.liralab.it/misc/icubvideos/icub_reaching_s.avi) or reaching.wmv (http://eris.liralab.it
/misc/icubvideos/iCub-reach-epfl.wmv) , learning to reach (whole body).

Papers:
M. Hersch, E. Sauser and A. Billard. Online learning of the body schema. International Journal of
Humanoid Robotics, (2008). -PDF- (http://www.robotcub.org/misc/papers/08_Hersch_Sauser_Billard.pdf)
M. Hersch, Adaptive sensorimotor peripersonal space representation and motor learning for a
humanoid robot. PhD thesis (2009). link (http://library.epfl.ch/theses/?nr=4289)

the iCub crawling

the iCub drumming

the Jacobian-based Cartesian
controller

The main Doxygen documentation of the crawling controller is available as the iCub
application called missing_application and can be browsed [http:// here]

Videos:
crawling.wmv (http://eris.liralab.it/misc/icubvideos/first_crawl.wmv) , a few
steps with the crawling controller.

Paper (and more):
-Deliverable 3.4- (http://ares.lira.dist.unige.it/ezpublish/index.php
/robotcub_admin/content/download/1172/4095/file/DELIVERABLE_3_4.pdf)
A presentation on the controller structure: presentation.pdf
S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta and A. Ijspeert. A modular bio-inspired architecture
for movement generation for the infant-like robot iCub. In Proceedings of the second IEEE RAS / EMBS
International Conference on Biomedical Robotics an Biomechatronics (BioRob), 2008. -PDF of submitted
paper-

The main Doxygen documentation of the drumming controller is available as the
iCub application called drummingEPFL and can be browsed here
(http://eris.liralab.it/iCub/dox/html/group__icub__drummingEPFL.html)

Videos, various videos of the robot drumming:
drumming1.wmv (http://eris.liralab.it/misc/icubvideos/icubDrumPart1.wmv)
drumming2.wmv (http://eris.liralab.it/misc/icubvideos/icubDrumPart2.wmv)
drumming3.wmv (http://eris.liralab.it/misc/icubvideos/icubDrumPart3.wmv)
drumming4.wmv (http://eris.liralab.it/misc/icubvideos/icubDrumPart4.wmv)
automatica08.wmv (http://eris.liralab.it/misc/icubvideos/automatica08-
edited.wmv)

Paper (and more):
-Deliverable 3.4- (http://ares.lira.dist.unige.it/ezpublish/index.php/robotcub_admin/content/download
/1172/4095/file/DELIVERABLE_3_4.pdf)
A presentation on the controller structure: presentation.pdf
S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta and A. Ijspeert. A modular bio-inspired architecture
for movement generation for the infant-like robot iCub. In Proceedings of the second IEEE RAS / EMBS
International Conference on Biomedical Robotics an Biomechatronics (BioRob), 2008. -PDF of submitted
paper-

The main Doxygen documentation of the cartesian controller is available as the iCub
application called armCartesianController and can be browsed here
(http://eris.liralab.it/iCub/dox/html/group__icub__armCartesianController.html) . The
implementation includes also the trajectory generation implemented for the learning
of the body schema (see above).

Videos, Cartesian controller in action:
icub_guicontrolled.avi (http://eris.liralab.it/misc/icubvideos
/icub_guicontrolled.avi) or icub_guicontroller.wmv (http://eris.liralab.it
/misc/icubvideos/icub_guicontroller.wmv) , iCub arm receives commands from a GUI developed in
MATLAB: the complete pose (position+orientation) is controlled.

the iCub running the
affordance modules

the Peekaboo game

Paper:
Not yet!

The main Doxygen documentation of the affordance experiment is available as the
iCub application called missing application and can be browsed here
(http://eris.liralab.it/iCub/dox/html/)

Video, an initial video of the affordance experiment on the iCub:
affordances.wmv (http://eris.liralab.it/misc/icubvideos/affordances.wmv)

Paper (and more):
-Deliverable 4.1- (http://www.robotcub.org/index.php/robotcub/content
/download/1039/3660/file/RC_IST_AB_Deliverable_D4.1.pdf)
Lopes, M., Melo, F., and Montesano, L. Affordance-Based Imitation
Learning in Robots. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego,
USA, October 2007.-PDF of submitted paper- (http://www.robotcub.org/misc/papers
/07_Lopes_Melo_Montesano.pdf)

The main Doxygen documentation of the interaction histories experiment is available
as the iCub application called iha_manual and can be browsed here
(http://eris.liralab.it/iCub/dox/html/group__icub__iha__app.html)

Video:
iha.wmv (http://eris.liralab.it/misc/icubvideos/iha.wmv) , full video of the
experiment.

Paper (and more):
-Deliverable 6.4- (http://www.robotcub.org/index.php/robotcub/content
/download/1144/4009/file/d6.4.pdf)
Mirza, N. A., Nehaniv, C. L., Dautenhahn, K., AND te Boekhorst, R. 2005. Using sensory-motor
phase-plots to characterise robot-environment interactions. In Proc. of 6th IEEE International Symposium
on Computational Intelligence in Robotics and Automation. -PDF of submitted paper-
(http://www.robotcub.org/misc/papers/05_Mirza_Nehaniv_Dautehahn_teBoekhorst.pdf)

Retrieved from "http://eris.liralab.it/wiki/Deliverable_2.2"

This page was last modified 08:49, 30 July 2009.
This page has been accessed 3,822 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

An application is a collection of modules that you need to run to instantiate a certain behavior on the robot. They go from
simple applications that grab images on the disk to complex behaviors that control the robot attention or perform reaching.

Applications are described in terms of xml files. How you do this is explained in some details here:

Managing applications

To prepare your system to run applications you need a python interpreter. Follow the instructions here:

Prepare your system for running applications

Retrieved from "http://eris.liralab.it/wiki/Running_applications"

This page was last modified 17:04, 7 September 2009.
This page has been accessed 270 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Motor Control and Encoders
1.1 Motor encoders

2 Sensors
2.1 Cameras
2.2 Microphones
2.3 Inertial sensor
2.4 Force/Torque Sensor

3 Other actuators and sensors
3.1 Finger encoders
3.2 Facial expressions

3.2.1 Low level interface
3.2.2 High level interface

We have identified 6 robot parts: head, left_arm, right_arm, torso, left_leg and right_leg.

Each part has three ports for: rpc, straming input, streaming output.

All ports have are named using a prefix, followed by rpc:i, command:i, state:o respectively for rpc, streaming input and
streaming output.

Prefixes for each part are:

 /icub/head
 /icub/left_arm
 /icub/right_arm
 /icub/torso
 /icub/left_leg
 /icub/right_leg

More informations about the robot joints and parts are reported here: ICub_joints

Motor encoders

Motor encoders are streamed on the port:

 /icub/<part>/state:o

Data format: a vector containing all joints of the part (see ICub_joints), units are degrees.

Cameras

Images from the two eyes are available in rgb format from the ports:

 /icub/cam/left
 /icub/cam/right

Data format: Yarp ImageOf<PixelRgb>, size depending on the framegrabber resolution.

Microphones

Data from the microphones is available on the port:

 /icub/mics

Inertial sensor

Data from the inertial sensor is available on the port:

 /icub/inertial

Data format: a vector of 12 values:

0:2 :euler angles roll, pitch yaw (degrees)
3:5 :calibrated acceleration along X,Y,Z (m/s^2)
6:8 :calibrated rate of turn (gyro), along X,Y,Z axes (rad/s)
9:11 :calibrated magnetic field X,Y,Z (arbitrary units)

More information about the sensor, data format and reference system are reported here: MTx specs.

Force/Torque Sensor

Six axis torque sensors on the arms (available only on iCub 1.1) are streamed on:

 /icub/left_arm/analog:o
 /icub/right_arm/analog:o

Data format: a vector of 6 floating point numbers.

 0:2 :forces
 3:5 :torques

Reference frames to be determined.

Finger encoders

On each hand finger positions are streamed out on the following ports (available only on iCub 1.1):

 /icub/right_hand/analog:o
 /icub/left_hand/analog:o

A vector of 15 floating point numbers, each corresponding to finger joints.

Facial expressions

Facial expressions are accessible through the following ports:

 /icub/face/raw: low level interface
 /icub/face/emotions: high level interface

Low level interface

On /icub/face/raw you have access to the low level interface. This port accepts rpc commands to control individual
devices (eyelids, mounth ...).

We skip details here, more can be found in Expression control (http://robotcub.svn.sf.net/viewvc/robotcub/trunk
/iCubPlatform/doc/manuals/RC_IST_110_D_000_07_EXPRESSIONS_CONTROL.pdf) .

High level interface

On /icub/face/emotions you have access through rpc to a higher level interface that allows controlling all devices together
to produce facial expressions.

We report here a short summary:

rpc commands to /icub/face/emotions are

 set <subsystem> <emotion>
 get <subsystem>

<subsystem> can be: mou, eli, leb, reb, all

<emotion> can be: neu, tal, hap, sad, sur ,evi, ang, shy, cun

For example:

 yarp rpc /icub/face/emotions
 set mou hap
 set eli hap
 set all sad

More details are available here Expression control (http://robotcub.svn.sf.net/viewvc/robotcub/trunk/iCubPlatform
/doc/manuals/RC_IST_110_D_000_07_EXPRESSIONS_CONTROL.pdf) .

Retrieved from "http://eris.liralab.it/wiki/Software_interface:_standard_port_names_for_hardware_devices"

This page was last modified 15:46, 30 October 2009.
This page has been accessed 1,250 times.
Content is available under GNU Free Documentation License 1.2.

Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Bootloader update
1.1 JTAG pinout in BLL and 4DC

2 Firmware update
3 Firmware versions

3.1 Head
3.2 Torso
3.3 Left arm
3.4 Right arm
3.5 legs

To update the bootloader you must have a programmer for Freescale DSP56F807 (USBTAP or a ParallelToJTAG
programmer), CodeWarrior IDE that you can download from the http://www.freescale.com (the code of the bootloader is
small then it is not required any license) and the CanLoader module. In order to see the bootloader version of the boards
you must run the CanLoader module in gui mode and press the connect button within five seconds after switching on the
boards. Information on where and what to buy from Freescale (Metrowerks CodeWarrior) can be found in here.

There is also a document describing the firmware versions available from here (http://robotcub.svn.sourceforge.net/svnroot
/robotcub/trunk/iCubPlatform/doc/manuals/RC_DIST_100_D_12_01_firmware_versions.doc)

How to upload the bootloader step by step.

Connect the JTAG to the connector P1 of the BLL or MC4 board. If you have to remove screws to do it, you have
to put them in the same place after installing the bootloader. The pinout of the connector is the following

JTAG pinout in BLL and 4DC

Connector P1 Label

1 TDI

2 TDO

3 GND

4 TCK

5 ~RESET

6 TMS

7 3.3V

8 ~DE

9 ~TRST

10 ~RSTO

Run CodeWarrior IDE and open the project $ICUB_ROOT$/src/firmware/loader56f807/RM-DownLoaderCAN.mcp

Go to Edit -> 56807 BootLoader Setting and set the programmer you are using. In the case of the USBTAP this is
the setting:

Switch on the board

Press the play button on the project tab and wait until the download is completed. It will take less then one minute.
Now you must restart the board and download the right firmware using the CanLoader application in gui mode.
Note: You must download the firmware immediately after (from one to 5 seconds) the board is switched on .
So, you have to switch on the board and then press the connect button in the canLoader gui.

Note: the firmware upgrade is based on a command line version of the CanLoader module. Before you try to use this
script please check that this module is compiled. You should also make sure that the hardware modules it needs
(controlboard, canmotioncontrol, ecan/pcan) are compiled and liked correctly (this is usually the case on the robot pc104).

We here describe the procedure for updating the firmware (bugs should be reported on the mailing list robotcub-
hackers@lists.sourceforge.net). Please notice that the firmware upgrade is delicate procedure which changes one of the
core parts of the iCub robot software (and therefore requires a corresponding update of the yarp and iCub modules). If
you decide to perform a firmware upgrade, be aware that this might change the robot motor behaviour quite a lot.
Nevertheless, a firmware upgrade is always recommended because it usually correspond to improvements of the control
board performances. Here are the steps for performing the firmware update:

Connect to the PC104.
Go the $YARP_ROOT directory and update the entire yarp module:

icub@pc104:YARP_ROOT$ svn update

Recompile Yarp:

icub@pc104:YARP_ROOT$ make

Go the $ICUB_ROOT directory and update the entire iCub module:

icub@pc104:ICUB_ROOT$ svn update.

Recompile iCub:

icub@pc104:ICUB_ROOT$ make

Go to the firmware directory:

icub@pc104:ICUB_ROOT$ cd $ICUB_ROOT/src/firmware/build

Launch the firmware update script (this script assumes that you are using the CFW canbus board integrated in the
PC104. If you are using the ESD usb canbus please change all occurences of pcan to ecan in the configuration file
updateRobot.txt):

icub@pc104:ICUB_ROOT/src/firmware/build$./updateRobot.sh updateRobot.txt

Or alternatively you can update just a part of the robot:

icub@pc104:ICUB_ROOT/src/firmware/build$./updateRobot.sh updateLegs.txt

We here give the information for associating the correct firmware versions to the different boards which control the iCub
robot.

Head

boardLabel canDeviceNum boardId firmware

0B0 -> 0 1 4DC.1.11.out.S

0B1 -> 0 3 4DC.1.15.out.S

Torso

boardLabel canDeviceNum boardId firmware

0B3 -> 0 5 2BLL.1.54.out.S

0B4 -> 0 6 2BLL.1.52.out.S

Left arm

boardLabel canDeviceNum boardId firmware

1B0 -> 1 1 2BLL.1.50.out.S

1B1 -> 1 2 2BLL.1.53.out.S

1B2 -> 1 3 4DC.1.19.out.S

1B3 -> 1 5 4DC.1.18.out.S

1B4 -> 1 7 4DC.1.20.out.S

Right arm

boardLabel canDeviceNum boardId firmware

2B0 -> 2 1 2BLL.1.50.out.S

2B1 -> 2 2 2BLL.1.53.out.S

2B2 -> 2 3 4DC.1.19.out.S

2B3 -> 2 5 4DC.1.18.out.S

2B4 -> 2 7 4DC.1.20.out.S

legs

boardLabel canDeviceNum boardId firmware

3B5 -> 3 5 2BLL.1.51.out.S

3B6 -> 3 6 2BLL.1.51.out.S

3B7 -> 3 7 2BLL.1.51.out.S

3B8 -> 3 8 2BLL.1.51.out.S

3B9 -> 3 9 2BLL.1.51.out.S

3B10 -> 3 10 2BLL.1.51.out.S

Retrieved from "http://eris.liralab.it/wiki/Firmware"

This page was last modified 22:46, 15 December 2009.
This page has been accessed 1,155 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

10. Standardization of methods

From Wiki for RobotCub and Friends

Author: Lorenzo Natale

Source files, binaries, scripts and config files are separated entities that can be placed in separate directories. This allows
a better organization of your build and in turn simplifies development.

1 Sources
2 Binaries
3 Scripts and config/ini files
4 Robot name

The source tree is where you download the sources, either from CVS or from a zip/tar file. Sources can be shared between
users or machines. Sometimes it is convenient to share sources between machines (or users) so that changes/updates are
shared by everybody.

The environment variable ICUB_ROOT should point to the location of your sources.

Your build directory is where you place: make/project files and files that are the result of the compilation (object files, for
example). This also stores libs and executables that are produced when you compile. This directory is more difficult to
share, as its content changes depending on i) the compile environment used and ii) the user's choices. If you have a cluster
of similar machines (same compiler, same system libraries, compatible CPU) you can share the build directory and spare
time. However, if you have machines with mixed architecture (32 versus 64 bits), or that have different Linux distributions,
you need two separate build trees. Your build also contains CMake files used by other projects to use the binaries
(CMake files).

ICUB_DIR should point to this directory. Typically you run:

 cd $ICUB_DIR
 cmake $ICUB_ROOT

$ICUB_ROOT/app stores scripts and configuration files for running your applications.

Each application owns a directory in app. Inside this directory you should place a file that contains the documentation of
the application and two directories:

conf: contains all configuration files
scripts: contains the xml script(s)

Within the app directory there are some files that are private to certain robots (e.g. calibration files). They are stored in
directories whose name matches that of the robot (e.g. iCubGenova01). These files should be well separated and are
provided with the robot. We would like to keep them in the repository so that i) they are not lost and ii) we can update
them remotely and propagate them to users.

Applications that need access to these parameters should be able to do so transparently.

Since July 2009 it was decided to delegate the localization of this robot specific directory to the ResourceFinder. To use
this feature you need to set an environment variable called ICUB_ROBOTNAME and set it to your robot name (e.g.
iCubGenova01):

 ICUB_ROBOTNAME= name of your robot

for example:

 ICUB_ROBOTNAME=iCubGenova01

The details of how the ResourceFinder works are provided elsewhere. In short the ResourceFinder will add
app/$ICUB_ROBOTNAME/conf to the search path. Files will be searched in this directory after the context and before
app/default/conf.

Retrieved from "http://eris.liralab.it/wiki/Organization_of_source_code%2C_binaries%2C_scripts_and_config_files"

This page was last modified 17:28, 10 September 2009.
This page has been accessed 767 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

1 Overview
2 The RFModule Class
3 Configuration

3.1 Essential Command-line Parameters
3.1.1 Configuration File
3.1.2 Context
3.1.3 Module Name and Port Names
3.1.4 Robot Name
3.1.5 Which Parameters Are Parsed Automatically?

3.2 Configuration File Parameters
3.3 Other Configuration Files
3.4 An Example of how to Configure the Module

4 Graceful Shut-down
5 Thread-based Implementation

5.1 Using Threads to Implement Your Algorithm
5.2 An Example of how to use the Thread Class
5.3 Creating, Starting, and Stopping the Thread

6 Run-time Interaction
6.1 The respond() Method
6.2 An Example of how to change module parameters at run-time
6.3 Remote Connection

7 Documentation and Coding Guidelines
8 Application Description
9 Resources
10 The Complete myModule Example

Our goal in this document is to summarize all of the the different guidelines on standards for iCub software to make it
easier for developers to find out what they need to do so that their code conforms to best practice (e.g. configuration
management, parameter usage, port naming and renaming, use of RFModule helper class, use of threads, graceful
shut-down, run-time interaction, documentation, coding standards, application description, etc). A full list of all the
resources that were used in putting together this summary is provided at the end.

To help bring all this material together, we will develop a simple example module to highlight the key issues. The code for
the complete module is also provided at the end.

If you want to jump in the deep end, start by reading

Module Standards (http://eris.liralab.it/iCub/dox/html/module_standards.html) to find out the minimal
responsibilities of your module with respect to handling parameters and ports, as well configuration and shut down.
Then read the following tutorials:

Resource finder overview

How to organize the command line parameters of your modules (http://eris.liralab.it/iCub/dox
/html/icub_resource_finder_basic.html)

Organizing Parameters: Advanced Tutorial (http://eris.liralab.it/iCub/dox/html/icub_resource_finder_advanced.html)

Using the module helper class to write a program (http://eris.liralab.it/iCub/dox/html/icub_tutorial_module.html)

The fourth of these tutorials is essential reading and introduces you to the RFModule (http://eris.liralab.it/yarpdoc/d9/d26
/classyarp_1_1os_1_1RFModule.html) class, the mandatory starting point when developing iCub modules. Note that we
are moving away from using Module (http://eris.liralab.it/yarpdoc/d1/d03/classyarp_1_1os_1_1Module.html) class as
RFModule offers similar functionality to Module, but it adds support for the ResourceFinder class.

Alternatively, read through this page and then refer to the documents above for more detail and clarification, if necessary.

The starting point in writing a module for the iCub repository is to develop a sub-class of the yarp::os::RFModule
(http://eris.liralab.it/yarpdoc/d9/d26/classyarp_1_1os_1_1RFModule.html) class.

First, we define a sub-class, or derived class, of the yarp::os::RFModule class. The module's variables - and
specifically the module's parameters and ports - go in the private data members part and you need to override three
methods:

bool configure();
bool interruptModule();
bool close();

We will see later that there are three other methods which can be useful to override:

bool respond();
double getPeriod();
bool updateModule();

In the following, we assume we are writing a module named myModule. This module will be implemented as a sub-class
yarp::os::RFModule (http://eris.liralab.it/yarpdoc/d9/d26/classyarp_1_1os_1_1RFModule.html) called MyModule (capital
M because we are going to create a sub-class).

#include <iostream>
#include <string>
#include <yarp/os/RFModule.h>
#include <yarp/os/Network.h>

using namespace std;
using namespace yarp::os;

class MyModule:public RFModule
{
 /* module parameters */

 /* class variables */

public:

 bool configure(yarp::os::ResourceFinder &rf); // configure all the module parameters and return true if s
 bool interruptModule(); // interrupt, e.g., the ports
 bool close(); // close and shut down the module
 bool respond();
 double getPeriod();
 bool updateModule();
}

We will deal with the various issues of implementing the module under several headings, addressing configuration, doing
some work, run-time interaction, graceful shut-down, standards, and application description.

By configuration, we mean the ability to specify the way that a given module is used. There are two aspects to this:

how the module is presented (i.e. which particular interfaces are used: the names of ports used, the name of the
configuration file, the path to the configuration file, the name of the module, and the name of the robot) and

1.

the module parameters that govern its behaviour (e.g. thresholds, set-points, and data files)2.

We refer to these collectively as resources. Typically, the configuration file name, the configuration file path (called the
context), the module name, and the robot name are specified as command-line parameters, while all the remaining
resources, including the names of the ports, are typically specified in the configuration file.

What's important to realize, however, is that all resources are handled the same way using the ResourceFinder which not
only greatly simplifies the process of finding the resources but also simplifies the process of parsing them. There is more
detail on handling resources in Configuration and resource files.

It's worth noting that parameters that are specified in the configuration file can also be specified in the command-line if you
wish. The reverse is also true, with some restrictions (e.g. it only makes sense to specify the configuration file and the
configuration file path on the command-line). Finally, modules should be written so that default values are provided for all
resources so that the module can be launched without any parameters. Again, the ResourceFinder makes it easy to arrange
this.

Right now, what's important to grasp is that all these configuration issues are implemented by

preparing the Resource Finder in the main function by setting the default configuration file and its path,
overriding the yarp::os::RFModule::configure() method to parse all the parameters from the
command-line and the configuration file.

The following sections explain the implementation details of each aspect of this configuration.

Essential Command-line Parameters

Configuration File

Configuration can be changed by changing configuration files. The configuration file which the module reads can be
specified as a command line option.

--from myModule.ini

The module should set a default configuration file using
yarp::os::ResourceFinder::setDefaultConfigFile("myModule.ini"). This should be done in the
main() function before running the module.

This is overridden by the --from parameter.

The .ini file should usually be placed in the $ICUB_ROOT/app/myModule/conf sub-directory.

Context

The relative path from $ICUB_ROOT/app/ to the directory containing the configuration file is specified from the
command line by

--context myModule/conf

The module should set a default context using
yarp::os::ResourceFinder::setDefaultContext("myModule/conf"). This should be done in the
main() function before running the module.

This is overridden by the --context parameter.

Module Name and Port Names

Warning: the naming convention for the --name, --robot, and port name arguments in key-value pairs has changed. The
arguments of --name and --robot do not having a leading "/" prefix and port name arguments always have a leading "/"
prefix ... exactly the opposite of what was considered acceptable practice in the past.

It should be possible to specify the names of any ports created by a module via configuration. There are two aspects to
this: the stem of the port name and the port name itself.

A command-line option of

--name altName

sets the name of the module and will cause the module to use "/altName" as a stem for all port names provided the port
names are generated using the yarp::os::RFModule::getName() method. Note that he leading "/" prefix has to be
added explicitly to the module name to create the port name.

The module should set a default name (and, hence, a default stem) using
yarp::os::RFModule::setName("myModule").

This is overridden by the --name parameter but you must check for this parameter and call setName() accordingly,
e.g.

string moduleName;

moduleName = rf.check("name",
 Value("myModule"),
 "module name (string)").asString();

setName(moduleName.c_str()); // do this before processing any port name parameters

The port names should be specified as parameters, typically as key-value pairs in the .ini configuration file, e.g.

myInputPort /image:i
myOutputPort /image:o

These key-value pairs can also be specified as command-line parameters, viz: --myInputPort /image:i
--myOutputPort /image:o

The module should set a default port name using the ResourceFinder, e.g using
yarp::os::ResourceFinder::check();

For example

string inputPortName = "/";
 inputPortName += getName(
 rf.check("myInputPort",
 Value("/image:i"),
 "Input image port (string)").asString()
);

will assign to inputPortName the value /altName/image:i if --name altName is specified as a parameter.
Otherwise, it would assign /myModule/image:i On the other hand, it would assign /myModule/altImage:i if the
key-value pair myInputPort /altImage:i was specified (either in the .ini file or as a command-line parameter)
but not the --name altName

When providing the names of ports as parameter values (whether as a default value in ResourceFinder::check, as a
value in the key-value list in the .ini configuration file, or as a command line argument), you always include the leading
/.

All this code goes in the configure() method.

Robot Name

If you connect automatically to the robot, make sure the name of the ports to which you connect to can be changed from
the command line. This will make it possible to switch from using the simulator (whose ports are prefixed with icubSim)
to the real robot (whose ports are prefixed with icub).

Usually this is achieved with a --robot parameter. For example, to access the left camera on the simulator (/iCubSim
/cam/left) use --robot icubSim and to access the left camera on the robot (/icub/cam/left) use -–robot
icub

Which Parameters Are Parsed Automatically?

Parsing the --from and --context parameters is handled automatically by the RFModule but --name and
--robot must be handled explicitly.

As noted above, you would handle the --name parameter by using ResourcFinder::check() to parse it and get
the parameter value, then user setName() to set it. You should do this before proceeding to process any port name
parameters, otherwise the wrong stem will be used when constructing the port names from the parameter values.

Typically, you would handle the --robot parameter by using ResourceFinder to parse the --robot or --name
parameter to get the root of the port name and then construct the full port name by appending the specific part of the robot
required. An example is provided below.

Configuration File Parameters

The configuration file, typically named myModule.ini and located in the $ICUB_ROOT/app/myModule/conf
directory, contains a key-value list: a list of pairs of keywords (configuration parameter names) and values (configuration
parameter values), e.g.

myInputPort /altImage:i
myOutputPort /altImage:o
threshold 9
...

These parameters are parsed using the ResourceFinder (http://eris.liralab.it/yarpdoc/d9/ddf
/classyarp_1_1os_1_1ResourceFinder.html) within an RFModule object (i.e. by methods inherited by your module such
as yarp::os::Searchable::check() (http://eris.liralab.it/yarpdoc/d2/d0c
/classyarp_1_1os_1_1Searchable.html#818029558a2d8772db43a5a3c8b61125)).

Typically, key-value pairs specify the parameters and their values that govern the behaviour of the module, as well as the
names of the module ports, should you wish to rename them.

Other Configuration Files

Apart from processing the parameters in the configuration file myModule.ini, it's often necessary to access
configuration data in other files. For example, you might want to read the intrinsic camera parameters from a camera
calibration file. Let's assume this configuration file is called icubEyes.ini and we wish to extract the principal points

of the left and right cameras. The coordinates of the principle points, and other intrinsic camera parameters, are generated
by the camera calibration module (http://eris.liralab.it/iCub/dox/html/group__icub__camcalibconf.html) and are stored as a
sequence of key-value pairs:

cx 157.858
cy 113.51

Matters are somewhat complicated by the fact that we need to read two sets of coordinates, one for the left camera and one
for the right. Both sets have the same key associated with them so the left and right camera parameters, including the
principal point coordinates, are typically listed under different group headings, viz.

[CAMERA_CALIBRATION_RIGHT]
...
cx 157.858
cy 113.51
...

[CAMERA_CALIBRATION_LEFT]
...
cx 174.222
cy 141.757
...

So, to read these two pairs of coordinates, we need to

find the name of the file (e.g. icubEyes.ini)
locate the file (i.e. get its full path)
open the file and read its content
find the CAMERA_CALIBRATION_RIGHT and CAMERA_CALIBRATION_LEFT groups
read the respective cx and cy key values.

All of this is accomplished straightforwardly with the ResourceFinder (http://eris.liralab.it/yarpdoc/d9/ddf
/classyarp_1_1os_1_1ResourceFinder.html) and Property (http://eris.liralab.it/yarpdoc/da/d1f
/classyarp_1_1os_1_1Property.html) classes.

The first step is to get the name of the configuration file. This will typically be one of the key-value pairs in the module
configuration file myModule.ini, e.g.

cameraConfig icubEyes.ini

so that it can be read in exactly the same way as the other parameters in the previous section, e.g. using
yarp::os::Searchable::check() (http://eris.liralab.it/yarpdoc/d2/d0c
/classyarp_1_1os_1_1Searchable.html#818029558a2d8772db43a5a3c8b61125) .

The full path can then be determined by the yarp::os::ResourceFinder::findFile() (http://eris.liralab.it
/yarpdoc/d9/ddf/classyarp_1_1os_1_1ResourceFinder.html#355586da9ad41565a2a0daa36e7ec2e1) method.

The contents of this file can then be read into a Property (http://eris.liralab.it/yarpdoc/da/d1f
/classyarp_1_1os_1_1Property.html) object using the yarp:os:Property::fromConfigFile()
(http://eris.liralab.it/yarpdoc/da/d1f/classyarp_1_1os_1_1Property.html#06c34c056e399f1cad1ad74b3a147a76) method.

Locating the required group (e.g. CAMERA_CALIBRATION_LEFT) is accomplished with the yarp:
os:Property::findGroup() (http://eris.liralab.it/yarpdoc/da/d1f
/classyarp_1_1os_1_1Property.html#ed956fea82f3b54bc846946c1f836ccb) method.

This method returns a Bottle (http://eris.liralab.it/yarpdoc/d3/d3e/classyarp_1_1os_1_1Bottle.html) with the full

key-value list under this group. This list can then be searched for the required key and value using the
yarp::os::Searchable::check() (http://eris.liralab.it/yarpdoc/d2/d0c
/classyarp_1_1os_1_1Searchable.html#818029558a2d8772db43a5a3c8b61125) method, as before.

Please refer to the myModule example for further details.

An Example of how to Configure the Module

The following simple module shows how to handle the foregoing configuration issues.

#include <yarp/os/all.h>
#include <yarp/os/RFModule.h>
#include <yarp/os/Network.h>
#include <yarp/os/Thread.h>
#include <yarp/sig/all.h>

using namespace std;
using namespace yarp::os;
using namespace yarp::sig;

class MyModule:public RFModule
{
 /* module parameters */

 string moduleName;
 string robotName;
 string robotPortName;
 string inputPortName;
 string outputPortName;
 string cameraConfigFilename;
 float fxLeft, fyLeft; // focal length
 float fxRight, fyRight; // focal length
 float cxLeft, cyLeft; // coordinates of the principal point
 float cxRight, cyRight; // coordinates of the principal point
 int thresholdValue;

 /* class variables */

 BufferedPort<ImageOf<PixelRgb> > imageIn; //example input port
 BufferedPort<ImageOf<PixelRgb> > imageOut; //example output port

public:

 bool configure(yarp::os::ResourceFinder &rf); // configure all the module parameters and return true if s
 bool interruptModule(); // interrupt, e.g., the ports
 bool close(); // close and shut down the module
 bool respond(const Bottle& command, Bottle& reply)
 double getPeriod();
 bool updateModule();
};

/*
 * Configure method. Receive a previously initialized
 * resource finder object. Use it to configure your module.
 * If you are migrating from the old Module, this is the
 * equivalent of the "open" method.
 */

bool MyModule::configure(yarp::os::ResourceFinder &rf)
{
 /* Process all parameters from both command-line and .ini file */

 /* get the module name which will form the stem of all module port names */

 moduleName = rf.check("name",
 Value("myModule"),
 "module name (string)").asString();

 /*
 * before continuing, set the module name before getting any other parameters,
 * specifically the port names which are dependent on the module name
 */

 setName(moduleName.c_str());

 /* now, get the rest of the parameters */

 /*
 * get the robot name which will form the stem of the robot ports names
 * and append the specific part and device required
 */

 robotName = rf.check("robot",
 Value("icub"),
 "Robot name (string)").asString();

 robotPortName = "/" + robotName + "/head";

 /*
 * get the cameraConfig file and read the required parameter values cx, cy
 * in both the groups [CAMERA_CALIBRATION_LEFT] and [CAMERA_CALIBRATION_RIGHT]
 */

 cameraConfigFilename = rf.check("cameraConfig",
 Value("icubEyes.ini"),
 "camera configuration filename (string)").asString();

 cameraConfigFilename = (rf.findFile(cameraConfigFilename.c_str())).c_str();

 Property cameraProperties;

 if (cameraProperties.fromConfigFile(cameraConfigFilename.c_str()) == false) {
 cout << "myModule: unable to read camera configuration file" << cameraConfigFilename;
 return 0;
 }
 else {
 cxLeft = (float) cameraProperties.findGroup("CAMERA_CALIBRATION_LEFT").check("cx", Value(160.0), "cx
 cyLeft = (float) cameraProperties.findGroup("CAMERA_CALIBRATION_LEFT").check("cy", Value(120.0), "cy
 cxRight = (float) cameraProperties.findGroup("CAMERA_CALIBRATION_RIGHT").check("cx", Value(160.0), "cx
 cyRight = (float) cameraProperties.findGroup("CAMERA_CALIBRATION_RIGHT").check("cy", Value(120.0), "cy
 }

 /* get the name of the input and output ports, automatically prefixing the module name by using getName()

 inputPortName = "/";
 inputPortName += getName(
 rf.check("myInputPort",
 Value("/image:i"),
 "Input image port (string)").asString()
);

 outputPortName = "/";
 outputPortName += getName(
 rf.check("myOutputPort",
 Value("/image:o"),
 "Output image port (string)").asString()
);

 /* get the threshold value */

int main(int argc, char * argv[])
{
 /* initialize yarp network */

 Network yarp;

 /* create your module */

 MyModule myModule;

 /* prepare and configure the resource finder */

 ResourceFinder rf;
 rf.setVerbose(true);
 rf.setDefaultConfigFile("myModule.ini"); //overridden by --from parameter
 rf.setDefaultContext("myModule/conf"); //overridden by --context parameter
 rf.configure("ICUB_ROOT", argc, argv);

 /* run the module: runModule() calls configure first and, if successful, it then runs */

 myModule.runModule(rf);

 return 0;
}

To achieve clean shutdown, two methods yarp::os::RFModule::interruptModule() and
yarp::os::RFModule::close() should be overridden. The interruptModule() method will be called when it
is desired that updateModule() finish up. When it has indeed finished, close() will be called. For example:

bool MyModule::interruptModule()
{
 imageIn.interrupt();
 imageOut.interrupt();
 return true;
}

bool MyModule::close()
{
 imageIn.close();
 imageOut.close();
 return true;
}

For yarp::os::RFModule, the method yarp::os::RFModule::updateModule() will be called from the main
control thread until it returns false. After that a clean shutdown will be initiated. The period with which it is called is
determined by the method yarp::os::RFModule::getPeriod(). Neither method need necessarily be overridden.
The default methods provide the required functionality.

/* Called periodically every getPeriod() seconds */

bool MyModule::updateModule()
{
 return true;
}

double MyModule::getPeriod()
{
 /* module periodicity (seconds), called implicitly by myModule */

 return 0.1;
}

Note that the updateModule() method is not meant to run code that that implements the algorithm encapsulated in the
module. Instead updateModule() is meant to be used as a periodic mechanism to check in on the operation of the
thread that implements the module (e.g. gather interim statistics, change parameter settings, etc.). The updateModule()
is called periodically by the RFModule object, with the period being determined by the getPeriod() method. Both
updateModule() and getPeriod() can be overridden in your implementation of myModule.

Using Threads to Implement Your Algorithm

For the module to actually do anything, it should start or stop threads using the YARP Thread (http://eris.liralab.it/yarpdoc
/d2/d2d/classyarp_1_1os_1_1Thread.html) and RateThread (http://eris.liralab.it/yarpdoc/d9/d9c
/classyarp_1_1os_1_1RateThread.html) classes. Typically, these threads are started and stopped in the configure and
close methods of the RFModule class. If you are writing a control loop or an algorithm that requires precise scheduling
we strongly advise that you use the RateThread (http://eris.liralab.it/yarpdoc/d9/d9c
/classyarp_1_1os_1_1RateThread.html) class.

Just as the starting point in writing a module for the iCub repository is to develop a sub-class of the yarp::os::RFModule
(http://eris.liralab.it/yarpdoc/d9/d26/classyarp_1_1os_1_1RFModule.html) class, the starting point for implementing the
algorithm within that module is to develop a sub-class of either Thread (http://eris.liralab.it/yarpdoc/d2/d2d
/classyarp_1_1os_1_1Thread.html) or RateThread (http://eris.liralab.it/yarpdoc/d9/d9c
/classyarp_1_1os_1_1RateThread.html) .

In the following, we will explain how to do it with Thread (http://eris.liralab.it/yarpdoc/d2/d2d
/classyarp_1_1os_1_1Thread.html) ; it's straightforward to extend this to RateThread (http://eris.liralab.it/yarpdoc/d9/d9c
/classyarp_1_1os_1_1RateThread.html) (effectively, you provide an argument with the RateThread instantiation
specifying the period with which the thread should be spawned, the thread just runs once so that you don't have to check
isStopping() to see if the thread should end).

Perhaps one of the best ways of thinking about this is to view it as a two levels of encapsulation, one with RFModule, and
another with Thread; the former deals with the configuration of the module and the latter dealing with the execution of the
algorithm. The only tricky part is that somehow these two objects have to communicate with one another.

You need to know three things:

The thread is instantiated and started in the configure() method.1.
The thread is stopped in the close() method.2.
When the thread is instantiated, you pass the module parameters to it as a set of arguments (for the constructor).3.

Let's begin with the definition of a thread MyThread (capital M because we are going to create a sub-class) and then turn

our attention to how it is used by MyModule.

An Example of how to use the Thread Class

First, we define a sub-class, or derived class, of the yarp::os::Thread class. The algorithm's variables - and
specifically the thread's parameters and ports - go in the private data members part and you need to override four
methods:

MyThread::MyThread(); // the constructor1.
bool threadInit(); // initialize variables and return true if successful2.
void run(); // do the work3.
void threadRelease(); // close and shut down the thread4.

There are a number of important points to note.

First, the variables in the myThread class which represent the thread's parameters and port should be pointer types and
the constructor parameters should initialize them. In turn, the arguments of the myThread object instantiation in the
configure() should be the addresses of (pointers to) the module parameters and ports in the myModule object. In this
way, the thread's parameter and port variables are just references to the original module parameters and ports that were
initialized in the configure method of the myModule object.

Second, threadInit() returns true if the initialization was successful, otherwise it should return false. This is
significant because if it returns false the thread will not subsequently be run.

Third, the run() method is where the algorithm is implemented. Typically, it will run continuously until some stopping
condition is met. This stopping condition should include the return value of a call to the
yarp::os::Thread::isStopping() method which flags whether or not the thread is to terminate. In turn, the value
of yarp::os::Thread::isStopping() is determined by the yarp::os::Thread::stop() method which, as
we will see, is called in myModule.close()

The following is an example declaration and definition of the MyThread class.

#include <yarp/os/Thread.h>

using namespace std;
using namespace yarp::os;

class MyThread : public Thread
{
private:

 /* class variables */

 int x, y;
 PixelRgb rgbPixel;
 ImageOf<PixelRgb> *image;

 /* thread parameters: they are pointers so that they refer to the original variables in myModule */

 BufferedPort<ImageOf<PixelRgb>> *imagePortIn;
 BufferedPort<ImageOf<PixelRgb>> *imagePortOut;
 int *thresholdValue;

public:

 /* class methods */

 MyThread(BufferedPort<ImageOf<PixelRgb>> *imageIn, BufferedPort<ImageOf<PixelRgb>> *imageOut, int *thres
 bool threadInit();
 void threadRelease();
 void run();
};

MyThread::MyThread(BufferedPort<ImageOf<PixelRgb>> *imageIn, BufferedPort<ImageOf<PixelRgb>> *imageOut, int
{
 imagePortIn = imageIn;
 imagePortOut = imageOut;
 thresholdValue = threshold;
}

bool MyThread::threadInit()
{
 /* initialize variables and create data-structures if needed */

 return true;
}

void MyThread::run(){

 /*
 * do some work
 * for example, convert the input image to a binary image using the threshold provided
 */

 unsigned char value;

 while (isStopping() != true) { // the thread continues to run until isStopping() returns true

 cout << "myThread: threshold value is " << *thresholdValue << endl;

 do {
 image = imagePortIn->read(true);
 } while (image == NULL);

 ImageOf<PixelRgb> &binary_image = imagePortOut->prepare();
 binary_image.resize(image->width(),image->height());

 for (x=0; x<image->width(); x++) {
 for (y=0; y<image->height(); y++) {

 rgbPixel = image->safePixel(x,y);

 if (((rgbPixel.r + rgbPixel.g + rgbPixel.b)/3) > *thresholdValue) {
 value = (unsigned char) 255;
 }
 else {
 value = (unsigned char) 0;
 }

 rgbPixel.r = value;
 rgbPixel.g = value;
 rgbPixel.b = value;

 binary_image(x,y) = rgbPixel;
 }
 }

 imagePortOut->write();
 }
}

void MyThread::threadRelease()
{
 /* for example, delete dynamically created data-structures */
}

Creating, Starting, and Stopping the Thread

As we said already, the thread is instantiated and started in the configure() method in myModule, the thread is
stopped in the close() method, and when the thread is instantiated, you pass the pointers to the module parameters to it
as a set of arguments. First, however, we add a new variable to the MyModule class.

/* pointer to a new thread to be created and started in configure() and stopped in close() */

MyThread *myThread;

The following code would then go in the configure() method.

/* create the thread and pass pointers to the module parameters */

myThread = new MyThread(&imageIn, &imageOut, &thresholdValue);

/* now start the thread to do the work */

myThread->start(); // this calls threadInit() and it if returns true, it then calls run()

The following code would go in the close() method.

/* stop the thread */

myThread->stop();

The respond() Method

Often, it is very useful for a user or another module to send commands to control the behaviour of the module, e.g.
interactively changing parameter values. The controlGaze2 (http://eris.liralab.it/iCub/dox
/html/group__icub__controlGaze2.html) module is a good example of this type of usage (see also
VVV09_Control_Gazers_Group).

We accomplish this functionality for the yarp::os::RFModule by overridding the
yarp::os::RFModule::respond() method which can then be configured to receive messages from either a port
(typically named /myModule) or the terminal. This is effected by the yarp::os::RFModule::attach(port) and
yarp::os::RFModule::attachTerminal() methods, respectively. Attaching both the port and the terminal
means that commands from both sources are then handled in the same way.

An Example of how to change module parameters at run-time

In the following example, we handle three commands:

help
quit
set

set thr <n> ... set the threshold

(where <n> is an integer number)

Apart from the way that the commands are parsed and the form of the reply, the key thing to note here is the fact that the
value of MyModule::thresholdValue is updated. Since myThread references this variable, it too is updated and
the updated value is used in the thread.

bool MyModule::respond(const Bottle& command, Bottle& reply)
{
 string helpMessage = string(getName().c_str()) +
 " commands are: \n" +
 "quit \n" +
 "set thr <n> ... set the threshold \n" +
 "(where <n> is an integer number) \n";

 reply.clear();

 if (command.get(0).asString()=="quit") {
 reply.addString("quitting");
 return false;
 }
 else if (command.get(0).asString()=="help") {
 cout << helpMessage;
 reply.addString("ok");
 }
 else if (command.get(0).asString()=="set") {
 if (command.get(1).asString()=="thr") {
 thresholdValue = command.get(2).asInt(); // set parameter value
 reply.addString("ok");
 }
 }
 return true;
}

However, for any of this to work, we have to set up a port in the first place. We put port declaration in the private data
member part of MyModule class

string handlerPortName;
Port handlerPort; //a port to handle messages

and open it in the configure() method, viz.

/*
 * attach a port of the same name as the module (prefixed with a /) to the module
 * so that messages received from the port are redirected to the respond method
 */

handlerPortName = "/";
handlerPortName += getName(); // use getName() rather than a literal

if (!handlerPort.open(handlerPortName.c_str())) {
 cout << getName() << ": Unable to open port " << handlerPortName << endl;
 return false;
}

attach(handlerPort); // attach to port

attachTerminal(); // attach to terminal

Interrupt it in the interrupt() method, viz.

handlerPort.interrupt();

Close it in the close() method, viz.

handlerPort.close();

Remote Connection

Note that the handlerport can be used not only by other modules but also interactively by a user through the yarp
rpc directive, viz.:

yarp rpc /myModule

This opens a connection from a terminal to the port and allows the user to then type in commands and receive replies from
the respond() method.

RobotCub code follows some fairly strict documentation and coding standards defined in Section III of RobotCub
Deliverable 8.2 (http://www.robotcub.org/index.php/robotcub/more_information/deliverables/deliverable_8_2_pdf) .

For convenience, here are the

iCub File Organization Guidelines
iCub Documentation Guidelines
iCub Coding Guidelines

Please take the time to read through the three documents.

As we move towards the creation of a release version of the iCub software, we will begin to enforce a sub-set of these
guidelines as mandatory standards. The current set of standards is set out in iCub Software Standards. Ultimately, all
modules to be included in the standard iCub release version will have to comply with these standards.

The principal documentation for myModule is provided in the full example at the end of this page.

iCub applications, i.e. collections of inter-connected YARP modules, are described in XML and launched using an
automatically-generated GUI. Refer to Managing Applications for more details on how to write these application
descriptions.

An application description containing an example invocation of the myModule with some command-line parameters is
shown below.

<application>

<name>Test myModule</name>

<dependencies>
 <port>/icub/cam/left</port>
</dependencies>

<module>
 <name>myModule</name>
 <parameters>--threshold 128</parameters>
 <node>icub1</node>
 <tag>myModule</tag>
</module>

<module>
 <name>yarpview</name>
 <parameters>--name /rgbImage --x 000 --y 0 --synch</parameters>
 <node>icub1</node>
 <tag>left_image</tag>
</module>

<module>
 <name>yarpview</name>
 <parameters>--name /binaryImage --x 350 --y 0 --synch</parameters>
 <node>icub1</node>
 <tag>right_image</tag>
</module>

<connection>
 <from>/icub/cam/left</from>
 <to>/myModule/image:i</to>
 <protocol>tcp</protocol>
</connection>

<connection>
 <from>/icub/cam/left</from>
 <to>/rgbImage</to>
 <protocol>tcp</protocol>
</connection>

<connection>
 <from>/myModule/image:o</from>
 <to>/binaryImage</to>
 <protocol>tcp</protocol>
</connection>

</application>

To run the application, you simple need to run the XML application description shown in the previous section. To do this,
however, you need to have a couple of new things installed:

Python (this is used to interpret the iCub application description programs and launch iCub applications);
the icubapp pseudo-command for launching the Python application manager. This is no more than a simple
invocation of Python to run the application manager and interpret the XML application descripton, viz. python
$ICUB_ROOT\app\default\scripts\manager.py %1.

Refer to Prepare your system for running applications for details of how to get these resources .

Do an update on your iCub repository to make sure you have the icubapp pseudo-command. Alternatively, you can
launch the python application manager directly (see below).

Once you have done all this, you are almost ready to run your application. There's just one more thing to be aware of.

You need to start an instance of yarprun --server on the local machine (for a complete explanation see Cluster
management). This yarprun is what the node in an XML application description gets mapped to. At present, the standard
for creating these yarpruns is for the yarprun argument to be the name of the node identifier in the XML <node>
</node> field but prefixed by a / to make it explicit that the argument is a port.

So, if you have used, for example, <node>icub1</node> in your <module> description in the XML file, then you
would do

PC> yarprun --server /icub1

In general, at present (this may change in the future), you need to do a

PC> yarprun --server /<mc_n>

for each <mc_n> node values specified in the xml file.

These yarprun commands are run on the machine to which that node is mapped. An XML <node> is a logical machine
and the yarprun associates it with the physical machine on which it to be instantiated.

You can now launch an application. Simply navigate to the directory where the XML file resides (typically
$ICUB_ROOT/app/myModule/scripts) and do

PC> icubapp myModule.xml

Alternatively, if you prefer, you can launch the Python application manager directly:

PC> manager.py myModule.xml

assuming that $ICUB_ROOT\app\default\scripts\ is defined in you path and assuming .py files are associated
with Python.

In either case, doing this will launch a GUI with which you can then "Run Modules" and "Connect" the ports by clicking on
the appropriate buttons.

NB: turn off your firewall before launching the application.

Module Standards (http://eris.liralab.it/iCub/dox/html/module_standards.html)

Resource finder overview

How to organize the command line parameters of your modules (http://eris.liralab.it/iCub/dox
/html/icub_resource_finder_basic.html)

Organizing Parameters: Advanced Tutorial (http://eris.liralab.it/iCub/dox/html/icub_resource_finder_advanced.html)

Using the module helper class to write a program (http://eris.liralab.it/iCub/dox/html/icub_tutorial_module.html)

RFModule Class Reference (http://eris.liralab.it/yarpdoc/d9/d26/classyarp_1_1os_1_1RFModule.html)

Module Class Reference (http://eris.liralab.it/yarpdoc/d1/d03/classyarp_1_1os_1_1Module.html)

Coding and Documentation Standards (http://eris.liralab.it/iCub/dox/html/coding_standards.html)

exampleModule (http://eris.liralab.it/iCub/dox/html/group__icub__exampleModule.html)

Cluster management

exampleApplication (http://eris.liralab.it/iCub/dox/html/group__icub__exampleApplication.html)

iCub tutorials (http://eris.liralab.it/iCub/dox/html/icub_tutorials.html)

The complete code for myModule is here.

Retrieved from "http://eris.liralab.it/wiki/Summary_of_iCub_Software_Development_Guidelines"

This page was last modified 12:31, 26 September 2009.
This page has been accessed 3,226 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Important: this documentation might be obsolete. It describes a the cluster configuration that was used some time ago to
run the iCub at University of Genova.

We are using a Blade server with 6 blades at the moment running Debian Linux and a server/interface machine running
Windows 2003. We also have 5 dual-boot (XP/Linux)Shuttle PCs and two more rack mount machines, a bunch of screens
and several laptops connected to the same network.

This document describes certain procedures for the maintenance of this system.

Most of the disk space is on the Windows 2003 machine that shares it using both NFS and Samba. The Windows 2003
machine also runs the Unix Services for Windows and the YP server, name and permission mapping, etc.

On each Linux machine we mount the home directories (or anything else need, e.g. Yarp) using NFS, while Windows
machines we use Samba (i.e. the native Windows network). Linux machines use yp. The yp server is on the Windows 2003
machine where also the Windows domain is managed.

1 Configuration
2 Shared drives
3 Environment variables
4 Notes
5 SSH public key authentication
6 CYGWIN
7 Openssh on windows
8 Tips and tricks

8.1 Making SSH read your environment variables on the target node
9 Name server
10 Missing things

The cluster consists of a certain number N of machines with various operating systems (not necessarily uniform). One
machine is directly attached to the robot hardware and this should be the case for compatibility with iCub (where all the
hardware is interfaced through the on-board pc104 machine). Since Yarp doesn't provide security, the cluster network is
physically separated from the outside world via a server/router. The server in our case here runs Windows 2003 but this is
not a requirement. Separating the cluster from other networks also limits the potentially high bandwidth traffic to the robot
subnetwork(s).

The blade computers are mutually connected via two Gbit/s switches. These are private networks responding to the
10.0.0.X and 10.0.1.X addresses. The server machine called MUSE in our implementation is also connected to both
network switches and to the outside lab network. Several other machines are only connected to the first private network
(10.0.0.X).

MUSE is a domain controller for the Windows network, it is also a NIS domain server for Linux (we use Debian). It is a

DNS for the machines in the private networks. MUSE maps users from Windows to Linux via NIS and also maps groups
and other tables from Windows to Linux and vice versa. It exports directories using NFS for Linux and Samba for
Windows. It runs also a NAT to map the private IP addresses into a pool of public ones.

Cygwin is used on all Windows machines to run a ssh server. This is used on MUSE also to allow access to the other
machines through ssh tunneling (don't remember the port numbers at the moment) but also for scripting using bash
irrespective of the operating system. Cygwin provides also the cvs client we currently use on Windows.

MUSE shares a separate directory for each operating system (e.g. Linux, Windows) that contains in turn Yarp, the iCub
repository and other libraries if needed.

From Linux, typically mount the shared directory (see extract from mount):

 muse.james.liralab.it:yarp on /usr/src/yarp type nfs (rw,intr,addr=130.251.4.3)

Which can be added to /etc/fstab:

 muse.james.liralab.it:yarp /usr/src/yarp nfs rw,intr

Which will then show up as (ls -la /usr/src/yarp):

 drwx------ 2 4294967294 Domain Users 64 2006-10-28 15:56 .
 drwxrwsr-x 9 root src 4096 2006-08-23 17:20 ..
 drwxr-xr-x 2 babybot Domain Users 64 2006-10-28 16:04 iCub
 drwxrwxr-x 2 babybot Domain Users 64 2006-07-22 09:49 yarp
 drwxrwxr-x 2 babybot Domain Users 64 2006-10-28 16:25 yarp2
 drwxr-xr-x 2 james Domain Users 64 2006-10-29 00:08 yarp2-james
 drwxr-xr-x 2 babybot Domain Users 64 2006-10-27 10:54 yarp2-unstable

From Windows, typically mount the shared directory as drive Y (or anything else you like using the standard Windows
"Map Network Drive".

These are the environment variables recommended (not all of them are required):

 ICUB_ROOT
 YARP_ROOT
 YARP_BUILD
 YARP_CONF

Important: if you are using CYGWIN check that the environment variable CYGWIN exist (for example se it to "smbntsec
ntsec). The .bashrc script check $CYGWIN to determine it it is running on Linux or CYGWIN (see below).

For example in Linux you can do something like this in the .bashrc and perhaps make sure that the .profile calls a similar
sequence of commands:

 export ICUB_ROOT=/usr/src/yarp/iCub
 export YARP_ROOT=/usr/src/yarp/yarp2
 export YARP_BUILD=$YARP_ROOT
 if [-e /etc/debian_version] ; then
 debtype=`cat /etc/debian_version | sed "s|.*/||"`
 if ["k$debtype" = "kunstable"]; then
 export YARP_BUILD=/usr/src/yarp/yarp2/build/$debtype
 fi
 fi
 export YARP_CONF=$YARP_ROOT

In Cygwin you can reuse the same .bashrc (highly recommended) conditioning on the operating system type:

 if [! "k$CYGWIN" = "k"]; then
 export ICUB_ROOT=//MUSE/yarp/iCub
 export YARP_ROOT=//MUSE/yarp/yarp2
 export CYGWIN="smbntsec ntsec"
 export YARP_BUILD=$YARP_ROOT
 export YARP_CONF=$YARP_ROOT

where the remote path //MUSE/yarp is used directly (this is safer than the mount Y when scripting). IMPORTANT: make
sure the environment varible CYGWIN exist on Windows.

Note the smbntsec flag which is required to map Cygwin permission properly on Samba drives.

In Windows, you can add the same variable names using the appropriate dialog from the control panel. They might show
like:

 ICUB_ROOT Y:\iCub
 YARP_ROOT Y:\yarp2
 YARP_BUILD Y:\yarp2
 YARP_CONF Y:\yarp2

Cygwin requires also the environment variable CYGWIN to be set. The best is to allow at least smbntsec ntsec tty which
determine how permissions are also seen on mapped drives (useful if they are consistent).

In general, be gentle to others and set the variables only for your user and not in system-wide scripts, this applies to both
Linux and Windows.

On Windows, add to the PATH the following directories:

 Y:\ACE_wrappers\lib;Y:\yarp2\bin;Y:\iCub\bin

On linux do a similar operation depending on where you installed the executables:

 $YARP_BUILD/bin:$ICUB_ROOT/bin

Getting so many problems is not typical, they are due to the fateful intersections of many different things, including the
presence of mixed operating systems, network drives, cygwin, sshd, carriage return characters, and more.

Various notes on useful operations:

Accessing a computer with the Windows remote desktop.
Applies to: Windows XP

You need to add the username to the local policy.
Go to the "Control panel", click on "System", go to the "Remote" tab and click to "Select Remote Users",
then finally add the username to the list of users (possibly a domain user).
This operation has to be performed by an Administrator.

Adding a user to NIS.
Applies to: Windows 2003, Unix Services for Windows 3.5
Don't forget to add the domain name into the Unix tab in the "Active Directory Users and Computers".
Add also the UID that will be shown on Unix/Linux machines and the other Unix parameters.
Then don't forget to update the name/permission mapping service (also from the Unix services administration
application).
Make sure you "Reset the password" for the user in question so that the NIS (damn!) sets a new password
that is compatible on both Windows and Linux; this doesn't happen automatically.

Adding a user.
Applies to: Windows
Don't forget to run mkpasswd in a cygwin shell to update the passwd file (you must be Administrator). This
step has to be performed on every Cygwin installation (on every Windows machine on the cluster).

 mkpasswd -l -d > /etc/passwd
 mkgroups -l -d > /etc/group

Installing cygwin.
Applies to: Windows
Check the DOS/Windows text mode during installation and NOT the Unix mode for newlines
Install "open ssh" and at least one text editor (e.g. vim, it can be handy).

Issues with the ssh keys.
Applies to: Windows and Linux
For scripting is convenient to have a key installed
This goes typically in $HOME/.ssh
The $HOME is a networked folder
Ssh requires that the keys are only readable by the owner
Thus, you have to make sure that the permissions are always correct no matter how you access them
For cygwin this requires for example the definition of the CYGWIN variable to be smbntsec
See below for the installation of the sshd on Windows.

Weird issue with the user settings.
Applies to: Windows 2003
We need to investigate the problem
The "Active Directory Users and Computers" from the control panel doesn't show the Unix attributes that are
required to set the UID and other Unix properties for the name/group mappings
Temporary solution is to open the Windows MMC from the "Microsoft Windows Services for UNIX"
application, searching for "adding user nis" and click to "To add a user to an NIS domain". This will show a
link to a version of the MMC that will show correctly the Unix attributes
In the hope this is not a persistent problem.

Shell issue with CR/LF on Cygwin.
Applies to: Windows
bash 3.1.17(9) is strict on the endline and if Cygwin is installed with native endline support (i.e.
Windows/DOS like) then the scripts would complain.
Solution: run the dos2unix utility on all the script files just after downloading from the CVS repository

Bored to type the password every time you log in to one of your machines? You can set up ssh to use public key instead.

These instructions were taken almost verbatim from: http://cfm.gs.washington.edu/security/ssh/client-pkauth/

On the client machine:

 client$ mkdir ~/.ssh
 client$ chmod 700 ~/.ssh
 client$ ssh-keygen -q -f ~/.ssh/id_rsa -t rsa

Enter an empty passphrase twice (yes, it is not safe... we don't care).

Make sure everything has the correct access rights:

 chmod go-w ~/
 chmod 755 ~/.ssh
 chmod go-rwx ~/.ssh/*

Keys distribution. If the machines share the same users server and client are actually the same machine and you don't have
to copy anything, anyway in general do:

 client$ scp ~/.ssh/id_rsa.pub server.example.edu:

Log on into the server and type:

 server$ mkdir ~/.ssh
 server$ chmod 755 ~/.ssh
 server$ cat ~/id_rsa.pub >> ~/.ssh/authorized_keys
 server$ chmod 644 ~/.ssh/authorized_keys
 server$ rm ~/id_rsa.pub

Now go back to the client and test ssh by doing:

 ssh -o PreferredAuthentications=publickey server.example.edu

If everything is allright you should login to server without password. Otherwise it means that something is wrong. Most of
the times this is due to bad configurations rights, check out this:

 server$ chmod go-w ~/
 server$ chmod 755 ~/.ssh
 server$ chmod 644 ~/.ssh/authorized_keys

Or go to /var/log and have a look at the messages dumped by sshd.

Note on permissions: usually on linux it is recommanded to set permissions like:

700 for ~/.ssh

600 for ~/.ssh/authorized_keys

However this does not work on cygwin because the sshd service seems to have troubles accessing those files.

If you want to login to a machine from a different user, you can do:

 ssh otheruser@machine.domain.edu -i ~/.ssh/id_rsa

Finally on Windows go to:

Administrative Tools --> Services --> CYGWIN sshd --> properties --> Allow service to interact with desktop

A brief help on how to configure CYGWIN to run YARP/ICUB.

Go to http://www.cygwin.com and download setup.exe. Default installation is fine just add openssh (although you
might find it useful to have also a couple of packages like vi, nano or emacs).
Open a shell and type:

 mkpasswd -l -d > /etc/passwd
 mkgroups -l -d > /etc/group

On windows check if the environment variable CYGWIN is set to smbnet ntsec
Install openssh, see next section.

Assuming you installed cygwin with openssh.

Open a cygwin window (by double clicking theg icon), a black screen pops open, type:

 ssh-host-config

When the script asks you about "privilege separation", answer yes
When the script asks about "create local user sshd", answer yes
When the script asks you about "install sshd as a service", answer yes
When the script stops and asks you for "CYGWIN=" your answer is ntsec tty
While you are still in the (black) cygwin screen, start the sshd service:

 net start sshd
 or
 cygrunsrv --start sshd

The following steps are also required if you want to use login and run processes remotely:

Stop the "Cygwin sshd" service (go to "Computer Managment", open "Services", right click on "Cygwin sshd").
Select "Cygwin sshd" properties. Under the "Log On" tab, change the name of the account to the user (MY_USER)
that runs the processes (e.g. james@james.liralab.it)
Tweak the Local Policies (Control Panel -> Adminstrative Tools -> Local Security Settings -> Local Policies).
Grant to MY_USER the following:

Adjust memory quotas for a process
Create a token object
Lon on as a service (this should be on already)
Replace a process level token

Change the ownership of the files required to run the sshd daemon. On a cygwin bash type:

 chwon MY_USER /var/log/sshd.log
 chown -R MY_USER /var/empty
 chwon MY_USER /etc/ssh*

Good luck, you need it.

[from http://pigtail.net/LRP/printsrv/cygwin-sshd.html]

[from http://ist.uwaterloo.ca/~kscully/CygwinSSHD_W2K3.html

Tricks you need sometimes to make things work on the cluster. This list will hopefully improve/grow with time.

Linux:

- increase the size of the udp packets:

 (sudo) sysctl -w net.core.rmem_max=8388608

Add this to your /etc/init.d/bootmisc.sh

If you are a developer and you want to use cvs to checkout yarp2 with command line (linux or cygwin):

export CVS_RSH=ssh
cvs -z3 -d:ext:your_name@yarp0.cvs.sourceforge.net:/cvs root/yarp0 co -P yarp2

Making SSH read your environment variables on the target node

When you start processes remotely via SSH like it is done by the cluster manager ($ICUB_ROOT/app/default/icub-
cluster.py) neither .bashrc nor .bash_profile might be read on the target node, so your environment variables that are set
there are not available. This means that for example yarprun won't be found. In order to get ssh to read your environment
variables when called in a non-interactive mode like 'ssh -f' add them to the file

/etc/environment (available for every user)

or alternatively to

~/.ssh/environment (available only for a particular user).

The name server runs on nike. On /usr/bin/yarpserver is a copy of yarp. A script in /etc/init.d yarpserver starts/stops the
service at boot time.

Cluster clock synchronization

Retrieved from "http://eris.liralab.it/wiki/Cluster"

This page was last modified 13:01, 11 November 2009.

This page has been accessed 11,597 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Author: Lorenzo Natale. Work in progress. Trying to illustrate guidelines and requirements for writing a module,
rationalization of Summary page currently in the main page of the manual.

Although you can contribute any working piece of software to the repository, we require that your module respects a
minimum set of requirements. These are listed here:

Module configuration: it should be possible to change the parameters used by the module from the command line.
Paths to configuration files should not be machine or configuration dependent.
Remotization: it should be possible to execute the module remotely, using yarprun. If the module accepts
commands, there should be a yarp interface that allows to send these commands to the module (one or more yarp
ports).
Clean shutdown: make sure there is a way to shut down the module without killing it.

The software infrastructure we provide facilitate writing modules that have these characteristics.

We provide sections in the manual and software tutorials that explain how to achieve this behavior.

The class ResourceFinder in YARP simplifies this task.

These tutorials explain all you need to know about the ResourceFinder and how you can use it to write your
module:

How to organize the command line parameters of your modules (http://eris.liralab.it/iCub/dox
/html/icub_resource_finder_basic.html)
Organizing Parameters: Advanced Tutorial (http://eris.liralab.it/iCub/dox
/html/icub_resource_finder_advanced.html)

A more detailed description of the ResourceFinder class and how it works is reported here: Resource finder
overview.

The helper class RFModule in YARP allows to write a module that meets all these requirements. It also supports the use
of the ResourceFinder class described above.

This tutorial shows how to use the RFModule:

Using the module helper class to write a program (http://eris.liralab.it/iCub/dox/html/icub_tutorial_module.html)

Retrieved from "http://eris.liralab.it/wiki/How_to_write_a_module"

This page was last modified 17:41, 29 September 2009.
This page has been accessed 188 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Authors: Lorenzo Natale and Paul Fitzpatrick

1 Introduction
2 ResourceFinder Overview
3 Resource Finder for localizing files
4 ResourceFinder API
5 Rules to locate the policy file
6 Order of preference when searching for resource files
7 Let's make an example
8 Test case examples

The problem we are discussing here is how to organize files used by modules. These files can be configuration/ini files or
resource files (for example data files or images used by a module). We will refer in general to them as resource files.

The problem originates from the fact that we want to decouple the location of the configuration files and that of the
executable. When developing in fact we can assume we know the executable working directory (although when running
using "yarp run" when cannot control the process working directory, at least not yet). When executable are "installed" (as
in a binary distribution) executable and configuration files might end up being moved.

We would like to organize resource files in a directory structure. This structure can be in $ICUB_ROOT/app, but we
organize things so that the whole tree can be easily relocated.

Resource files are accessed through a YARP object, the ResourceFinder (or RF). To locate a certain file the programmer
asks the RF using a "key". The RF searches the file system to identify the requested file and, if successful, it returns a full
path to it; the search is performed using the rules that are specified when the RF is first created or configured. Parameters
are passed to the RF through the command line or a file. The RF is not only responsible for locating files but can also
decode parameters passed to the module and make them available as a key-value list.

The ResouceFinder should become the gateway to access parameters and resource files in a module. The RF is key-value
list which contains parameters of a module. These parameters can be specified in the command line as:

 mymodule --key1 value1 --key2 value2

or in an "initialization file" as:

 mymodule --from file.ini

in which file.ini is:

 key1 value1
 key2 value2
 ...

The RF works as a searchable. The method find(key) (or check) returns a value starting from a key.

First you need to configure the RF:

 rf.configure("ICUB_ROOT", argc, argv);

The first string specifies a "key" to locate the file which points to the "resource search path policy file" (or "policy file").
The policy file describes/specifies the policy used to search for resource files. For example it could specify that resource
files are searched in $ICUB_ROOT/app. This opens up the possibility to modify the behavior of the RF later on, in case
we decided we want to store resource files in different locations (for example an app directory inside the user's HOME).
The policy file itself is searched stating from the "key", using certain rules, see below.

You can query the RF in this way:

 ConstString value1=rf.find("key1").asString();
 int value2=rf.find("key2").asInt();

to retrieve the corresponding values of the parameters specified either from the command line or from the initialization file
(file.ini).

RF looks for initialization files following a certain policy. We skip now the details of how this policy works (see below). In
short the RF will look in a directory called "initialization context", that is specified from the command line.

 mymodule --from file.ini --context myModule

makes RF search in $ICUB_ROOT/app/myModule

If you like you can specify a default initialization file:

rf.setDefaultConfigFile("file.ini");

so that you don't have to repeat it every time you run your module:

mymodule --context myModule

you can specify a default context:

rf.setDefaultContext("myModule");

so that you can run your module simply as:

mymodule

If needed you can switch the context from which your module is initialized by running it as:

mymodule --context myModule2

assuming "file.ini" exists in $ICUB_ROOT/app/myModul2

The RF works also as file finder. The method findFile(key) picks the value corresponding to key and interprets it as a
filename. The RF does its best to locate the file named value and if successful returns a string which contains the full path
to the file. Localization of resource files follows the same rules described for the "initialization file" above.

 // Get the value of the specified key, then search for a file with that name.
 // If the key has not been given a value, try searching for a file with the
 // key's name.
 ConstString findFile(const char *keyName);

 // Set a default value of a key
 bool setDefault(const char *keyName, const char *keyValue);

 // Set a name which, in conjunction with the policy, defines a default directory
 // to search for files. Should be called before configure()
 bool setDefaultContext(const char *contextName);

 // Load the policy, and apply command line options. Options can modify
 // the policy, change key values, and change the search path
 bool configure(const char *policyName, int argc, char *argv[]);

Given:

rf.configure("KEY", argc, argv)

rf will:

if the environment variable KEY exists, search for $KEY/KEY.ini
if this fails, in Linux search in /etc/KEY.ini

When searching for files the RF will:

search if the file exists in the local directory (local here means with respect to the process working directory)
check relative the directory where the default config file is (specified with --from), this is useful when the config file
is specified with relative path (as in: --from ../../conf/file.ini)
check relative to a context specified on the command line (--context)
check relative to a context specified in the code (setDefaultContext)

According to the ICUB_ROOT policy it will also:

new since July 2009: if the environment variable ICUB_ROBOTNAME exists, check robot specific directory
(app/$ICUB_ROBOTNAME/conf)
check default conf directory in app/default/conf

Suppose you have a module that needs the following parameters to run: robot and part name plus a file.

You can run the module as:

 mymodule --robot icub --part head --inifile moreparameters.ini

mymodule will use a RF to decode all these parameters and find moreparameters.ini.

First we need to instantiate and configure the RF.

Example code in main.cpp

 ...
 ResourceFinder rf;
 rf.configure("ICUB_ROOT", argc, argv);
 ...

this configures ResouceFinder using information in $ICUB_ROOT/ICUB_ROOT.ini.

We specify a default context:

 rf.setDefaultContext("mymodule");

to be appended to the "app" directory for searching resources in $ICUB_ROOT/app/mymodule. A user will be able to
overwrite the context at the command line with the '--context' parameter.

Passing argc and argv to the RF allows us to pass the parameters --robot, --part and --inifile, so that later we can query the
RF to get the corresponding value:

 const char *robotName=rf.find("robot").asString().c_str();
 const char *partName=rf.find("part").asString().c_str();
 ...

When we need to locate (and open) inifile we use the findFile method:

 const char *iniFile=rf.findFile("inifile");
 if (iniFile==0)
 // print error
 else
 // open file

Optionally we can write a short mymodule.ini file embeds all parameters to the module:

 mymodule.ini:
 robot icub
 part head
 inifile moreparameters.ini

and run the module simply as:

 myModule --from mymodule.ini

Note: this section contains examples that useful to discuss implementation details, it is not meant to be used for
documentation.

Consider the takeOverTheWorld module.

The parameters of takeOverTheWorld are:

 --robot : name of the robot
 --weapon: weapon config file
 --resource: a jpg image of the weapon in use

Example:

 takeOverTheWorld --robot icub --weapon weapon.ini --resource /resources/sharks.jpg

These parameters can be placed in a file, e.g. takeOver.ini.

In $ICUB_ROOT/app there are two contexts:

 takeOverWithSharks
 takeOverWithSeaBass

which configure the module in slightly different ways.

The same structure is replicated locally in: In $ICUB_ROOT/takeOverTheWorld/conf/example1 and
$ICUB_ROOT/takeOverTheWorld/conf/example2

This is a list of example with the expected behavior.

Testing rule: use default context

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --from takeOver.ini

should resolve:

 $ICUB_ROOT/app/takeOverWithSharks/takeOver.ini
 $ICUB_ROOT/app/takeOverWithSharks/weapon.ini
 $ICUB_ROOT/app/takeOverWithSharks/resources/sharks.jpg

Currently: works, default context applies to takeOver.ini

Testing rule: use specific context, give priority to local files in this context

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --context takeOverWithSeaBass --from takeOver.ini

should resolve:

 $ICUB_ROOT/app/takeOverWithSeaBass/takeOver.ini
 $ICUB_ROOT/app/takeOverWithSeaBass/weapon.ini
 $ICUB_ROOT/app/takeOverWithSeaBass/resources/seabass.jpg

Currently: works.

Testing rule: use specific from file (respect "tab" rule), give priority to local files

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --from ./conf/example1/takeOver.ini

should resolve:

 $ICUB_ROOT/src/takeOverTheWorld/conf/example1/takeOver.ini
 $ICUB_ROOT/src/takeOverTheWorld/conf/example1/weapon.ini
 $ICUB_ROOT/src/takeOverTheWorld/conf/example1/resources/sharks.jpg

Currently: works.

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --from ./conf/example2/takeOver.ini

should resolve:

 $ICUB_ROOT/src/takeOverTheWorld/conf/example2/takeOver.ini
 $ICUB_ROOT/src/takeOverTheWorld/conf/example2/weapon.ini
 $ICUB_ROOT/src/takeOverTheWorld/conf/example2/resources/seabass.jpg

Currently: works.

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --from ./conf/example3/takeOver.ini

should resolve:

 $ICUB_ROOT/src/takeOverTheWorld/conf/example3/takeOver.ini
 $ICUB_ROOT/src/takeOverTheWorld/conf/example3/weapon.ini
 and fail to locate $ICUB_ROOT/src/takeOverTheWorld/conf/example3/resources/sharks.jpg (file is missing)

Currently: works, but weird uses weapon.ini and sharks.jpg from default context.

Testing rule: use default file and default context

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld

should resolve:

 $ICUB_ROOT/app/takeOverWithSharks/takeOver.ini
 $ICUB_ROOT/app/takeOverWithSharks/weapon.ini
 $ICUB_ROOT/app/takeOverWithSharks/resources/sharks.jpg

Currently: works.

Testing rule: use default file and specific context

 $ICUB_ROOT/src/takeOverTheWorld/takeOverTheWorld --context takeOverWithSeaBass

should resolve:

 $ICUB_ROOT/app/takeOverWithSeaBass/takeOver.ini
 $ICUB_ROOT/app/takeOverWithSeaBass/weapon.ini
 $ICUB_ROOT/app/takeOverWithSeaBass/resources/seabass.jpg

Currently: works.

Retrieved from "http://eris.liralab.it/wiki/Configuration_and_resource_files"

This page was last modified 08:18, 9 September 2009.
This page has been accessed 4,438 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

12. Documentation

Main Page Modules Namespaces Data Structures Files Directories Related Pages Search for

Module Documentation

This is a template you can use to document your module.

Replace "exampleModule" with the name of your module.

Look here to see the documentation produced by this code once it is parsed by Doxygen: exampleModule

/**
*
@ingroup icub_module
\defgroup icub_yourModule yourModule

Place here a short description of the module. This will
appear in the list of the modules.

\section intro_sec Description
This module is not implemented, it is only a template for writing
the documentation of modules.

Place here a description of your module. You might want to use a list as in:

The module does:
- this
- that
- ...

You might find it convenient to include an image:
\image html EXAMPLE.jpg
\image latex EXAMPLE.eps "MODULENAME running on Linux" width=10cm

\section lib_sec Libraries
List here dependencies. Often these are just YARP libraries.

\section parameters_sec Parameters
Provide a comprehensive list of the parameters you can pass to the module. For example:

--file mymodule.ini: configuration file to use

\section portsa_sec Ports Accessed
This is important. List here ports accessed by the module. This is useful to build a list of dependencies between modules.

\section portsc_sec Ports Created
Provide the list of ports created by the module. Separate them in input and output ports, specify expected data format.

Example:

Output ports:
- /mymodule/head/out: streams out a yarp::sig::vector which contains the commanded velocity of the head, the size of the vector matches the number o
- /mymodule/right_arm/out: ...

Input ports:
- /mymodule/rpc:i: input ports to control the module, accept a yarp::os::Bottle which contains commands to start/stop/quit the module.
 - [start]: start the module
 - [stop]: stop the module (resume with start)
 - [quit]: quit the module (exit)

\section in_files_sec Input Data Files
If your module expect data from a file, say so.

\section out_data_sec Output Data Files
If your module writes data to a file, say so.

\section conf_file_sec Configuration Files
If parameters to your module can be passed through a txt file, describe it here.

For example:
The module requires a description of the robot through the parameter
--file.

The file consists in a few sections:
\code
name myModule
rate 20
\endcode

\e name determines the name of the module

\e rate specifies the rate (ms) of the thread

...

\section tested_os_sec Tested OS
Specify the operating systems on which the module was tested
Example:

Linux and Windows.

\section example_sec Example Instantiation of the Module
Provide here a typical example of use of your module.
Example:

myModule --from module.ini

\author your name

Copyright (C) 2008 RobotCub Consortium

CopyPolicy: Released under the terms of the GNU GPL v2.0.

This file can be edited at src/myModule/main.cpp.
**/

A few notes about the content of the Doxygen documentation:

Please describe the command line options carefully. It is important to specify how to run the module.
Please use Doxygen throughout the code. Public classes should be documented. Classes for internal usage (of the module) would be a plus.
Please use namespaces (see existing iCub code): e.g. iCub::contrib.
Your images (JPEG and EPS, see template) should be placed in iCub/src/doc.
Please list all input and output ports with description of the data types. For complex protocols and/or message definition you can resort to additional pages (they can be also
placed in /iCub/src/doc and referenced through \ref from the module documentation page).
Please add links when appropriate by using \ref PAGENAME.
Examples of existing pages can be found in /iCub/src/doc.

Generated on Mon Jan 4 11:28:07 2010 for iCub by 1.5.1

Main Page Modules Namespaces Data Structures Files Directories Related Pages Search for

This is a template you can use to document an application (a bunch of scripts in a directory in ICUB_ROOT/app,
which instatiate and run a set of modules to produce a meaningful behavior of the robot).

Replace "exampleApplication" with the name of your application.

Look here to see the documentation produced by this code once it is parsed by Doxygen: exampleApplication

/**
*
@ingroup icub_applications
\defgroup icub_exampleApplication exampleApplication

Place here a short description of the application. This will appear in the list
of the applications.

\section intro_sec Description
This application does not exist for real, it is just a template to be used
as a guideline for writing good documentation.

Place here a description of the applciation. You might want to use a list as in:

The application does:
- this
- that
- ...

\section dep_sec Dependencies
List here a list of applications that are assumed to be up and running. For example
your application could assume iCubInterface and the attention system are running.

Example:

This module assumes \ref icub_exampleModule "exampleModule" is already running.

\section modules_sec Instantiated Modules
List here the modules that are instantiated by this application. This is useful to
browse the documentation of other modules. Example:
- \ref icub_exampleModule "exampleModule"

\section config_sec Configuration Files
Provide a comprehensive list of the configuration files. Usually located in ./conf. You
do not have to necessarely explain what each file does, as this should be already explained
in the documentation of each module. Link each file with the relative module it configures so
that it is possible to look up the documentation.

\section example_sec How to run the application
List here xml script(s) that allows running the application.

\author your_name

Copyright (C) 2008 RobotCub Consortium

CopyPolicy: Released under the terms of the GNU GPL v2.0.

This file can be edited at \in app/exampleApplication/doc.dox
**/

This is a template you can use to document an application (a bunch of scripts in a directory in ICUB_ROOT/app,
which instatiate and run a set of modules to produce a meaningful behavior of the robot).

Replace "exampleApplication" with the name of your application.

Look here to see the documentation produced by this code once it is parsed by Doxygen: exampleApplication

/**
*
@ingroup icub_applications
\defgroup icub_exampleApplication exampleApplication

Place here a short description of the application. This will appear in the list
of the applications.

\section intro_sec Description
This application does not exist for real, it is just a template to be used
as a guideline for writing good documentation.

Place here a description of the applciation. You might want to use a list as in:

The application does:
- this
- that
- ...

\section dep_sec Dependencies
List here a list of applications that are assumed to be up and running. For example
your application could assume iCubInterface and the attention system are running.

Example:

This module assumes \ref icub_exampleModule "exampleModule" is already running.

\section modules_sec Instantiated Modules
List here the modules that are instantiated by this application. This is useful to
browse the documentation of other modules. Example:
- \ref icub_exampleModule "exampleModule"

\section config_sec Configuration Files
Provide a comprehensive list of the configuration files. Usually located in ./conf. You
do not have to necessarely explain what each file does, as this should be already explained
in the documentation of each module. Link each file with the relative module it configures so
that it is possible to look up the documentation.

\section example_sec How to run the application
List here xml script(s) that allows running the application.

\author your_name

Copyright (C) 2008 RobotCub Consortium

CopyPolicy: Released under the terms of the GNU GPL v2.0.

This file can be edited at \in app/exampleApplication/doc.dox
**/

Generated on Mon Jan 4 11:28:07 2010 for iCub by 1.5.1

From Wiki for RobotCub and Friends

This page contains a description of the locations of the documents that do not fit in the source code and/or mechanical
design files and/or electronic design files categories.

iCub documents locations

Documents can be found on various servers connected to the iCub project. In particular:

data sheets are stored on: http://eris.liralab.it/misc/datasheets
videos and other large media material: http://eris.liralab.it/misc/videos
manuals and other documents: click here (http://robotcub.svn.sourceforge.net/viewvc/robotcub/trunk/iCubPlatform
/doc/manuals/) , this is part of our SVN repository on SourceForge for the robotcub project.
deliverables and other RobotCub official documents: these are all available on the deliverables folder
(http://www.robotcub.org/index.php/robotcub/more_information/deliverables)

How to add documentation guidelines

Each iCub component should be documented appropriately (within reasonable limits). In general, anything created in
connection with the iCub has to comply with the documentation standards set forth in Deliverable 1.2 (licensing strategy)
(http://www.robotcub.org/index.php/robotcub/more_information/deliverables/deliverable_1_2_pdf__1) and
Deliverable 8.2 (coding standards) (http://www.robotcub.org/index.php/robotcub/more_information/deliverables
/deliverable_8_2_pdf) . Of particular importance is to attach a proper license statement to the documents (see below).
The manual structure and its chapters is only available from this Wiki.

The general idea is that:

Each document has to contain the RobotCub preamble like for example in the above said deliverables. Templates
are available from http://www.robotcub.org, plese ask a username and password if you do not have one to access
the private section of the website.
Each document has to clearly refer to the FDL license, mention the constant sections, etc. as explained in
Deliverable 1.2. The copyright has to be explicitly assigned to the RobotCub Consortium (see addition to
Deliverable 1.2). Authors and institutions supporting the preparation of the document can be mentioned in the
license preamble under the "Authors" field.
Documents should be added in source (e.g. MSWord doc files, set of gzipped LaTex files) and PDF format to the
SVN repository under the folder iCubPlatform/doc/manuals. Please make sure the PDF is available.
Videos and data sheets should be uploaded to the respective folders on "eris.liralab.it". If you do not have a
password, then please send an enquiry to admin_(at)_robotcub.org (mailto:admin_(at)_robotcub.org) .
A manual page should be added (or links to the files to existing pages) to the respective chapter of the manual (e.g.
see chapter one of the manual). The manual page describes the general settings, lists other references and links to
all files needed to clearly explain the component in question. The manual page is complementary to the documents
and does not substitute them.

In case of doubt please email us admin_(at)_robotcub.org (mailto:admin_(at)_robotcub.org) .

Back to the table of contents

Retrieved from "http://eris.liralab.it/wiki/Document_location"

This page was last modified 16:20, 20 August 2009.
This page has been accessed 658 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

13. Committing changes

From Wiki for RobotCub and Friends

Changes to the software should be committed by following certain procedures. With the exception of debugging and
syntactic fixes, changes that affect libraries and code written by others (and thus have a "global" effect) should be agreed
with the maintainers. This includes YARP and code in the iCub repository, and in particular anything that influences the
usage and/or the compilation and/or the functionality of the code as a whole. The addition of independent modules in iCub
does not need to be agreed (but see the specifications of the modules in the previous chapters). Please check your modules
with the maintainers before adding them to the global build.

Do not forget to add to the repository all files that are needed to compile your code. This include source files, cmake files
and documentation files (text files are recommended). Don't commit project or make files. Never commit binaries, with
some exceptions (device driver libraries or firmware).

Important: make sure you add copyright and license to files you commit. If you commit files for which you do not own
the copyright, make sure they have a GPL or GPL compatible license.

We welcome new contributions, but please, before you commit new modules to the repository make sure you that:

The code respect the current dependencies, as explained in Chapter 8, Dependencies. In particular:
Library dependencies
Tools (CMake) and compilers

1.

You followed the guidelines in Chapter 10, Standardization of Methods.2.
In particular make sure the code you commit is GPL or has a GPL compatible license, see Chapter 10 (Section
Licensing)

3.

You documented your modules and applications as explained in Chapter 12.4.

Retrieved from "http://eris.liralab.it/wiki/Committing_changes_to_the_software_repository"

This page was last modified 15:31, 16 December 2009.
This page has been accessed 81 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Changes are committed by following certain procedures. In particular, the CAD commits are not very well supported by
CVS. Changes should be agreed with the maintainers and pros/cons discussed before committing them. Debugging changes
or documentation fixes do not need to follow this procedure unless for synchronizing the commit of binary files.

Retrieved from "http://eris.liralab.it/wiki/Committing_changes_to_the_hardware_repository"

This page was last modified 15:17, 16 December 2009.
This page has been accessed 21 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

14. How to install the robot

HOW TO INSTALL ICUB

Rev. Prepared by Date Approved Date

0.0 EDL Marco Maggiali 31/03/2009

0.1 RBCS-EDL Marco Maggiali 15/07/2009

0.2 RBCS-EDL Marco Maggiali 03/11/09

1 Revision history

Rev. Date Revision description

0.0 31/03/09 Preliminary emission

0.1 15/07/09 Changed icub_cluster.sh with the new phyton script icub_cluster.py

0.2 03/11/09 Added information about the power supplier

2 Summary
1 Revision history ... 1
2 Summary .. 1
3 Installing icub .. 1
4 Switching off icub .. 5

3 Installing icub

1. Remove the robot icub from the box. Lift the robot between the legs and the upper arms in
two persons (video_1).

2. Remove the envelope from the torso and fix the robot to the robot stand with the four screws
(video_1).

3. Use two clamps to fix the robot with its stands on a table.

4. Put the two power supply close to the robot (1-2 meters) , take the power supply cables and
connect them as specified in Extern Power Supply Cable document (video_2).

5. Do not connect the power supply cable to the robot.

6. Plug the power suppliers. Check the power supply voltage and current. The XANTREX XFR
60-46 DC must be set from 24 up to 42 volts with the OVP to 45V (to be set with a screw
driver), and the current limit up to 20A. The XANTREX XFR 35-35 DC must be set to 13.4
volts and 15A, with the OVP to 14V (to be set with a screw driver). Look at the
documentation for detailed instructions. (video_3)

7. Without connecting the power supply cable to the robot switch on the green switches and
look at the power supply. Now the output of the power supplies should be from 24 to 48 and
13 volts.

8. Switch off the green switches. Connect the power supply cable to the robot, and the Ethernet
cable to the hub.

9. Switch on the laptop and connect it to the hub with the Ethernet cable. The username is icub
and the password is icub.

10. Now you can switch on the PC104 and wait about 60 seconds.

11. Click on the penguin icon in the deskbar. It is for an ssh connection with the PC104. We call
this shell icub@pc104. If it does not ask you for a password it means that the boot of the
pc104 is finished. If not wait few seconds more and repeat the step 11.

12.Press the red button (it is the fault button, if it is pressed there is no power to the motors).

13. Switch on the motor boards and wait 10 seconds.

14.

15. Open a shell in the laptop: icub@icubsrv and type:

yarp server &

16. Open a shell icub@icubsrv and type:

cd /usr/local/src/robot/iCub/app/default/scripts

./icub_cluster.py

It opens a graphical interface:

Press the button Run Selected and check if both the pc are runnig

17. Open a shell icub@icubsrv and type:

cd /usr/local/src/robot/iCub/app/default/scripts

./manager.py cameras.xml

18.Click on the penguin icon in the deskbar. It is for an ssh connection with the PC104.

19.Leave the red button pressed and run from the icub@pc104 shell:

iCubInterface --config /usr/local/robot/icub/app/icub<cityXX>/conf/icubSafe.ini

20. Open an icub@icubsrv shell :

cd /usr/local/src/robot/iCub/app/ icub<cityXX>/conf/

robotMotorGui

21. Stand the robot in the home position (image_1).

Fig 1 Home position. The robot must start the calibration in this position.

22.Look at the joint values. The value should be approximately:

a. LeftLeg and RightLeg: 0 (± 15 degrees) for all the joints.

b. LeftArm and RightArm: -30, +30, 0, +45, (± 15 degrees) for joints 0..3. Any number
for the other joints.

c. Torso: 0,0, 10 (± 15 degrees).

d. Head: any number.

23. If step 22 is ok press 4 times crtl-c in iCubInterface.

24. Release the red button and run iCubInterface again with the same parameters (see steps 19).
Now you will see the robot calibrating.

25. The robot calibration takes 20 seconds should.

4 Switching off icub

1. Press once crtl-c in iCubInterface. The robot goes to the park position and stops the power to
the motors.

2. Press the red-button.

3. Open a shell icub@icubpc104 and type:

sudo shutdown –h now

4. Wait 10 seconds and switch off the two power suppliers.

15. Unofficial documentation

From Wiki for RobotCub and Friends

Attention! This how-to is written for linux users, but it may be useful for windows users also.

1 Startup the robot
2 Setting up the environment for running the attention system
3 Compiling the iCub repository
4 Setting up and Starting up the attention system
5 Using the attention system

Power up the robot. (laptop and powersupplies first, then when the robot-laptop has booted completely then turn the
cpu and motor power switches on)
Get the robot software interface running. You can run this script (in the robot-laptop) to automate even more the
startup (you'll need to have a yarp server running before):

yarp clean
cd /usr/local/src/robot/iCub/app/default/scripts/
./icub-cluster.py &
./manager.py cameras.xml &
ssh -t pc104 iCubInterface --config /usr/local/src/robot/iCub/app/iCubMunich01/conf/icubSafe.ini iCubInterfac
killall icub-cluster.py
killall manager.py
killall yarpview
killall frameGrabberGui2
killall yarprun
ssh -t pc104 killall yarpdev
ssh -t pc104 killall yarprun
yarp clean

Don't close this console!
(If you want to turn off the robot software interface later, you have to press CTRL-C in this console, it will close all related
software)
This will get the robot calibrated,up and running.
Disclaimer: This script is not perfect, if you find something you can improve then please modify this wiki entry.

You still have to press the "Run Selected" button in the Cluster Manager window manually.
You still need to activate the cameras: In the Application Manager window, press "Run" for the two yarpdev
modules.

At this point the robot is ready to be used by the attention system.

You will probably need more than one computer to run the attention system. I was able to run the attention system with my
laptop running only the graphical interface and a Intel(R) Core(TM)2 Quad CPU based computer running all the other

modules.

Do the following steps in all the computers where you want to run modules.

Get yarp compiled and installed. (let's suppose the yarp source directory is /home/user/local/src/yarp2)
Get the iCub repository. (let's suppose the iCub base repository directory is /home/user/local/src/iCub)
Set the following environmental variables:

export YARP_DIR=/home/user/local/src/yarp2
export ICUB_DIR=/home/user/local/src/iCub
export ICUB_ROOT=/home/user/local/src/iCub
export PATH=$PATH:/home/user/local/src/iCub/bin

Do the following steps in all the computers where you want to run modules.

I guess you will need some dependencies. I'm sure you'll need opencv to get the attention system compiled. Then
install it!
cd /home/user/local/src/iCub
ccmake . (you'll probably need to activate CREATE_GUIS_GTK, CREATE_GUIS_GTKMM, CREATE_GUIS_QT,
the rest worked for me. Be sure to check that there are no errors. Warnings are not a problem as I can tell)
make

wait for some time ... (go and play around with your other robots for example :), or write a wiki entry for something that
could be useful for somebody else)

Note: you need to compile the iCub repository for Qt (CREATE_GUIS_QT) but when you Configure Cmake (at least on
Windows) you may get an error message saying iCubGui will not compile, typically because GLUT can't be found. Don't
worry - you don't need iCubGui for attention - just carry on and Generate the solution file and build the repository as
normal.

Configure the application manager for the attention system
There is a configuration file template for the attention system in: /home/user/local/src/iCub
/app/attentionDistributed/scripts/appConfig-visual.xml.template. Copy this file to appConfig-visual.xml in the
same directory and edit it to your taste. Important things to change in the config file are the node names, if you
have two computers lets name them (for Yarp purposes) "clientMachine" and "node1". Modify the config file
so that the applicationGui module runs on the "clientMachine" and the other modules run on "node1" machine.

Running yarprun
In your strong computer run: yarprun --server /node1
In your small computer run: yarprun --server /clientMachine

Run the application manager
cd /home/user/local/src/iCub
./app/attentionDistributed/scripts/appManager-visual.sh
Check that the dependency node names are the right ones (if not then just change it on the GUI)
Press CheckDep, all indicators should go green (this checks whether yarprun is running in the nodes)
Run all the modules: Press the "Run Modules" button.
Connect modules: Press the "Connect" button.

Now the system should be up and running.

In the ApplicationGui (in the clientMachine computer) you can control the attention system.

It will initially not do anything. You have to:

Go to salienceRight tab and press the button "Check all ports and connections"
Inside of "Configuration Connection" check that the symbol ">>" is green when is not green then press it!
Press "Connect All" button.
Press "Initialize Interface"
Now in "Salience Filter weights" you can select the weights you want for different things. Play around with it. In this
moment the head should start moving looking towards your selected salience!

Retrieved from "http://eris.liralab.it/wiki/Attention_system_for_dummies"

This page was last modified 08:54, 7 November 2009.
This page has been accessed 620 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

These instructions explain how to set up your Mac OS X system to compile YARP and iCub. Here we assume you are
using Mac OS X 10.5 'Leopard'. It should not be too different to set up Mac OS X 10.4 'Panther' or versions newer than
10.5, just by installing similar packages.

CMake is available as a DMG installation image, while all the other libraries can be installed

with the Fink package manager, or
with the MacPorts package manager (formerly DarwinPorts), or
manually.

1 Development environment
2 Libraries

2.1 ACE
2.2 GUIs

2.2.1 Fink package names
2.2.2 MacPorts package names

2.3 Gnu Scientific Library
2.4 OpenCV
2.5 IPOPT

3 Simulator-related packages

Install the following packages:

CMake (at least version 2.4)
g++

For CMake, there exists a precompiled installation package that you can get here: http://www.cmake.org/cmake/resources
/software.html Alternatively, you can get it via Fink (sudo fink install cmake) or via MacPorts (sudo port
install cmake).

In case of installing via the DMG image:
In order to use cmake or ccmake via command line, you need to add the directory which contains the binaries to your
PATH variable in the ~/.profile file, or export it each time manually. (In the author's case, this directory is /Applications
/CMake\ 2.6-2.app/Contents/bin).

g++ can be installed either via Fink/MacPorts or by installing Xcode (http://developer.apple.com/TOOLS/Xcode/) .

If you don't know what CMake is and you are wondering why you need to install CMake, please wait until Section 6.6 of
the Manual. Of course you can jump there if you really can't wait.

If you are using Fink, install the package

 libncurses5-dev

If you are using MacPorts, install

 ncurses
 ncursesw

ACE

To compile YARP, you need ACE. The author is using ACE 5.6.3, it can be downloaded from the ace website. See also
Installing ACE. Note by gsaponaro: ACE 5.7.0 also works fine.

Environment variable you should have after this procedure: ACE_ROOT

GUIs

GUIs are written using GTK/GTKMM and QT. Note that the author just installed everything that looked halfway relevant,
so some of these packages might be redundant, but things definitively work with these packages.

Fink package names

GTKMM:

 gtkmm2.4-dev
 gtkmm2.4-gtk-dev
 gtkmm2.4-shlibs
 libglade2
 libglade2-shlibs
 libglademm2.4
 libglademm2.4-shlibs

QT:

 qt3
 qt3-bin
 qt3-shlibs
 qt3-designer
 qt3-designer-shlibs
 qt3-linguist

MacPorts package names

 glib2-devel
 glibmm
 gtk2
 gtkmm
 qt3

Environment variable you should have after this procedure: nothing new.

Gnu Scientific Library

YARP and some modules in iCub make use of the GNU Scientific Library (GSL). If you are using Fink, install packages

 gsl
 gsl-shlibs

If you are using MacPorts, install

 gsl

Alternatively, you can download the library directly from http://www.gnu.org/software/gsl/.

Environment variable you should have after this procedure: nothing new.

OpenCV

Software in iCub makes extensive use of OpenCV. The author installed the version 1.1.0.

You can download OpenCV here (http://opencv.willowgarage.com/wiki/) .

Set the environment variable OPENCV_ROOT in your ~/.profile file or export it manually to the location where you
installed it (in my case /Users/frank/bin/opencv-1.1.0)

IPOPT

The author is not using modules that require IPOPT. Any suggestions are welcome.

The iCub Simulator will also need ODE and SDL. See the simulator instructions on how to do it here: Simulator libraries.

Retrieved from "http://eris.liralab.it/wiki/PrepareMacOSX"

This page was last modified 12:22, 25 September 2009.
This page has been accessed 401 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Depending on the operating system you are using, instructions in Section 6.1 "Prepare you system" have required you to
set some environment variables. These depend on your system and your choices so we don't review them here. Just make
sure you followed the instructions correctly.

YARP and iCub software require another couple of environment variables. This applies to all systems.

YARP_ROOT= point to where Yarp was unpacked (used by various applications)
YARP_DIR= typically points to YARP_ROOT (used by CMake)
YARP_CONF= where the yarpserver configuration file can be stored
ICUB_ROOT= point to where iCub code was unpacked
ICUB_DIR= points to ICUB_ROOT

New (since July 2009): if you have a robot, you also have to define:

 ICUB_ROBOTNAME= name of your robot (the directory in $ICUB_ROOT/app that stores your robot configuration fi

In Linux and Mac OS X you do this using the "export" command. In the case of Linux it is a good idea to place them in
your .bashrc file (or equivalent), in the case of Mac OS X you might want to place them in your .profile file (or
equivalent). In Windows environment variables are in the System Properties tab in the Control Panel.

Append ICUB_DIR/bin and YARP_DIR/bin to your PATH

Hint for Linux and Mac OS X:

export PATH=$PATH:$YARP_DIR/bin:$ICUB_DIR/bin

Hint for Windows: check the current value of PATH in the control panel and extend it.

Important: YARP_ROOT and YARP_DIR have different meaning, although here they point to the same place.
YARP_ROOT points to the location of the sources, YARP_DIR points to where you build your binaries. We here point
them to the same place (cmake calls this in source build, in general they could be different).

Similar considerations apply to ICUB_ROOT and ICUB_DIR.

Retrieved from "http://eris.liralab.it/wiki/EnvironmentMacOSX"

This page was last modified 13:29, 23 September 2009.
This page has been accessed 139 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Important: we assume here that you have completed the previous steps in the manual (see Section 6.1 "Prepare Your
System" in the manual's main page).
Also note that Mac OS X is officially not supported and everything said here should be taken as experimental,
which makes the building procedure slightly more time-consuming than under Linux or Windows but I hope that these hints
will help.

Before you compile the code you need to generate make files.

Here we assume you have completed the previous steps (preparing your system, getting the software, setting up your
environment).

1 Compiling YARP
1.1 Create the YARP Makefiles
1.2 Compile
1.3 Example -- is YARP available?

2 Compile the iCub software
2.1 Manual adjustments specific to Mac OS X
2.2 Generate makefiles
2.3 Compile

Run (don't forget to set the environment variables first):

 cd $YARP_ROOT
 ccmake ./

Choose the following options:

CMAKE_BUILD_TYPE, set to "Release" in case you'd like to optimize
CREATE_LIB_MATH, set to ON

In order to activate yarpview edit first $YARP_ROOT/conf/FindGtkPlus.cmake like described in Yarp on Mac
(http://eris.liralab.it/wiki/YARP_on_Mac#Enabling_yarpview) and set

CREATE_GUIS to ON

Important: CREATE_GUIS and CREATE_LIB_MATH require you have installed the libraries gtk and gsl (see
PrepareMacOSX)

Create the makefiles by selecting configure several times and then generate.

Installation: CMake automatically creates an install rule for target/project. In the documentation we assume you install
binaries in $YARP_ROOT/bin and $YARP_ROOT/lib. The compiler will build executables and libraries there, so you
don't need to perform the installation. You can instruct CMake so that it generates make/project files that install to other
places, for example $YARP_DIR/bin and $YARP_DIR/lib. You can do this by running cmake again and setting the
variable:

CMAKE_INSTALL_PREFIX to $YARP_DIR

When you do make install all binaries will be copied to $YARP_DIR/bin and $YARP_DIR/lib.

Of course you can customize the installation directory as you wish, however the remainder of the documentation assumes
the above configuration.

Depending on the hardware on your system you might want to compile additional device drivers. This is done for
example on the pc104. Instruction for doing this are reported elsewhere.

Now we are ready to compile. This is easy.

Run:

 cd $YARP_ROOT
 make

Now we're ready to run a simple Yarp code to test the installation so far. You might want to prepare a yarp.conf file in the
conf directory similar to this one:

127.0.0.1 10000

which tells Yarp (the server) to start on the localhost and respond to port 10000. This allows Yarp applications to find the
name server (see next chapter).

You can then try running the server. On a terminal window, type:

yarpserver &

and you should see:

yarp: Port /root active at tcp://127.0.0.1:10000 Name server can be browsed at http://127.0.0.1:10000/ yarp: Bootstrap
server listening at mcast://224.2.1.1:10001

if you type on a web browser http://127.0.0.1:10000 you get information about the name server (registered ports, info,
etc.).

For the time being we can just check functionality by running a simple example. On another terminal type:

yarp read /portread

on a third terminal:

yarp write /portwrite

and on yet another terminal:

yarp connect /portwrite /portread

you'll see the effect on the name server:

yarp: registration name /portwrite ip 127.0.0.1 port 10012 type tcp
yarp: registration name /portread ip 127.0.0.1 port 10002 type tcp

Now, anything typed on the yarp write will be sent and printed on the read side.

So far everything was pretty straight forward on the Mac. Now comes a bit of manual editing that is due to the fact that the
icub software was not written for Mac OS X.

1. If you modified FindGtkPlus.cmake previously, undo your changes now
In order to make compile yarpview you had to outcomment a section in $YARP_ROOT/conf/FindGtkPlus.cmake like
described in YARP on Mac (http://eris.liralab.it/wiki/YARP_on_Mac#Enabling_yarpview) . This very change will make
the canloader module crash if you try to compile the icub repository as it is. So if you did outcomment the said section
before in order to compile yarpview, do the opposite now and comment it again. This is a hack and not even an elegant
one. So any suggestions how to circumvent this uncomment-comment are highly appreciated.

2. Prerequisites for getting the simulator to compile (thanks to Gianluca for pointing this out)
In order to compile the simulator (which will be compiled by default) you need to perform the following changes in
$ICUB_ROOT/src/iCubSimulation/CMakeLists.txt:
Add below the line LINK_LIBRARIES(${ODE_LIBRARIES})

 IF (APPLE)
 INCLUDE_DIRECTORIES(${OPENGL_INCLUDE_DIR})
 LINK_LIBRARIES(${OPENGL_LIBRARIES})
 ADD_DEFINITIONS(-DHAVE_APPLE_OPENGL_FRAMEWORK)
 ENDIF(APPLE)

Add below the line ADD_DEFINITIONS(-DEXPERIMENTAL_CONFIG_METHOD)

 IF(APPLE)
 ADD_EXECUTABLE(${PROJECTNAME} ${folder_source} ${folder_header}
 /Library/Frameworks/SDL.framework/Resources/SDLMain.m)
 ELSE(APPLE)
 # original line without Apple-specific change
 ADD_EXECUTABLE(${PROJECTNAME} ${folder_source} ${folder_header})
 ENDIF(APPLE)

3. If you want to enable CREATE_GUIS_QT (see also below), you have also to adjust the CMakeLists.txt files in the
root directories of the following modules

(the root directory with regard to the libYARP_QWidgets module for example is $ICUB_ROOT/src
/gui/libYARP_QWidgets):

libYARP_QWidgets
libICUB_QWidgets
qViewerGui
applicationGui
iCubGui

in the following way:
Add in the corresponding CMakeLists.txt files of the mentioned modules below the lines INCLUDE_DIRECTORIES an
additional one, for example like:

 IF (APPLE)
 INCLUDE_DIRECTORIES(
 /usr/X11R6/include
)
 ENDIF (APPLE)

This is the directory where your GL/qt.h and GL/glu.h reside. (The author is not sure anymore if he did anything particular
in order to have these files in this particular directory, they might come with the X11 installation which is a default with
Mac OS X 10.5 and later versions but an optional install with Mac OS X 10.4).
Mac OS X comes with its own version of OpenGL and one typically seems to include OPENGL/qt.h instead of GL/qt.h
which is the cause for the compiler errors. The headers of the Mac version of OpenGL reside typically in /System/Library
/Frameworks/OpenGL.framework/Headers were they are found automatically by cmake. So an alternative to the changes
above would be for Mac users to change the headers of the mentioned modules to include OPENGL/qt.h and
OPENGL/qlu.h instead of their GL/.. counterparts.

A more elegant way to fix this would be to either use a cmake variable instead of an absolute path for example by defining
a FindOPENGL.cmake or to introduce a OS switch in the preprocessor directives of the header files of the corresponding
modules. Feel free to contribute.

Now you can generate make files (Technically speaking you could have generated them before already but the compilation
based on those would have failed). In $ICUB_ROOT:

ccmake ./

You don't need particular options. If you want to compile using optimization just set:

CMAKE_BUILD_TYPE to "Release"

Other options are:

CREATE_GUIS_GTK
CREATE_GUIS_GTKMM
CREATE_GUIS_QT

These options are recommended, because they enable compilation of some useful GUIs. Important: these options can be
enabled only if you have installed the required libraries: gtk, gtkmm and qt (see PrepareMacOSX).

Similarly to YARP, by default make will build executables and libraries in $ICUB_ROOT/bin and

$ICUB_ROOT/lib. You can customize where "make install" will copy these files by setting:
CMAKE_INSTALL_PREFIX to something you like.

If you need to compile devices that provide interface to the hardware you can follow this link Compilation on the pc104

Compile the code.

 cd $ICUB_ROOT
 make

Retrieved from "http://eris.liralab.it/wiki/CompileMacOSX"

This page was last modified 13:04, 16 November 2009.
This page has been accessed 166 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Background:

ARToolKit adapts its global settings like the pixel format to the operating system where it is compiled on. That means it is
per se not configured to work with the image format used by the frame grabbers provided by yarp. The module in the icub
repository was originally written for Windows and Linux and supports their image formats. Unfortunately when the yarp
independent source code is compiled under Mac OS X, the default pixel format is set to ARGB. This works fine when
used independently from the repository module but it will make said module crash as the yarp frame grabbers deliver a
RGB pixel format. For the default pixel format under Windows, which is set to BGRA (ARToolKit viewpoint) there is a
opencv conversion from the the pixel format delivered by the grabber (RGB) to the pixel format that is assumed by the
ARToolKit libraries when compiled under Windows (BGRA). In the case of Linux it is even easier as most image/frame
grabber frameworks like Video for Linux (V4L) or GStreamer produce the RBG pixel format so that no conversion is
necessary. When compiled under Mac Os X ARToolKit sets the default pixel format to ARGB. Unluckily the OpenCV
conversion command (cvCvtColor(..)) doesn't seem to be able to perform this particular conversion (RGB2ARGB).
Therefore the easiest way to get the ARToolKit module to work under Mac OS X is to re-compile ARToolKit itself before
compiling the module in the repository (which uses the libraries from your custom ARToolKit installation) and to 'tell it'
explicitely that we are expecting our images to be of the type RGB and not ARGB despite beeing on a Mac Os machine.

Solution:

The easiest way to get the ARToolKit tracker module to run under Mac OS X is to recompile ARToolKit. Edit AFTER
having called ./configure the header file that sets the global constants like the default pixel format. Note that this edit most
probably will cause problems with the standalone ARToolKit programs but it will enable you to use the ARToolKit tracker
module from the repository without any changes. In

$ARTOOLKIT_DIR/include/AR/config.h

replace

#define AR_DEFAULT_PIXEL_FORMAT_ARGB

with

#define AR_DEFAULT_PIXEL_FORMAT_RGB

and call make.

Potential future solution:

Add an additonal OS switch for Mac Os (#ifdef __APPLE__) and write an image conversion method that does the
RGB2ARGB conversion. Call this method from ARToolKitTracker::detectMarkers(IplImage *iplimg) in
$ICUB_ROOT/src/artoolkittracker/ARToolKitTracker.cpp.

Retrieved from "http://eris.liralab.it/wiki/Artoolkittracker_mac"

This page was last modified 21:01, 17 November 2009.
This page has been accessed 60 times.
Content is available under GNU Free Documentation License 1.2.

Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

From Wiki for RobotCub and Friends

Important: this documentation might be obsolete. It describes a the cluster configuration that was used some time ago to
run the iCub at University of Genova.

We are using a Blade server with 6 blades at the moment running Debian Linux and a server/interface machine running
Windows 2003. We also have 5 dual-boot (XP/Linux)Shuttle PCs and two more rack mount machines, a bunch of screens
and several laptops connected to the same network.

This document describes certain procedures for the maintenance of this system.

Most of the disk space is on the Windows 2003 machine that shares it using both NFS and Samba. The Windows 2003
machine also runs the Unix Services for Windows and the YP server, name and permission mapping, etc.

On each Linux machine we mount the home directories (or anything else need, e.g. Yarp) using NFS, while Windows
machines we use Samba (i.e. the native Windows network). Linux machines use yp. The yp server is on the Windows 2003
machine where also the Windows domain is managed.

1 Configuration
2 Shared drives
3 Environment variables
4 Notes
5 SSH public key authentication
6 CYGWIN
7 Openssh on windows
8 Tips and tricks

8.1 Making SSH read your environment variables on the target node
9 Name server
10 Missing things

The cluster consists of a certain number N of machines with various operating systems (not necessarily uniform). One
machine is directly attached to the robot hardware and this should be the case for compatibility with iCub (where all the
hardware is interfaced through the on-board pc104 machine). Since Yarp doesn't provide security, the cluster network is
physically separated from the outside world via a server/router. The server in our case here runs Windows 2003 but this is
not a requirement. Separating the cluster from other networks also limits the potentially high bandwidth traffic to the robot
subnetwork(s).

The blade computers are mutually connected via two Gbit/s switches. These are private networks responding to the
10.0.0.X and 10.0.1.X addresses. The server machine called MUSE in our implementation is also connected to both
network switches and to the outside lab network. Several other machines are only connected to the first private network
(10.0.0.X).

MUSE is a domain controller for the Windows network, it is also a NIS domain server for Linux (we use Debian). It is a

DNS for the machines in the private networks. MUSE maps users from Windows to Linux via NIS and also maps groups
and other tables from Windows to Linux and vice versa. It exports directories using NFS for Linux and Samba for
Windows. It runs also a NAT to map the private IP addresses into a pool of public ones.

Cygwin is used on all Windows machines to run a ssh server. This is used on MUSE also to allow access to the other
machines through ssh tunneling (don't remember the port numbers at the moment) but also for scripting using bash
irrespective of the operating system. Cygwin provides also the cvs client we currently use on Windows.

MUSE shares a separate directory for each operating system (e.g. Linux, Windows) that contains in turn Yarp, the iCub
repository and other libraries if needed.

From Linux, typically mount the shared directory (see extract from mount):

 muse.james.liralab.it:yarp on /usr/src/yarp type nfs (rw,intr,addr=130.251.4.3)

Which can be added to /etc/fstab:

 muse.james.liralab.it:yarp /usr/src/yarp nfs rw,intr

Which will then show up as (ls -la /usr/src/yarp):

 drwx------ 2 4294967294 Domain Users 64 2006-10-28 15:56 .
 drwxrwsr-x 9 root src 4096 2006-08-23 17:20 ..
 drwxr-xr-x 2 babybot Domain Users 64 2006-10-28 16:04 iCub
 drwxrwxr-x 2 babybot Domain Users 64 2006-07-22 09:49 yarp
 drwxrwxr-x 2 babybot Domain Users 64 2006-10-28 16:25 yarp2
 drwxr-xr-x 2 james Domain Users 64 2006-10-29 00:08 yarp2-james
 drwxr-xr-x 2 babybot Domain Users 64 2006-10-27 10:54 yarp2-unstable

From Windows, typically mount the shared directory as drive Y (or anything else you like using the standard Windows
"Map Network Drive".

These are the environment variables recommended (not all of them are required):

 ICUB_ROOT
 YARP_ROOT
 YARP_BUILD
 YARP_CONF

Important: if you are using CYGWIN check that the environment variable CYGWIN exist (for example se it to "smbntsec
ntsec). The .bashrc script check $CYGWIN to determine it it is running on Linux or CYGWIN (see below).

For example in Linux you can do something like this in the .bashrc and perhaps make sure that the .profile calls a similar
sequence of commands:

 export ICUB_ROOT=/usr/src/yarp/iCub
 export YARP_ROOT=/usr/src/yarp/yarp2
 export YARP_BUILD=$YARP_ROOT
 if [-e /etc/debian_version] ; then
 debtype=`cat /etc/debian_version | sed "s|.*/||"`
 if ["k$debtype" = "kunstable"]; then
 export YARP_BUILD=/usr/src/yarp/yarp2/build/$debtype
 fi
 fi
 export YARP_CONF=$YARP_ROOT

In Cygwin you can reuse the same .bashrc (highly recommended) conditioning on the operating system type:

 if [! "k$CYGWIN" = "k"]; then
 export ICUB_ROOT=//MUSE/yarp/iCub
 export YARP_ROOT=//MUSE/yarp/yarp2
 export CYGWIN="smbntsec ntsec"
 export YARP_BUILD=$YARP_ROOT
 export YARP_CONF=$YARP_ROOT

where the remote path //MUSE/yarp is used directly (this is safer than the mount Y when scripting). IMPORTANT: make
sure the environment varible CYGWIN exist on Windows.

Note the smbntsec flag which is required to map Cygwin permission properly on Samba drives.

In Windows, you can add the same variable names using the appropriate dialog from the control panel. They might show
like:

 ICUB_ROOT Y:\iCub
 YARP_ROOT Y:\yarp2
 YARP_BUILD Y:\yarp2
 YARP_CONF Y:\yarp2

Cygwin requires also the environment variable CYGWIN to be set. The best is to allow at least smbntsec ntsec tty which
determine how permissions are also seen on mapped drives (useful if they are consistent).

In general, be gentle to others and set the variables only for your user and not in system-wide scripts, this applies to both
Linux and Windows.

On Windows, add to the PATH the following directories:

 Y:\ACE_wrappers\lib;Y:\yarp2\bin;Y:\iCub\bin

On linux do a similar operation depending on where you installed the executables:

 $YARP_BUILD/bin:$ICUB_ROOT/bin

Getting so many problems is not typical, they are due to the fateful intersections of many different things, including the
presence of mixed operating systems, network drives, cygwin, sshd, carriage return characters, and more.

Various notes on useful operations:

Accessing a computer with the Windows remote desktop.
Applies to: Windows XP

You need to add the username to the local policy.
Go to the "Control panel", click on "System", go to the "Remote" tab and click to "Select Remote Users",
then finally add the username to the list of users (possibly a domain user).
This operation has to be performed by an Administrator.

Adding a user to NIS.
Applies to: Windows 2003, Unix Services for Windows 3.5
Don't forget to add the domain name into the Unix tab in the "Active Directory Users and Computers".
Add also the UID that will be shown on Unix/Linux machines and the other Unix parameters.
Then don't forget to update the name/permission mapping service (also from the Unix services administration
application).
Make sure you "Reset the password" for the user in question so that the NIS (damn!) sets a new password
that is compatible on both Windows and Linux; this doesn't happen automatically.

Adding a user.
Applies to: Windows
Don't forget to run mkpasswd in a cygwin shell to update the passwd file (you must be Administrator). This
step has to be performed on every Cygwin installation (on every Windows machine on the cluster).

 mkpasswd -l -d > /etc/passwd
 mkgroups -l -d > /etc/group

Installing cygwin.
Applies to: Windows
Check the DOS/Windows text mode during installation and NOT the Unix mode for newlines
Install "open ssh" and at least one text editor (e.g. vim, it can be handy).

Issues with the ssh keys.
Applies to: Windows and Linux
For scripting is convenient to have a key installed
This goes typically in $HOME/.ssh
The $HOME is a networked folder
Ssh requires that the keys are only readable by the owner
Thus, you have to make sure that the permissions are always correct no matter how you access them
For cygwin this requires for example the definition of the CYGWIN variable to be smbntsec
See below for the installation of the sshd on Windows.

Weird issue with the user settings.
Applies to: Windows 2003
We need to investigate the problem
The "Active Directory Users and Computers" from the control panel doesn't show the Unix attributes that are
required to set the UID and other Unix properties for the name/group mappings
Temporary solution is to open the Windows MMC from the "Microsoft Windows Services for UNIX"
application, searching for "adding user nis" and click to "To add a user to an NIS domain". This will show a
link to a version of the MMC that will show correctly the Unix attributes
In the hope this is not a persistent problem.

Shell issue with CR/LF on Cygwin.
Applies to: Windows
bash 3.1.17(9) is strict on the endline and if Cygwin is installed with native endline support (i.e.
Windows/DOS like) then the scripts would complain.
Solution: run the dos2unix utility on all the script files just after downloading from the CVS repository

Bored to type the password every time you log in to one of your machines? You can set up ssh to use public key instead.

These instructions were taken almost verbatim from: http://cfm.gs.washington.edu/security/ssh/client-pkauth/

On the client machine:

 client$ mkdir ~/.ssh
 client$ chmod 700 ~/.ssh
 client$ ssh-keygen -q -f ~/.ssh/id_rsa -t rsa

Enter an empty passphrase twice (yes, it is not safe... we don't care).

Make sure everything has the correct access rights:

 chmod go-w ~/
 chmod 755 ~/.ssh
 chmod go-rwx ~/.ssh/*

Keys distribution. If the machines share the same users server and client are actually the same machine and you don't have
to copy anything, anyway in general do:

 client$ scp ~/.ssh/id_rsa.pub server.example.edu:

Log on into the server and type:

 server$ mkdir ~/.ssh
 server$ chmod 755 ~/.ssh
 server$ cat ~/id_rsa.pub >> ~/.ssh/authorized_keys
 server$ chmod 644 ~/.ssh/authorized_keys
 server$ rm ~/id_rsa.pub

Now go back to the client and test ssh by doing:

 ssh -o PreferredAuthentications=publickey server.example.edu

If everything is allright you should login to server without password. Otherwise it means that something is wrong. Most of
the times this is due to bad configurations rights, check out this:

 server$ chmod go-w ~/
 server$ chmod 755 ~/.ssh
 server$ chmod 644 ~/.ssh/authorized_keys

Or go to /var/log and have a look at the messages dumped by sshd.

Note on permissions: usually on linux it is recommanded to set permissions like:

700 for ~/.ssh

600 for ~/.ssh/authorized_keys

However this does not work on cygwin because the sshd service seems to have troubles accessing those files.

If you want to login to a machine from a different user, you can do:

 ssh otheruser@machine.domain.edu -i ~/.ssh/id_rsa

Finally on Windows go to:

Administrative Tools --> Services --> CYGWIN sshd --> properties --> Allow service to interact with desktop

A brief help on how to configure CYGWIN to run YARP/ICUB.

Go to http://www.cygwin.com and download setup.exe. Default installation is fine just add openssh (although you
might find it useful to have also a couple of packages like vi, nano or emacs).
Open a shell and type:

 mkpasswd -l -d > /etc/passwd
 mkgroups -l -d > /etc/group

On windows check if the environment variable CYGWIN is set to smbnet ntsec
Install openssh, see next section.

Assuming you installed cygwin with openssh.

Open a cygwin window (by double clicking theg icon), a black screen pops open, type:

 ssh-host-config

When the script asks you about "privilege separation", answer yes
When the script asks about "create local user sshd", answer yes
When the script asks you about "install sshd as a service", answer yes
When the script stops and asks you for "CYGWIN=" your answer is ntsec tty
While you are still in the (black) cygwin screen, start the sshd service:

 net start sshd
 or
 cygrunsrv --start sshd

The following steps are also required if you want to use login and run processes remotely:

Stop the "Cygwin sshd" service (go to "Computer Managment", open "Services", right click on "Cygwin sshd").
Select "Cygwin sshd" properties. Under the "Log On" tab, change the name of the account to the user (MY_USER)
that runs the processes (e.g. james@james.liralab.it)
Tweak the Local Policies (Control Panel -> Adminstrative Tools -> Local Security Settings -> Local Policies).
Grant to MY_USER the following:

Adjust memory quotas for a process
Create a token object
Lon on as a service (this should be on already)
Replace a process level token

Change the ownership of the files required to run the sshd daemon. On a cygwin bash type:

 chwon MY_USER /var/log/sshd.log
 chown -R MY_USER /var/empty
 chwon MY_USER /etc/ssh*

Good luck, you need it.

[from http://pigtail.net/LRP/printsrv/cygwin-sshd.html]

[from http://ist.uwaterloo.ca/~kscully/CygwinSSHD_W2K3.html

Tricks you need sometimes to make things work on the cluster. This list will hopefully improve/grow with time.

Linux:

- increase the size of the udp packets:

 (sudo) sysctl -w net.core.rmem_max=8388608

Add this to your /etc/init.d/bootmisc.sh

If you are a developer and you want to use cvs to checkout yarp2 with command line (linux or cygwin):

export CVS_RSH=ssh
cvs -z3 -d:ext:your_name@yarp0.cvs.sourceforge.net:/cvs root/yarp0 co -P yarp2

Making SSH read your environment variables on the target node

When you start processes remotely via SSH like it is done by the cluster manager ($ICUB_ROOT/app/default/icub-
cluster.py) neither .bashrc nor .bash_profile might be read on the target node, so your environment variables that are set
there are not available. This means that for example yarprun won't be found. In order to get ssh to read your environment
variables when called in a non-interactive mode like 'ssh -f' add them to the file

/etc/environment (available for every user)

or alternatively to

~/.ssh/environment (available only for a particular user).

The name server runs on nike. On /usr/bin/yarpserver is a copy of yarp. A script in /etc/init.d yarpserver starts/stops the
service at boot time.

Cluster clock synchronization

Retrieved from "http://eris.liralab.it/wiki/Cluster"

This page was last modified 13:01, 11 November 2009.

This page has been accessed 11,597 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About Wiki for RobotCub and Friends
Disclaimers

	D8.5_partial_print_2009.pdf
	cover iCub manual
	manual
	cover1
	1_2
	1_3
	1_4
	1_5
	1_6
	1_7
	1_8
	1_9
	1_10
	1_11
	1_12
	1_13
	1_14
	1_15
	1_16
	1_17
	1_18
	1_19
	1_20
	1_21
	1_22
	1_23
	1_24
	cover2
	2_3
	2_5_1
	2_5_2
	cover3
	3_2
	cover4
	4_1
	cover5
	5_1
	5_2
	5_3
	cover6
	6_1_1
	6_1_2
	6_1_3
	6_1_4
	6_1_5
	6_2_1
	6_2_2
	6_3
	6_4_1
	6_4_2
	6_5_1
	6_5_2
	6_6
	cover7
	7_14
	cover8
	8_1
	8_2
	cover9
	9_1
	9_2_1
	9_2_2
	9_2_3
	9_3_1
	9_4
	9_7
	cover10
	10_1_1
	10_1_2
	10_2
	10_3_1
	10_3_2
	cover12
	12_2_1
	12_2_2
	12_4
	cover13
	13_1
	13_2
	cover14
	14_1
	1 Revision history
	2 Summary
	3 Installing icub
	4 Switching off icub

	cover15
	15_1
	15_2_1
	15_2_2
	15_2_3
	15_3
	15_4

