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1.1 Introduction 
 
This deliverable is the final report on work conducted within WP5 and WP6, on imitation and 
communication respectively. To recall, during the fifth year of Robotcub, these two 
workpackages were merged into a single workpackage named WP5N.  
 
Works done within WP5N took complementary avenues to the understanding of imitation and 
communication in humans and robots. First, work done by UNIFE and EPFL, separately and in 
collaboration, analyzed different aspects of imitation and communication in humans (solely in 
humans). Second, work done by EPFL focused on the design of imitation learning in robots with 
an emphasis on improving robots’ performance while paying no attention to how effective the 
method is from the human’s view point. In contrast, work at the UNIHER looked at how robot 
control affects human-robot interaction and how the robot controller can be designed to improve 
human-robot communication and imitation.  
 
The rest of this report is divided into the above main trends of research, namely study of imitation 
and communication in humans and design and study of controllers for human-robot imitation and 
communication. All of the work on which we report below has been published. Hence, only short 
abstract summarizing the goals and results of these studies are given with a complete reference to 
the associated publications. All associated publications are provided as pdf files in the 
attachments. All the work that relates to design of robot controllers for the iCub is available on 
the SVN repository. 
 

1.2 Study of human imitation and communication 
 
UNIFE and EPFL contributions to WP5N focused on the study of the pre-requisites to imitative 
and communicative behaviour in humans. We summarize each project next starting with 
contributions to a better understanding of the selective process during observation and imitation 
and moving to contributions related to the neural and behavioural basis of action observation. 
 

1.2.1 Which articulations are controlled during imitation of 
meaningless and meaningful gestures? 

 
UNIFE and EPFL have conducted jointly an experiment to verify if the position of articulations 
influences the way in which the same action is imitated (Gesierich B., Canto R, Fabbri Destro 
M., Fadiga L., Finos L., Hersch M., Oliynyk A., Craighero L., Study of kinematics and eye 
movements during imitation). The study contrasted imitation of transitive and intransitive 
reaching movements with normal and unusual elbow elevation. It was hypothesis that imitation 
would proceed according to a hierarchy of goals in which reaching to the target in transitive 
motion would take precedence over replicating the particular orientaton of the elbow articulation 
during reaching, Analysis of the data confirmed this hypothesis in that all subjects reproduced 
correctly the motion of the end-effector, while solely a few of the subject (deemed “good 
imitators”) reproduced both the unusual elbow elevation and the end-effector motion irrespective 
of whether they were imitating transitive versus intransitive motion. Measurement of eye-
movements during observation of the demonstrated movements showed a correlation between 



scanning of the elbow motion during demonstration and being a good imitator. Following from 
this, a computational model that accounts for reaching movement in which both the end-effector 
and the elbow motion can be controlled concurrently was developed (Just, A., Petreska, B., 
Billard, A., Craighero, L., D’Ausilio, A., Oliynyk, A. and Fadiga, L., Point-to-Point 
Unconstrained Gestures: Modeling Wrist and Elbow Trajectories, Human Movement 
Science (submitted), 2009)  
 
The model forms a particular instantiation of the dynamical systems controller developed at 
EPFL explaining the curvature of reaching motion (Petreska and Billard, Biological 
Cybernetics, 2009) and the generic framework for estimating non-linear dynamical systems 
motion models for robot control (Hersch et al, IEEE Trans. In Robotics 2008, Gribovskaya et 
al Intern. Journal of Robotics Research , 2009 (submitted)). 
 

1.2.2 Functional magnetic resonance technique was used to verify 
brain activity during the exchange of gazes, which constitutes 
the simplest form of interpersonal communication. 

 
UNIFE conducted a study of sympathy, considered as the ability of the observer to reproduce the 
internal states of others, either when observing an external event or the display of a reaction, 
motor or affective. The experimental question dealt with the implication that a subject has very 
little to know on his own internal states, so brain activity related to sympathy should be smaller 
than it is when a different subject is involved. Five different conditions have been used. The key 
comparisons were between the brain activity of a subject when he is looking at a different person 
and when he is looking at his own eyes. In other conditions, subjects were looking at an observer 
who was not looking, or they were looking at as they are not looked. A group of 29 subjects has 
been observed. Results support the hypothesis of sympathy as an information acquisition. For 
example, BA 44 (Broca’s area) is involved specifically when two subjects exchange gazes but not 
when the subject is looking at himself. Anterior Insula is activated when subjects are being 
looked at and are not looking. 
 
Data were presented in: 
Rustichini, A.; Fadiga, L.; Lungu, O. Eye-to-eye communication. 469.7 2005 Neuroscience 
Meeting Planner. Washington, DC: Society for Neuroscience, 2005. Online. 
 

1.2.3 An experiment has been performed demonstrating that Broca’s 
area has a specific role not only in speech perception and 
production but also in others’ action recognition. 

 
Broca’s area has been considered, for over a century, as the brain centre responsible for speech 
production. Modern neuroimaging and neuropsychological evidence have suggested a wider 
functional role is played by this area. In addition to the evidence that it is involved in syntactical 
analysis, mathematical calculation and music processing, it has recently been shown that Broca’s 
area may play some role in language comprehension and, more generally, in understanding 
actions of other individuals. As shown by functional magnetic resonance imaging, Broca’s area is 
one of the cortical areas activated by hand/mouth action observation and it has been proposed that 
it may form a crucial node of a human mirror-neuron system. If, on the one hand, neuroimaging 
studies use a correlational approach which cannot offer a final proof for such claims, available 



neuropsychological data fail to offer a conclusive demonstration for two main reasons: (i) they 
use tasks taxing both language and action systems; and (ii) they rarely consider the possibility 
that Broca’s aphasics may also be affected by some form of apraxia. We administered a novel 
action comprehension test—with almost no linguistic requirements—on selected frontal aphasic 
patients lacking apraxic symptoms. Patients, as well as matched controls, were shown short 
movies of human actions or of physical events. Their task consisted of ordering, in a temporal 
sequence, four pictures taken from each movie and randomly presented on the computer screen. 
Patient’s performance showed a specific dissociation in their ability to re-order pictures of human 
actions (impaired) with respect to physical events (spared). Our study provides a demonstration 
that frontal aphasics, not affected by apraxia, are specifically impaired in their capability to 
correctly encode observed human actions. 
 
Results have been published in: Fazio P, Cantagallo A, Craighero L, D'Ausilio A, Roy AC, 
Pozzo T, Calzolari F, Granieri E, Fadiga L. Encoding of human action in Broca's area 
(2009) Brain. 132(Pt7):1980-8. 
 

1.2.4 A behavioral study of cooperation and competition during 
human interaction demonstrated that even when the outcome 
of the play indicates perfect cooperation, electrophysiological 
measurements may reveal differences in attitudes and beliefs 
that guide social interaction. 

 
We studied the behavior of 12 pairs of (normal, right-handed) undergraduate students while they 
were involved in a simple coordination game requiring motor interaction. Three experimental 
conditions were defined according to whether a monetary prize was given to both or only one 
player, if the couple was successfully completing the required assignment. Electromyographic 
potentials (EMG) were recorded from the right first dorsal interosseus muscle, a muscle critically 
involved in the motor task. We also collected written answers from standard questionnaires from 
which we constructed individual measures based on organized group interaction, social 
involvement and altruism. These measures of 'Altruism' were collected to estimate individual pro-
social or altruistic attitudes and behavior. Consistently with a simple behavioral model, by which 
EMG signals may reveal subjects' personal concern (utility) associated to the given task, 
experimental evidence shows that individual average EMG signal was increasing when the 
players where expecting a monetary reward. When we split the subject pool into two sub samples 
(according to the measures of Altruism obtained from the questionnaire), we found that monetary 
incentives explain the level of subjects' EMG signal only in the sub sample characterized by low 
SC or Altruism. These findings seem to support the possibility that an electrophysiological 
measure, such as EMG recording, could reveal the most profound attitudes and believes that 
guide social interaction. 
 
Results have been submitted to Social Neuroscience: Roberto Censolo, Laila Craighero, 
Giovanni Ponti, Leonzio Rizzo, Luciano Fadiga Prosocial attitude modulates muscle activity 
in a simple coordination game. 
 



1.2.5 A transcranial magnetic experiment (TMS) demonstrated that 
motor structures provide a specific functional contribution to 
the perception of speech sounds. 

 
Listening to speech recruits a network of fronto-temporo-parietal cortical areas. Classical models 
consider anterior (motor) sites to be involved in speech production whereas posterior sites are 
considered to be involved in comprehension. This functional segregation is challenged by action 
perception theories suggesting that brain circuits for speech articulation and speech perception are 
functionally dependent. Although recent data show that speech listening elicits motor activities 
analogous to production, it’s still debated whether motor circuits play a causal contribution to the 
perception of speech. We administered TMS to motor cortex controlling lips and tongue during 
the discrimination of lip- and tongue articulated phonemes. We found a neurofunctional double 
dissociation in speech sound discrimination, supporting the idea that motor structures provide a 
specific functional contribution to the perception of speech sounds. Moreover, findings show a 
fine-grained motor somatotopy for speech comprehension. 
 
Results have been published in: 
D'Ausilio A, Pulvermüller F, Salmas P, Bufalari I, Begliomini C, Fadiga L. (2009) The 
motor somatotopy of speech perception. Curr Biol.;19(5):381-5. 

 
 

1.2.6 A transcranial magnetic (TMS) experiment demonstrated that 
during other’s actions observation the muscle-specific 
facilitation of the observer’s motor system reflects the degree 
of muscular force that is exerted in an observed action. 

 
Two separate TMS-experiments are reported in which corticomotor excitability was measured in 
the hand area of the primary motor cortex (M1) while subjects observed the lifting of objects with 
different weights. The type of action ‘grasping and lifting the object’ was always identical but the 
grip force varied according to the object’s weight. In accordance to previous findings, activity of 
M1 was shown to modulate in a muscle-specific way, such that only those parts of M1 that 
control the specific muscles used in the observed lifting action, become increasingly facilitated. 
Moreover, the muscle-specific facilitation pattern of M1 was shown to modulate in accordance to 
the force requirements of the observed actions, such that corticomotor excitability was 
considerably higher for observing heavy object lifting compared to light object lifting. Overall, 
these results indicate that observed object grasping, requiring different force levels, is mirrored 
onto the observer’s motor system in a highly muscle-specific manner, as measured in M1. The 
measured force-dependent modulations of corticomotor activity in M1 are hypothesised to be 
functionally relevant for the observer’s ability to infer the observed grip force and consequently 
the weight of the lifted object. 
 
Results have been submitted in European Journal of Neuroscience: 
Alaerts Kaat, Senot Patrice, Swinnen Stephan, Craighero Laila, Wenderoth Nicole, Fadiga 
Luciano. Force requirements of observed object lifting are encoded by the observer’s motor 
system: A TMS-study. 

 



1.2.7 Furthermore, an additional experiment has been performed to 
test if cognitive cues are able to interfere with motor system 
facilitation during observation of grip force. 

 
Motor Evoked Potentials (MEP) elicited by TMS stimulation of the First Dorsal Interosseous 
(FDI) muscle representation were measured during the observation of reach-grasp-lift actions 
upon 6 different objects: 1) transparent empty bottle (VisLight); 2) transparent full bottle 
(VisHeavy); 3) opaque empty bottle (HidLight); 4) opaque full bottle (HidHeavy); 5) opaque full 
bottle labeled light (LabLight); 6) opaque full bottle labeled heavy (LabHeavy). Light objects 
were 50 and heavy were 500g. This difference translated into clear different pattern of muscle 
contraction and kinematics. TMS was applied when this difference was found to be maximal, in a 
100ms window after the beginning of lifting. Condition 1 and 2 afforded full knowledge of 
weight difference and kinematics information, 3 and 4 only kinematics, 5 and 6 no kinematics but 
cognitive cues (labels). 
 
We found significant difference in MEPs amplitude in the 1-2 and 3-4 comparisons but no 
difference in 5-6, 1-3 and 2-4. Results show that the motor cortex does scale for the amount of 
muscle activity present in the observed action by analysing movement kinematics. Moreover all 
subjects reported the presence of only 5 objects (they recognised only one opaque) arguing for an 
implicit processing carried out by the motor system. 
 
Results have been presented at FENS Forum 2008: 
Senot P., D'Ausilio A., Franca M., Caselli L., Craighero L. & Fadiga L. Implicit coding of 
observed kinematics: the case of lifting object with different weights. FENS Abstr., vol.4, 
123.26, 2008 
 

1.3 Design and study of controllers for human-robot imitation 
and communication 

 
In this section, we summarize research conducted at UNIHER and EPFL, starting with work at 
EPFL on learning non-linear dynamical systems from demonstration for robust robot control and 
moving to the various UNIHER contributions on the study of gesture communication and its role 
in human-robot communication. Specifically, work at UNIHER in the final project phase 
followed three key lines of investigation a) the study of gesture communication and imitation in 
user studies with child and adult participants, b) the development of a computational architecture 
for development and learning in human-humanoid interaction, and c) the in depth analysis of 
human-robot interaction in a variety of human-robot interaction scenarios in order to illuminate 
aspects of timing, social cues, motor interference and well as possible benefits of such interaction 
in robot assisted play for children.  
 

1.3.1 EPFL Work on Estimating Non-Linear Dynamical Systems of 
Motion 

To compensate for the scarsity of human demonstrations, methods for imitation learning must be 
able to infer a motion model outside contexts covered by the demonstrations. In this work, we 
revisited the statistical approach developed in (Hersch et al 2008).to determine explicitly the 
region of application of the inferred model. This offers the ability to generate asymptotically 
stable motions in an area of the workspace that exceeds that covered by the demonstration.  



 
Motion imitation requires reproduction of a dynamical signature of a movement, i.e. a robot 
should be able to encode and reproduce a particular path together with a specific velocity and/or 
an acceleration profile. Such a motion encoding is advantageous in that i) it allows to generalize a 
motion to unseen context; ii) it provides fast on-line replanning of the motion in the face of 
spatio-temporal perturbations; iii) it may embed different types of dynamics, governed by 
different attractors. (E. Gribovskaya, M. Khansari and A. Billard, Learning the Nonlinear 
Multivariate Dynamics of Motion of Robotic Manipulators, Intern. Journal of Robotics 
Research (submitted)). 
 
Code for estimating the dynamics of motion was implemented on the iCub and will be provided 
on the SVN repository by month 65 together with the video of the demonstrator.  
 
 

1.3.2 Investigation of the effect of physical presence on human-
humanoid gesture interaction games. 

 
For this task, a study with human participants interacting with various degrees of physical 
presence was carried out. Results are reported in the journal paper “Effects of Embodiment and 
Gestures on Social Interaction in Drumming Games with a Humanoid Robot” (Kose-Bagci 
et al, 2009. Here, we present results from an empirical study investigating the effect of 
embodiment and minimal gestures in an interactive drumming game consisting of an autonomous 
child-sized humanoid robot (KASPAR) playing with child participants. Each participant played 
three games with a humanoid robot that played a drum whilst simultaneously making (or not 
making) head gestures. The three games included the participant interacting with the real robot 
(physical embodiment condition), interacting with a hidden robot when only the sound of the 
robot is heard (disembodiment condition; note that the term ‘disembodiment’ is used in this paper 
specifically to refer to an experimental condition where a physical robot produces the sound cues, 
but is not visible to the participants), or interacting with a real-time image of the robot (virtual 
embodiment condition). We used a mixed design where repeated measures were used to evaluate 
embodiment effects and independent-groups measures were used to study the gestures effects. 
Data from the implementation of a human–robot interaction experiment with 66 children are 
presented, and statistically analysed in terms of participants’ subjective experiences and 
drumming performance of the human–robot pair. The subjective experiences showed significant 
differences for the different embodiment conditions when gestures were used in terms of 
enjoyment of the game, and perceived intelligence and appearance of the robot. The drumming 
performance also differed significantly within the embodiment conditions and the presence of 
gestures increased these differences significantly. The presence of a physical, embodied robot 
enabled more interaction, better drumming and turn-taking, as well as enjoyment of the 
interaction, especially when the robot used gestures. While the experiments in this study had to be 
conducted with KASPAR, the findings are also very relevant to future studies with the iCub in 
cases where different robot embodiments are used. 

1.3.3 Investigation of using cues in the regulation of human-
humanoid interaction games. 

This direction formed a major part of UNIHER’s scientific work. Resulting in eight publications 
in the final period of RobotCub, some of which represent the investigation into cues such as 
timing, gesture, body expression and communicative aspects of imitation (former Task 5.1). 



Some of these publications report the culmination or updates of previous work (such as with 
timing and robot-human drumming interactions; investigation into the adaptive regulation of 
robot behaviour in response to human-robot interaction), while others overview the issues and 
developments over the course of recent years (e.g. in methodology of human-humanoid studies, 
or design and deployment of the low-cost minimally expressive humanoid robot KASPAR 
specifically used for human-robot interaction experiments in RobotCub prior to the availability of 
the iCub to the UNIHER team).  

1.3.4 An Experimental Investigation of Interference Effects in Human-
Humanoid Interaction Games   

(Qiming Shen, Hatice Kose-Bagci, Joe Saunders, Kerstin Dautenhahn (2009) An 
Experimental Investigation of Interference Effects in Human-Humanoid 
Interaction Games. IEEE RO-MAN 2009, 18th IEEE International Symposium on Robot 
and Human Interactive Communication Sep. 27 - Oct. 2, 2009, Toyama 
International Conference Center, Japan. 

[This also relates to the design, experimental study and analysis aspects of mirroring, timing, 
body expression and communicative aspects of imitation in child-robot interaction and using 
computational models of imitative interaction games (Task 5.1)] 

Investigating how people respond to and relate to robots is a multifaceted scientific challenge. 
This paper reports on an experimental investigation concerning movement interference effects 
between a human and a robot. We compare results with that obtained by Oztop et al. [E. Oztop, 
D. W. Franklin, T. Chaminade, and G. Cheng (2005). "Human-humanoid interaction: is a 
humanoid robot perceived as a human?" in International Journal of Humanoid Robotics 2(4): 
537-559], however, in our study we used a small child-sized robot (KASPAR) with an overall 
human-like appearance. The experiment was conducted with both child and adult participants 
who interacted with a small humanoid robot using arm waving behaviours. The experimental 
setup was designed to be less constrained than in [Oztop et al, 2005] with an emphasis on playful 
interaction. The experimental results did not show evidence for interference effects. This might 
be due to a more game-like and less constrained experimental environment or to the specific 
features of the robot or both. In addition to measurements of the variance of the movements, we 
investigated a measure for behavioural synchrony between human and robot movements based on 
the concept of information distance. The results of information distance analysis indicated that 
most of the human participants were affected by the robot’s behavioural rhythms. While our 
experiments did not show a movement interference effect, we found behavioural adaptation of 
participants’ movement timing to the robot’s movements. Thus, the measure of behavioural 
synchrony that we introduced appears useful for complementing other measures (such as 
variance) previously used in the literature. This work is relevant for the field of gesture 
communication for humanoid robotics in general concerning questions of motor interference and 
motor coordination in human-humanoid interactions. 

The next three papers relate to the investigation of mechanisms to adjust levels of play in real 
time as a response to styles of interaction of a robot with people (continuing and completing the 
former Task 6.5). This research investigates gesture communication and social cues in human-
robot interaction in a robot-assisted play context, utilizing concepts developed in the RobotCub 
project in a therapeutic application domain: 
 



1.3.5 Towards socially adaptive robots: A novel method for real time 
recognition of human-robot interaction styles. 

 
Dorothée François, Kerstin Dautenhahn and Daniel Polani (2009) Using 
Real-Time Recognition of Human-Robot Interaction Styles for Creating 
Adaptive Robot Behaviour in Robot-Assisted Play. IEEE Symposium on Artificial Life 
2009, ALIFE'09, Nashville USA, pp.45 – 52.  [Winner of Best Paper Award] 
 
Automatically detecting different styles of play in human-robot interaction is a key challenge 
towards adaptive robots, i.e. robots that are able to regulate the interactions and adapt to different 
interaction styles of the robot users. In this paper we present a novel algorithm for pattern 
recognition in human-robot interaction, the Cascaded Information Bottleneck Method. We apply 
it to real-time autonomous recognition of human-robot interaction styles. This method uses an 
information theoretic approach and enables to progressively extract relevant information from 
time series. It relies on a cascade of bottlenecks, the bottlenecks being trained one after the other 
according to the existing Agglomerative Information Bottleneck Algorithm. We show that a 
structure for the bottleneck states along the cascade emerges and we introduce a measure to 
extrapolate unseen data. We apply this method to real-time recognition of Human-Robot 
Interaction Styles by a robot in a detailed case study. The algorithm has been implemented for 
real interactions between humans and a real robot. We demonstrate that the algorithm, which is 
designed to operate real time, is capable of classifying interaction styles, with a good accuracy 
and a very acceptable delay. Our future work will evaluate this method in scenarios on robot-
assisted therapy for children with autism. 
 

1.3.6 Using Real-Time Recognition of Human-Robot Interaction 
Styles for Creating Adaptive Robot Behaviour in Robot-
Assisted Play 

 
Dorothée François, Daniel Polani, Kerstin Dautenhahn (2009) Towards Socially Adaptive 
Robots: A Novel Method for Real Time Recognition of Human-Robot Interaction Styles. 
Proc 8th IEEE-RAS Int Conf on Humanoid Robots (Humanoids 2008), December 1-3, 2008, 
pp.353-359  
 
This paper presents an application of the Cascaded Information Bottleneck Method for real-time 
recognition of Human-Robot Interaction styles in robot-assisted play. This method, that we have 
developed, is implemented here for an adaptive robot that can recognize and adapt to children’s 
play styles in real time. The robot rewards well-balanced interaction styles and encourages 
children to engage in the interaction. The potential impact of such an adaptive robot in robot-
assisted play for children with autism is evaluated through a study conducted with seven children 
with autism in a school. A statistical analysis of the results shows the positive impact of such an 
adaptive robot on the children’s play styles and on their engagement in the interaction with the 
robot.  
 
A long-term study of children with autism playing with a robotic pet: Taking inspirations 
from non-directive play therapy to encourage children’s proactivity and initiative-taking 
 
Dorothée François, Stuart Powell and Kerstin Dautenhahn (2009). “A long-term study of 
children with autism playing with a robotic pet: Taking inspirations from non-directive 



play therapy to encourage children’s proactivity and initiative-taking”. In: Robots in the 
Wild: Exploring human-robot interaction in naturalistic environments: Special Issue of 
Interaction Studies 10:3,  pp. 324–373  
 
This paper presents a novel methodological approach of how to design, conduct and analyse 
robot-assisted play. This approach is inspired by nondirective play therapy. The experimenter 
participates in the experiments, but the child remains the main leader for play. Besides, beyond 
inspiration from non-directive play therapy, this approach enables the experimenter to regulate 
the interaction under specific conditions in order to guide the child or ask her questions about 
reasoning or affect related to the robot. This approach has been tested in a long-term study with 
six children with autism in a school setting. An autonomous robot with zoomorphic, dog-like 
appearance was used in the studies. The children’s progress was analyzed according to three 
dimensions, namely, Play, Reasoning and Affect. Results from the case-study evaluations have 
shown the capability of the method to meet each child’s needs and abilities. Children who mainly 
played solitarily progressively experienced basic imitation games with the experimenter. Children 
who proactively played socially progressively experienced higher levels of play and constructed 
more reasoning related to the robot. They also expressed some interest in the robot, including, on 
occasion, affect. 
 
Also relating to Task 5.1, the work using Drum-mate to study human-humanoid gestural and 
timing cues is reported in the three papers, highlighting the important role of interaction dynamics 
and timing in human-humanoid gesture communication and interaction: 
 
Hatice Kose-Bagci, Frank Broz, Qiming Shen, Kerstin Dautenhahn, Chrystopher 
L.Nehaniv (2010), As Time Goes by:  Representing and Reasoning Timing in the Human-
Robot Interaction Studies, AAAI - Spring Symposium 2010: It’s All in the Timing: 
Representing and Reasoning About Time in Interactive Behavior, Stanford University, Palo 
Alto, California. Extended Abstract (accepted for publication).  
 
In  (Kose-Bagci et al, 2010),  we summarize the experimental design issues related to timing in 
three human-robot interaction studies investigating imitation and drumming experiences with 
child-sized humanoid robots and human participants. Here the focus is to understand the role of 
timing in interaction design.  Rather than humanoid robotics that merely mimics human 
behaviours (e.g. waving or drumming), the goal is instead engage with human interaction partners 
in a ‘social manner’, e.g. in a call and response turn-taking interaction for timing plays a crucial 
role in the emergent interaction. In particular, this work is aimed at understanding the temporal 
cues in interaction as part of generally applicable methods for developmental robotics with 
emphasis on imitation and gesture communication. 
 

1.3.7 Drum-mate: Interaction dynamics and gestures in human-
humanoid drumming experiments 

 
Hatice Kose-Bagci, Kerstin Dautenhahn, Dag S. Syrdal and Chrystopher L. Nehaniv (in 
press) Drum-mate: Interaction dynamics and gestures in human-humanoid drumming 
experiments. Connection Science. 
 
This journal article (Kose-Bagci et al, in press) investigates the role of interaction kinesics in 
human–robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive 
competencies in robots using simple, minimal computational models underlying the robot’s 



interaction dynamics. We present two empirical, exploratory studies investigating a drumming 
experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-
taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot 
accompany its drumming to assess the impact of non-verbal gestures on the interaction. The 
second experiment studies a computational framework that facilitates emergent turn-taking 
dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction 
between the human and the humanoid. The results from the HRI experiments are presented and 
analysed qualitatively (in terms of the participants’ subjective experiences) and quantitatively 
(concerning the drumming performance of the human–robot pair). The results point out a trade-
off between the subjective evaluation of the drumming experience from the perspective of the 
participants and the objective evaluation of the drumming performance. A certain number of 
gestures was preferred as a motivational factor in the interaction. The participants preferred the 
models underlying the robot’s turn-taking which enable the robot and human to interact more and 
provide turn-taking closer to ‘natural’ human–human conversations, despite differences in 
objective measures of drumming behaviour. The results are consistent with the temporal 
behaviour matching hypothesis previously proposed in the literature which concerns the effect 
that the participants adapt their own interaction dynamics to the robot’s. 
 

1.3.7.1 Drumming with a Humanoid Robot: Lessons Learnt from 
Designing and Analysing Human-Robot Interaction Studies 

 
In work relating also to tasks 5.1, 5.2, 6.1, 6.2, 6.3, 6.4, and 6.7 of the previous implementation 
workplan (now subsumed under Task 5N.2), we have summarized methodological and 
experimental design issues related to three human-robot interaction studies investigating a 
drumming experience with KASPAR, a humanoid child-sized robot, and (in total 116) human 
participants. Our aim is not to have KASPAR just replicate the human’s drumming but to engage 
in a ‘social manner’ in a call and response turn-taking interaction. This requires the set up of 
enjoyable as well as (as much as possible) controlled experiments. Two Human-Robot Interaction 
(HRI) experiments with adult participants and one experiment with primary school children were 
carried out to investigate different aspects of such interactions. We briefly summarize issues 
concerning experimental methodology and design, as well as ethical, legal, safety issues in 
addition to many ‘practical’ challenges of setting up and conducting HRI experiments with an 
autonomous humanoid robot. This is reported in Hatice Kose-Bagci, Kerstin Dautenhahn, and 
Chrystopher L. Nehaniv (2009), Drumming with a Humanoid Robot: Lessons Learnt from 
Designing and Analysing Human-Robot Interaction Studies, Proc. AAAI - Spring 
Symposium 2009: Experimental Design for Real-World Systems, Stanford University, Palo 
Alto, California, March 22-25, 2009, AAAI Technical Report SS-09-03, AAAI Press, pp.  25-
32. 
 

1.3.8 KASPAR – A Minimally Expressive Humanoid Robot for Human-
Robot Interaction Research 

Kerstin Dautenhahn, Chrystopher L. Nehaniv, Michael L. Walters, Ben Robins, 
Hatice Kose-Bagci, N. Assif Mirza, Michael Blow (in press) KASPAR - A 
Minimally Expressive Humanoid Robot for Human-Robot Interaction Research. Special 
Journal Issue on "Humanoid Robots" for journal Applied Bionics and 
Biomechanics, published by Taylor and Francis. 
 



This journal article (Dautenhahn et al, in press) provides a comprehensive introduction to the 
design of the minimally expressive robot KASPAR, developed and elaborated in the course of the 
RobotCub project and subsequently independently supported by the University of Hertfordshire. 
This was first undertaken as a design exercise to inform the iCub’s design, including expressive 
features, and human-robot interaction aspects.  
Since 2005, i.e. years before the iCub became available at UNIHER (only in 2009 as part of the 
FP7 IP ITALK), versions of KASPAR provided a humanoid platform in which to conduct 
research on imitation and gesture communication. The humanoid design is particularly suitable 
for human-robot interaction studies. A low-cost design with off-the-shelf components has been 
used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and 
Japanese Noh theatre. The design rationale of the robot and its technical features are described in 
detail. The robot is particularly suitable for human-robot studies that are conducted in schools. 
Three research studies are presented in the article that have been using KASPAR extensively. 
Firstly, we present its application in robot-assisted play and therapy for children with autism. 
Secondly, we illustrate its use in human-robot interaction studies investigating the role of 
interaction kinesics and gestures. Lastly, we describe a study in the field of developmental 
robotics into computational architectures based on interaction histories for robot ontogeny. The 
three areas differ in the way how the robot is being operated and its role in social interaction 
scenarios. Each is introduced briefly and examples of the results are presented. Reflections on the 
specific design features of KASPAR that were important in these studies and lessons learnt from 
these studies concerning the design of humanoid robots for social interaction are discussed. An 
assessment of the robot in terms of utility of the design for human-robot interaction experiments 
concludes the paper. 
 

1.3.9 Implementation of gesture communication interaction games 
integrated with the Interaction History Architecture (IHA) 
architecture demonstrable on a humanoid robot, release in the 
iCub software repository and demo on the iCub. 

 
The IHA has been one of UNIHER’s key contributions to the iCub software repository as a 
generic architecture for development and interaction histories developed for the iCub. 
 
Frank Broz, Hatice Kose-Bagci, Chrystopher L. Nehaniv, Kerstin Dautenhahn, (2009), 
“Learning behavior for a social interaction game with a childlike humanoid robot”, Social 
Learning in Interactive Scenarios Workshop, Humanoids 2009, Paris, France, 7 December, 
2009. 
 
In (Broz et al. 2009) we describe the integration of further multimodal social cues in IHA and its 
application for the iCub to acquire new sequences of actions in the context of social interaction 
and reinforcement by social cues such as visual gaze and involvement in turn-taking. In particular 
behaviours of peek-a-boo, building on our previous work (Mirza et al, 2007, 2008a; 2008b)1, and 

                                                
1 N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst (2007), “Grounded sensorimotor interaction 
histories in an information theoretic metric space for robot ontogeny,” Adaptive Behavior, vol. 15, no. 2, pp. 167–187, 
2007.   
N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, R. te Boekhorst (2008a), "Developing Social Action Capabilities in a 
Humanoid Robot using an Interaction History Architecture", Humanoids 2008, IEEE Press, 2008.   
N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, R. te Boekhorst (2008b), "Anticipating Future Experience using Grounded 
Sensorimotor Informational Relationships", Artificial Life XI, MIT Press, 2008.   
 



drumming interactions (cf. the Kose-Bagci lead-author papers in the references, plus those from 
previous years of the RobotCub project).  
 
Based on its sensorimotor experiences (as defined in previously delivered implementations of 
IHA and Mirza et al papers, plus deliverables D6.3 and D6.4), augmented by short term memory 
capacity, the humanoid is able to develop behaviours or other action sequences via social 
interaction and reinforcement via social cues. The state-of-the-art implementation potentially 
supports the behavioural development, switching between acquired behaviours, including 
acquisition of peek-a-boo and engagement in drumming interactions. This implements episodic 
memory and prospective action-selection within a constrained temporal horizon, providing 
functional support for several aspects of Cognitive Development (WP2) and allowing the robot 
potentially to scaffold its development of behavioural competencies, while making use of 
forgetting and merging of experiences.  
 
Software development of this extended Interaction History Architecture, augmented by the use of 
other modules (e.g. updated AudioAnalyser, Drum-mate, gaze tracking) in the RobotCub 
software repository are demoed as part of D5N.2, and this software has been delivered as a 
software release in the iCub repository as part of Deliverable D5N.3 (which comprises updates 
and documentation of D5.7, D6.3, and other relevant modules). 
 
 
 

1.3.10 Interaction History Architecture (IHA): Development in a 
Social Context (D5N.2 Demo) 

 
UNIHER's final demo on the iCub is intended to show development of behaviour in  an open-
ended face-to-face social interaction game between the iCub and a human. This work is based on 
the Interaction History Architecture (IHA), and is an extension of the software that supported the 
earlier IHA peek-a-boo demo on the iCub to allow more types of interaction and social cues. The 
human participant is able to interact with the robot and provide it with positive social feedback 
using their presence and gaze direction, as well as by playing a drum. The robot uses this 
feedback to acquire behaviour that leads to sustained interaction with the human. The robot 
comes to associate sequences of simple actions and gestures (waving, hitting the drum, etc.) 
executed under certain conditions with successful interaction based on its  
history of experience. Note that the robot selects from a set of predefined actions and behaviours. 
While these behaviours are high-level goal directed actions (e,g., "hit the drum"), the goals and 
effects of the action are not specified directly to the iCub. Instead, the robot learns which 
behaviours and sequences of behaviours are successful by evaluating their effects during 
interaction based on the reward they achieve, based on social drives. The extended Interaction 
History Architecture is intended to support the robot developing different socially 
communicative, scaffolded behaviours in the course of temporally extended social interactions 
with humans by making use of social drives and its own first-person experience of sensorimotor 
flow during social interaction dynamics. 
 



 
 
Current state of the art on-board gaze tracking in humanoid robotics does not yet  allow for the 
robust, real-time, on-board detection of mutual gaze, gaze direction detection, or the framing of 
joint reference using deixis and gaze in relatively unconstrained human-robot interaction 
scenarios. Therefore the gaze-tracking (but not face-tracking or head-motion tracking) employed 
in conjunction with IHA at present involves use of a head-mounted tracker device for the human 
participant. This allows us to now already develop other gesture communication competencies 
that will be able to exploit such on-board technology, without waiting for the technology to 
become available.  Studies using this type of set up will provide further detail and establish 
baselines for human-humanoid interaction.  These capabilities for the iCub may soon become 
available on-board as the open-source repository grows and hardware continues to be upgraded 
by the iCub community, now much larger than the RobotCub Consortium. For example, the 
ITALK project focused on the emergence of linguistic communication based on integrating social 
and motor learning, and which has four iCubs, is collaborating with UNIHER to establish and 
exploit methods using gaze-tracking as an aspect of social gesture communication important in 
the acquisition of linguistic competencies by humanoid robots (including, e.g. new lexical items, 
holophrases, and grammatical constructions) via grounded sensorimotor interaction histories and 
social cues in interaction.  

 

1.3.11 Updated Interaction History Architecture and Related 
Software Modules (contributing to software deliverable D5N.3).   

 
In order to develop behaviours based on episodic experience in the sensorimotor domain and 
apply prospection, while scaffolding based on already mastered behaviours (Mirza et al 2007, 
2008a, 2008b), and now also while integrating social cues for social learning and interaction, the 
Interaction History Architecture (IHA) has been substantially updated. The old IHA is still in the 



repository in the same place familiar to its existing user base. The new version of IHA and the 
applications that run it have been checked into the repository as a separate application, since their 
revisions make them incompatible with the older version that some users may still be relying on. 
 
The new version and apps are in the repository under: 
iCub/src/interactionHistoryNew    iCub/app/ihaNew 
Old version at: iCub/src/interactionHistory  iCub/app/iha 
 
There are several changes between the new and the old version of IHA motivated by issues of 
integration, software engineering optimization, as well as the modeling of development that takes 
into account multimodal social cues to scaffold ontogeny and learning. The structure of the 
architecture has been changed and streamlined for greater simplicity. In the old IHA (see the 
module diagram at  http://eris.liralab.it/iCub/dox/html/group__icub__iha.html ), the sensor data 
from different input modules went both into the sensorimotor processing module and the 
motivation dynamics module, then the output of the motivation dynamics module (the reward 
based on the sensor data) was passed into the sensorimotor processing module. In the new 
version, all sensing modules send their input only to the sensorimotor processing module. There, 
the sensor values are collected into a single data frame. This data is then passed to the motivation 
dynamics, where it is used to compute reward. Then the sensor values and their resulting reward 
are passed to the data storage module in a common frame. The code which determined the facial 
expression that the robot should display as feedback about its current reward state was moved 
from the sensorimotor processing module to the motivation dynamics module. 
 
A diagram of the module architecture accompanies the on-line documentation. The IHA face 
detect module can now run in two modes, detect only (this is the version used in the old IHA) and 
tracking. The tracking mode uses openCV's Haar wavelet based face detector to find a face. Once 
one (or more) faces are detected, the largest found is used to initialize openCV's camshift 
algorithm, which does colour histogram-based tracking. This method is more robust to partial 
occlusions and changes of head orientation, as well as less computationally expensive than the 
face detection. Note that the face detector is used on two different input streams in the new 
application. In one, the human's face is detected in the robot's eye camera. The robustness of this 
is greatly improved by using the tracking mode. The other face detector runs on the scene camera 
from the gaze tracker and detects the iCub's own face in the human's field of view. The tracking 
mode is not used with this face detector, because the iCub's colour is not very distinct from most 
common backgrounds and the iCub's head does not significantly change orientation during the 
demo interaction (except when hiding during peek-a-boo, when it is also occluded). 
 
Additionally, there were several different configuration files used by the application modules 
which listed redundant information (information about action definitions, for example) which 
could become out of sync and incorrect if modifications were made to one file and not the others. 
In the new IHA, such data is only present in one configuration file, which may be loaded by the 
multiple modules which use it. 
 
There are several new modules added to the new version of IHA: 
 
-mobileeye 
This module compiles and displays the gaze tracker data. It takes as input: the scene image from 
the gaze tracker, the gaze direction (in scene image coordinates), and the output of a face detector 
run on the scene image. The current gaze direction and location of any faces are displayed on the 
scene image, and the face and gaze coordinates are sent to the sensorimotor processing module. 
The drivers which obtain the scene image and gaze coordinates from the gaze tracker we use 



(ASL's Mobile Eye) contain proprietary source code, and are therefore not included in the 
repository. However, this module can be used with any gaze tracking system that reports similar 
output. 
 
-shortTermMemory 
This module aggregates certain streams of sensor data into a history window of user specified 
length. The data is sent from the sensorimotor processing module. The data history is used to 
create task-specific "scores" for each data channel that is watched. These scores are sent to the 
motivation dynamics module to be used in the computation of reward. The scores are computed 
based on the proportion of the time that the robot is observing certain events while executing 
turn-taking relevant actions (such as drumming or the hiding phase of peek-a-boo) over the 
duration of the history window. 
 
 
-audioAnalyser 
This is a modification of the audio analyser for Dr. Kose-Bagci’s drummate code, modified to 
work with IHA. It connects to portaudio for sound input. The user can specify the rate at which 
messages about the occurrence and duration of drumbeats are sent.  
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movement is due to environmental constraints that af-
fect directly the planning of the movement.

We propose a mathematical model whereby move-
ments are planned through the combination of two con-
current controllers for the wrist and elbow in space. Co-
herence constraints are enforced between the two sys-
tems to simulate biomechanical constraints at the wrist,
elbow and shoulder levels. External constraints, such as
the presence of obstacles, are encapsulated in a virtual
force which affects the planning of the movement.

The predictions of the model are validated against
kinematic data from human reaching motions. Four types
were contrasted: intransitive versus transitive reaching
motions and natural versus un-natural motions. In the
un-natural case, subjects were requested to exaggera-
tedly elevate the elbow during the movement. In all four
movements types, the movements are highly curved. The
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1 Introduction

Much attention has been devoted to the study of point-
to-point reaching movements, most of which focused on
movements restricted to a plane. These studies high-
lighted several invariant features (Gibet et al 2004), such
as quasi-straightness of the hand path from initial and
target positions and the so-called bell-shaped velocity
profile (Morasso 1981). Soon, such simple rules were ques-
tioned when considering unconstrained motions instead
of the usual paradigm of constrained motions, or so-
called compliant motions (Desmurget et al 1997). Indeed,
the majority of the studies of point-to-point movements
were highly constrained and required subjects to hold
a hand-held cursor. Unconstrained motions, in contrast,
refer to free motions of the hand. Results from uncon-
strained studies show that the spatio-temporal charac-
teristics of compliant and unconstrained movements are
fundamentally different. (Desmurget et al 1997) showed
that movement duration was higher in the compliant
condition than for unconstrained movements. Further-
more, path curvature was significantly higher for uncon-
strained motions. Hence, compliant and unconstrained
motions involve different control strategies. Evidence sup-
ports the hypothesis that unconstrained motions are not
following a straight line but are slightly curved. This hy-
pothesis is further supported by (Boessenkool et al 1998)
who states that trajectory curvature is an inherent prop-
erty of unconstrained arm movements.

Another largely unresolved issue of motor control re-
lates to the redundancy of the arm joints. A simple way
to illustrate this is to consider the various postures that
the arm can adopt to touch the same target. Several
mathematical models have tried to answer this delicate
question. Choosing between describing the kinematics
of the arm in Cartesian coordinates or in joint angle
space is a thorny problem and evidence comes in sup-
port of either of the two representations depending on
the task (Flash and Hogan 1985; Rosenbaum et al 1995;
Torres and Zipser 2002). To overcome this problem, the
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movements are often described more abstractly in terms
of a global measure. This measure encodes the cost of
each movement and the optimal movement is the one
that minimizes this cost function. Cost functions may be
defined using either kinematics or dynamic information
on the movement.

Cost functions based on kinematic information deal
with geometrical and temporal information: position, ve-
locity, acceleration, etc. In (Flash and Hogan 1985), the
cost function is defined as the square of the magnitude of
the jerk (rate of change of acceleration) integrated over
the entire movement. The minimum jerk model generates
smooth hand trajectories which are straight and follow
a bell-shaped velocity profile.

Cost functions based on dynamic information depend
on the forces acting on the hand and arm. The mini-
mum torque change model (Uno et al 1989) proposes as
measure of performance the square of the first deriva-
tive of the torque integrated over the entire movement.
In (Uno et al 1989) the model was compared to the
minimum jerk model for unconstrained horizontal move-
ments between two targets located in the sagittal plane.
It was shown that the minimum torque change model
and minimum jerk model were both predicting straight
hand paths. However, for trajectories starting with the
arm stretched sideways, the two models gave very differ-
ent predictions. The minimum jerk model still predicted
a straight-line hand paths whereas the trajectories pre-
dicted by the minimum torque model were gently curved,
and thus more similar to observed human motion.

Other methods have been proposed to model the arm
trajectories. Harris and Wolpert proposed the minimum
variance theory (Harris and Wolpert 1998). Their model
is based on the physiological assumption that the control
signal is corrupted by noise. In the presence of this noise,
the shape of the hand trajectory is selected so as to min-
imize the variance of the final arm position. In (Ogihara
and Yamazaki 1999), the authors take a very different
approach. They modeled the nervous system as a recur-
rent neural network. Given a goal position, the modeled
nervous system was able to generate muscular activa-
tion signals used to move the hand to the target posi-
tion. An interesting feature of this model is its ability to
model the position of the whole arm. Most of the models
presented previously were dealing mainly with the hand
trajectory. A method has been proposed in (Kang et al
2003) to model the arm with its 4 DOFs. The arm tra-
jectory is decomposed into intermediate positions. The
model solves the joint angles for these positions by mini-
mizing the sum of absolute value of all joints’ torque work
in each sub-path (trajectory between two via-positions).
Their model unfortunately showed poor results for the
adduction/abduction angle of the shoulder. Following
this same idea, Gu et al. proposed the equilibrium point
based model (Gu and Ballard 2006). The human arm
motion can be seen as a sequence of short motion seg-

ments. Movements are generated by gradually shifting
from one segment position to the next.

The models we have reviewed in the previous para-
graphs are mostly dealing with compliant gestures or are
modeling solely the hand path. Few of those have been
designed to predict the evolution of movement of the
entire arm, from start to target. In the present paper,
we propose a method for generating the position of the
entire arm for point-to-point motions. Further, since the
elbow and hand locations are known, the whole arm con-
figuration is determined, we model the control of the arm
trajectory with two concurrent dynamical systems driv-
ing the hand and elbow separately, but coupled through
kinematics constraints. We extend the biologically plau-
sible VITE model (Bullock and Grossberg 1988), that de-
scribes a dynamical system to generate straight point-to-
point trajectories in the Cartesian space. The extended
VITE model we propose accounts for the observed cur-
vature of the movement. Note that an extension of the
VITE model that generate curved writing movements
has already been proposed (Bullock et al 1993). The ex-
tension consisted in running three coupled VITE con-
trollers to control the x-, y- displacements and wrist
rotation of the hand, respectively. The curvature was
the result of initiating each model at different start-
ing times. An important disadvantage of this approach
to model point-to-point movement is that it required a
series of multiple arbitrary targets for each curvature
change, which is not the case with the EFF-VITE model.

In order to validate the model, we conduct motion
studies, in which unconstrained reaching motions are
generated. Most of the literature has focused on the study
of reaching movements directed at a target (Atkeson
and Hollerbach 1985; Desmurget et al 1997; Magescas
and Prablanc 2006). To determine if the curvature of
the movement results from generating transitive (i.e. di-
rected to a target) versus intransitive movements, we
contrast two conditions in which subjects either reach
for an object or do a reaching motion directed to no
particular location on a table. We hypothesized that in
both conditions the trajectories would be curved and ar-
gue that this curvature is necessary and fulfills two main
goals: to avoid uncomfortable arm postures (for exam-
ple, it is more natural to extend the elbow to the right
during the motion than keeping a purely straight trajec-
tory) and to encapsulate environmental constraints such
as the presence of the table.

Furthermore, in order to better understand how the
central nervous system manages to decouple the control
of the upper and lower arms, when forced to do so, we
investigated the kinematics of motion in which the elbow
was forced to follow a trajectory more elevated than that
found during natural reaching movements. (Koshland
et al 2000) showed that, reaching during movements,
the wrist exhibited similar characteristics as the prox-
imal joints, demonstrating a coupling among the joints.
We thus expected the curvature of the trajectories of
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the wrist also to increase as an effect of the exaggerated
elevation of the elbow.

In Section 2 we describe the dynamical systems driv-
ing the elbow and wrist motions and explain how co-
herence constraints between the wrist and elbow are en-
forced in the model. Section 2.2 describes the experi-
mental set-up and procedure followed during the motion
studies. A comparative analysis of the model’s predic-
tions and human data is done in Section 3, followed by
a discussion of the model’s biological plausibility.

2 Materials and Methods

2.1 Description of the model

Our proposed approach is based on an extension of Bul-
lock and Grossberg’s Vector Integration To Endpoint
(VITE) model (Bullock and Grossberg 1988). The VITE
model is a biologically inspired model that can only gen-
erate straight point-to-point trajectories. Contrary to the
VITE model, the extended force-field version of the VITE
model (EFF-VITE) can account for curved reaching move-
ments, and can be used to model both the trajectories of
the hand and elbow. Compared to the VITE model, the
EFF-VITE model is time-independent and thus stable in
case of long lasting perturbations. Furthermore, it repre-
sents a proper force governed system. In the EFF-VITE
system, the trajectory of the hand or elbow is governed
by the following dynamical system:

ẍ(t) = α(−ẋ(t) + βg(t)δ(h(t) + γ)(
x∗(t)− x(t)
‖x∗(t)− x(t)‖

+ g(t)F(t))) (1)

and

F(t) = g(t)u + h(t)v (2)

where

g(t) =
‖x∗(t)− x(t)‖

‖x(t)− x(0)‖+ ‖x∗(t)− x(t)‖

h(t) =
‖x(t)− x(0)‖

‖x(t)− x(0)‖+ ‖x∗(t)− x(t)‖
are respectively the ratios between the distance separat-
ing the hand from the final target position x∗ and the dis-
tance separating the hand from the initial position x(0)
over their total. The force F helps to comply with envi-
ronmental constraints due to the volume and geometry
of the body. F is the weighted sum of two constant force
vectors that push the trajectory away from the straight
line. u is the modulated force that perturbs the begin-
ning of the movement, whereas v perturbs the end of
the movement (Figure 1). The parameter α ∈ R+ was
fixed to a constant value. Parameters β, γ and δ control
the general form of the velocity profile. β controls the

asymmetry and peak value of the velocity profile. γ en-
ables the initiation of the movement, and δ controls the
final approaching phase of the movement and parameter-
izes the trade-off between precision and execution time.
For example, lowering the value of δ shortens the move-
ment deceleration phase but also increases the risk of
overshooting the target position (Figure 2). The role of
the parameters will be further discussed in Sections 3.2.2
and 3.2.3.

An arm configuration corresponds to a particular po-
sition in space of both the wrist and elbow. In the duo-
EFF-VITE model, two concurrent EFF-VITE models
are modeling the hand and elbow paths. As the hand and
elbow are linked, these two systems are not independent.
Hence, coherence constraints must be enforced in order
to have a meaningful representation of the movement.
Figure 3 presents the overall structure of the duo-EFF-
VITE model. The outcome of the model is the position
of the hand and elbow in the Cartesian space at each
time step.

Let xw and xe be the position of the wrist and el-
bow in the 3D space where the origin is centered on the
shoulder. The position of the arm is such that:

||xe|| = L1 (3)

and

||xe − xw|| = L2 (4)

where L1 and L2 are respectively the length of the upper-
arm and forearm , and ||.|| defines the vector norm.

Let xw
d(t) and xe

d(t) be the desired position of the
wrist and elbow given by the EFF-VITE models at each
time step t. In general, the variables xw

d and xe
d will

not be consistent with kinematic constraints. In order to
have consistent values, we find the values xw

∗ and xe
∗

that minimize the similarity measure H:

H(xw
∗,xe

∗) = ||xw
∗ − xw

d||+ ||xe
∗ − xe

d|| (5)

under constraints given by equations (3) and (4).
The problem is solved analytically by using Lagrange

optimization. We define the Lagrangian as:

L(xw
∗,xe

∗, λ1, λ2) = H + λT
1 (||xe

∗|| − L1)

+ λT
2 (||xe

∗ − xw
∗|| − L2) (6)

To solve ∇L = 0, we derive respectively ∂L
∂xw

∗ , ∂L
∂xe

∗ :

2(xw
∗ − xw

d) + λ2||xe
∗ − xw

∗||−1(xw
∗ − xe

∗) = 0 (7)

2(xe
∗ − xe

d) + λ1||xe
∗||−1xe

∗

+λ2||xe
∗ − xw

∗||−1(xe
∗ − xw

∗) = 0 (8)
We thus need to solve the following system:

2(xw
∗ − xw

d) + λ2||xe
∗ − xw

∗||−1(xw
∗ − xe

∗) = 0
2(xe

∗ − xe
d) + λ1||xe

∗||−1xe
∗

+λ2||xe
∗ − xw

∗||−1(xe
∗ − xw

∗) = 0
||xe

∗|| − L1 = 0
||xe

∗ − xw
∗|| − L2 = 0
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Fig. 1 Dynamics of the movement as a function of the force parameters. A: Forces are modulated such that u affects mostly
the beginning of the movement and v mostly the end of the movement. The direction of the deviation from the straight
trajectory is determined by the sign of the force. B: By combining the two forces u and v, trajectories that change direction
can be obtained. Pararameter values: α = 50, β = 10, γ = 0.01 and δ = 1.

Fig. 2 Effect of the parameters γ, β and δ on the speed profile of the movements. The parameters γ (left) affects the
beginning of the movement. The lower its value, the more time it takes the subject to start a movement. β (middle) controls
the asymmetry and peak value of the velocity profile (α in our model is constant). δ (right) defined the approaching speed
and thus parameterizes the trade-off between precision and execution time. In the rectangle, one can see the arm reaching
the target too quickly and overshooting it at δ = 0.6. Parameter values: α = 50, β = 10, ν = 1.5, γ = 0.01 and δ = 1.

(9)

As the system has several solutions, we choose the solu-
tions xw

∗,xe
∗ ∈ R that minimize H. As the system is

non-linear due to the presence of the norm, solutions are
found numerically.

2.2 Experiments

Subjects Eight healthy subjects (4 females, 4 males, mean
age 26 ±4) volunteered to perform a one-handed task
consisting of point-to-point motions. All subjects were
right-handed (Edinburgh Handedness Test, Oldfield (1971)).
They were all naive regarding the purpose of the ex-
periment. They reported no history of neurological or

musculo-skeletal disorder. All had normal or corrected
to normal vision.

Procedure Subjects sat comfortably on a chair in front
of a table. They were asked to maintain a steady trunk
position all along the recording session. Each hand move-
ment started in the same rest position, with the forearm
lying on the table and perpendicular to the trunk (Fig-
ure 4, left). Subjects were shown the movements by a
demonstrator. There were two conditions. In the first
condition, movements were directed towards an object
placed 30 cm away from the subject in the sagittal plane
(Figure 4, right). In the second condition, subjects had
to reach in front of them and land their hand palm-down
on the table. No location on the table was specified in
this second condition. We refer to these two conditions
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Fig. 3 The wrist-and-elbow path controller: The first EFF-VITE model (on the left) models the trajectory of the wrist
in cartesian coordinates, whereas the second EFF-VITE model is used to model the elbow path in cartesian space. The
coherence constraints ensure the desired positions xd

w and xd
e given by the EFF-VITE models are consistent relative to

kinematic constraints. The modified values after coherence constraint for both the wrist and elbow positions, x∗w and x∗e , are
fed back to the EFF-VITE models.

Fig. 4 Left: Experimental set-up seen from the right side with the subject in the rest position. Right: upper view of the
set-up showing the position of the target when subjects performed transitive motions.

respectively as transitive (Trans) and intransitive (In-
trans) movements in the rest of the paper.

For each condition, the subjects were instructed to
perform two variants of the movements. In the first vari-
ant (so-called “Elb”), the subjects were asked to exagge-
ratedly elevate the elbow throughout the motion. In the
second variant (so-called “Norm”), subjects were asked
to perform motion in the way that seemed most natural
to them. Movements were thus of four types: intransi-
tive with normal kinematics (Intrans Norm), intransi-
tive with an exaggerated elevation of the elbow (Intrans
Elb), transitive with normal kinematics (Trans Norm)
and transitive with an exaggerated elevation of the el-
bow (Trans Elb). Figure 5 presents snapshots of the
four types of reaching movements.

Subjects were shown several times each movement
types. Additional explanation was given when necessary.
The subjects were instructed to replicate as precisely as

possible these movements. A series of five movements for
each condition and variant was recorded for each subject
(Table 1).

Data acquisition The trajectory in space of the shoul-
der, elbow and wrist were recorded by using a kinematics
recording system formed by three ProReflex MCU1000
cameras (QUALISYS AB, Sweden) detecting the 3D po-
sition of infrared reflecting markers (n=4) positioned on
the left and right shoulders, right elbow and right wrist.
The position of the markers was recorded at a frequency
of 200 Hz during the execution of the movements. Fig-
ure 6 presents one subject wearing the markers as well
as the shoulder-centered frame of reference used in the
following of the paper to calculate wrist and and elbow
trajectories.
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Intrans Norm Intrans Elb Trans Norm Trans Elb

Fig. 5 Snapshots of the four gesture types. From left to right: Intransitive action with normal kinematics and with an
exaggerated elevation of the elbow. Transitive movement with normal kinematics and with an exaggerated elevation of the
elbow. One can see that for the “Elb” variant the elbow position is always higher than for movements performed with normal
kinematics for both the “Intrans” and “Trans” conditions.

Subjects Repetitions Recording sessions

8 5 × 4 gesture types 1

Table 1 Statistics of the database.

Fig. 6 Left: subject wearing markers on the right arm (markers are surrounded by red squares). Right: shoulder-centered
frame of reference.

Data analysis All analyzes were performed using the
Qualisys Track Manager (QUALISYS AB, Sweden) soft-
ware, plus some custom programs written in Matlab (Math-
works, Natick, MA). Analysis was done solely on the rea-
ching phase of each movement (from the rest position to
the target location in the case of transitive movements,
and from the rest position to the hand placement on the
table in front of the subject for intransitive movements).
Data were first segmented manually to remove any irrele-
vant movement prior to the onset of the reaching motion.
We used only unfiltered raw values. The curvature index
is computed as the ratio between the total arc length
of the path and the Euclidian distance between the ini-
tial and final positions. A curvature index of 1 indicates a
perfectly straight trajectory whereas a semi-circular path
would have a curvature index of CI = π/2. The values
of the model’s parameters were optimized for each trial
using 53 factorial experimental designs coupled with a lo-
cal search procedure (Neter et al 1996; Hoos and Stützle
2004).

3 Results

3.1 Movement statistics

We first assessed the general characteristics of the recorded
movements. For each movement type (Intrans Norm, In-
trans Elb, Trans Norm, and Trans Elb), we computed
the duration of the movement, path length and curva-
ture index of the wrist and elbow on average across the
8 subjects and 20 trials (Table2).

Consistent with (Bernstein 1967)’s observations of
substantial trial-to-trial variations, a three-way ANOVA
analysis across subjects (eight levels), conditions (intran-
sitive, transitive) and variants (elbow normal, elbow el-
evated) revealed a high inter-subject variability for both
the duration of the movements, the length of the wrist
path and the curvature index (p < 0.001), with a sig-
nificant interaction effect for the subject/condition and
subject/variant factors (p < 0.01 in each case, see Ta-
ble 2). This high across subjects variability in perform-
ing the same motion is illustrated in Figures 7 and 8.
Subject 9 tended to be very consistent across trials and
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Duration (s) Path length (cm) Curvature index Elbow elevation (cm)

Wrist Elbow Wrist Elbow

Intrans Norm 0.89 ± 0.28 25.3 ± 3.3 26.7 ± 3.5 1.16 ± 0.10 1.19 ± 0.06 -15.0 ± 2.3

Intrans Elb 1.11 ± 0.28 31.8 ± 5.7 37.2 ± 9.6 1.54 ± 0.28 1.52 ± 0.26 -7.0 ± 2.8

Trans Norm 0.84 ± 0.19 22.5 ± 3.0 23.0 ± 3.1 1.16 ± 0.09 1.16 ± 0.05 -15.9 ± 2.0

Trans Elb 1.14 ± 0.22 31.8 ± 6.2 34.9 ± 8.1 1.61 ± 0.45 1.47 ± 0.26 -6.4 ± 2.4

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (cond.) n.s. < 0.003 < 0.001 n.s. < 0.02 n.s.

p-value (var.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (sub*cond) < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.001

p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (cond*var) < 0.006 < 0.002 n.s. n.s. n.s. < 0.001

Table 2 Duration, path length, curvature index and elbow elevation across trials and subjects. Three-way ANOVA showed
that the movements performed with an exaggerated elevation of the elbow lasted longer, had a longer path for both the
wrist and elbow and were significantly more curved than movements with normal kinematics. Furthermore, the recorded
movements differed significantly accross subjects in their duration, path length, curvature index, and elbow elevation. The
maximal height of the elbow during the movement was also significantly different accross the two motion variants.

Fig. 7 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a small intra-variability for Subject 9.

displayed a low across trials variability of the wrist’s mo-
tion (Figure 7), whereas Subject 5 displayed an overall
much higher variability for the same motion (Figure 8).
Given that the subjects had different arm lengths, the
length of the wrist path varied importantly across sub-
jects, especially in the intransitive case (see table 2).

All movements were curved (CI > 1). Most impor-
tantly for the argument of this paper, both the trajectory
of the wrist and of the elbow were curved. The curvature
is even more important for movements performed with
an exaggerated elevation of the elbow (CI > 1.6). As a
result, movements performed with an abnormal elevation
of the elbow in both conditions (Intrans versus Trans)
take significantly more time and are longer than move-
ments performed with normal kinematics. Moreover, in-
transitive motions were significantly longer than transi-
tive motions. This is likely due to the rotation of the wrist
that occurs during intransitive motions (to place the
palm down on the table), particularly when the move-
ment is performed with an exaggerated elevation of the
elbow (first two images in Figure 5).

3.2 Accuracy of the model

We measured the accuracy of the model to reproduce
each instance of each motion type. We computed the

mean deviation (MD) of the predicted wrist and elbow
trajectories compared to the wrist/elbow trajectories at
each time step, as well as the mean squared error (MSE)
for each condition and variant of the movements. Table 3
provides these values for each gesture type. We also per-
formed a three-way ANOVA analysis on these results for
the subject, condition and variant factors. These results
show no significant influence of either factor on the MSE
for the wrist. For the elbow, the ANOVA analysis reveals
a significant difference between the two motion variants
(F=4.52, p < 0.04). However, the error is small and can
be explained by the high variability of movements per-
formed with an exaggerated elevation of the elbow (Elb
variant).

Thus, overall, the model reproduces motions with
high accuracy. It encapsulates the generic shape of both
the trajectory in space and the speed profile of the wrist
and elbow (Figure 9). 81% of the data for the wrist and
79% of the observed data for the elbow are reproduced
by the model with a MSE inferior to the mean MSE. 3 to
4% of the errors are due to outlier data whereas another
53% are due to a poor reproduction of the start and/or
end of the trajectory (Figure 10).

This is due to the fact that, like the original VITE
model, the duo-EFF-VITE model, pre-supposes a smooth
and gradually increasing and decreasing speed profile at
the start and end of the movement, respectively. Because
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Fig. 8 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a high intra-variability for Subject 5.

MD (cm) MSE (cm2)

Movement Wrist Elbow Wrist Elbow

All motions 1.1 ± 0.7 1.1 ± 0.7 1.26 ± 5.16 1.09 ± 3.23

Intrans Norm 0.9 ± 0.5 0.9 ± 0.4 0.76 ± 1.32 0.65 ± 1.21

Intrans Elb 1.3 ± 0.4 1.3 ± 0.5 1.22 ± 0.86 1.15 ± 1.04

Trans Norm 0.8 ± 0.4 0.7 ± 0.4 0.48 ± 0.86 0.46 ± 1.05

Trans Elb 1.3 ± 1.1 1.4 ± 1.0 2.58 ± 10.10 2.09 ± 6.08

p-value (sub.) < 0.02 < 0.002 n.s. n.s.

p-value (cond.) n.s. n.s. n.s. n.s.

p-value (var.) < 0.001 < 0.001 n.s. < 0.04

p-value (sub*cond) n.s. n.s. n.s. n.s.

p-value (sub*var) n.s. n.s. n.s. n.s.

p-value (cond*var) n.s. n.s. n.s. n.s.

Table 3 Mean Deviation (MD) and Mean Squared Error (MSE) for the duo-EFF-VITE models on the trajectories of the
wrist and elbow for each gesture type. We also provide three-way ANOVA results across subjects, movement conditions,
variants, and interaction of these factors for each error type.

Fig. 9 Examples of movements well reproduced by the duo-EFF-VITE model.The trajectory of the subject’s wrist (dotted
line) and the modeled trajectory (black) are presented on top.

data were segmented manually, the speed profile was
sometimes truncated and hence did not follow the typi-
cal pattern. Furthermore, some data present an atypical
curvature at the start or end of the movement, due to
hesitations on the subjects’ parts. Because these impre-
cisions were minor and did not affect the generic charac-
teristics of each motion (curvature and overall 3D spatial
displacement), which we wanted the model to encapsu-
late, we did not eliminate the data.

3.2.1 Statistics of the model’s parameters

A three-way ANOVA across subjects, conditions and vari-
ants, on the values taken by the force parameters of the
model reveals that, while for the same subject the pa-
rameters for the wrist and elbow motions are consistent
across conditions and variants, they vary importantly
across subjects (see Tables 5 and 6). An effect of the
variant (Norm versus Elb) is observed for the parameters
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Fig. 10 Examples of movements poorly reproduced by the duo-EFF-VITE model. The trajectory of the subject’s wrist
(dotted line) and the modeled trajectory (black) are presented on top.

driving the elbow and this accounts for the variability
with which subjects produced the required exaggerated
elevation of the elbow (variability is expected given that
the arm moved in an unconstrained manner).

We also computed the intra-subject variability of the
wrist controller for movements with normal kinematics
(Tables 8 and 9). We see that some subjects are more
consistent in their movements than others, for both the
force applied on the wrist and the parameters modulat-
ing the speed profile. This is particularly true for Sub-
jects 6 and 8. This confirms the information contained
in Figures 7 and 8, and is consistent with the general
observation of a high inter-subject and inter-trial vari-
ability when performing the same motion, as discussed
above and revealed in Table 2.

3.2.2 Meaning of the model’s parameters

The parameters β, γ and δ in Equation 1 control the ve-
locity profile of the movement. A two-way ANOVA shows
that β and γ are similar across conditions and subjects
(Table 4 in Annex) for the wrist controller. β controls the
asymmetry and peak value of the velocity profile and γ
determines the onset of the movements (Figure 2). As
any irrelevant movement prior to the onset of the rea-
ching motion has been manually removed, it is expected
that γ takes a similar value across subjects and condi-
tions. β is not significantly different across subjects, con-
ditions and variants. Trajectories of the wrist thus follow
the same velocity profile for both conditions (Intrans ver-
sus Trans) and variants (Norm versus Elb). δ controls the
approaching speed of the movement. Together with β, δ
determines a trade-off between overshooting the target
and minimizing the execution time. Figure 11 presents
the distribution of the values for β and δ for all move-
ments. We see that the values are comprised within a
region that minimizes execution time while ensuring a
good precision of the movement.

3.2.3 Effect of the forces

We have already seen in Table 2 that the trajectories of
both the wrist and elbow are curved. This curvature is
accounted for by the values taken by the force parameters
of the model (Tables 5 and 7). For each condition and
variant of the movement, a non-null force is applied on
the wrist and elbow. While one could have performed a
straight-line motion in the normal condition, it is obvious
that a straight path controller could not be envisioned
for movements performed with an exaggerated elevation
of the elbow. And, as expected, we observed larger val-
ues for the force parameters in the Elb variant of the
movement.

The force applied along the x and y axes can also be
related to the environmental and geometric constraints
implied by the task. In our experiments, subjects sat on
a chair with the body close to the table, the forearm rest-
ing on the table (Figure 6). To perform the movement,
subjects needed to avoid the table (“table avoidance”
constraint). To satisfy this constraint, the arm had to be
placed above the table. Since the elbow is linked to the
trunk by the upper-arm, all the possible positions of the
elbow are located on a sphere centered on the shoulder
and of radius the length of the upper-arm. Thus when
the elbow tries to avoid the table, the elbow is also pulled
away from the body along the x- and y-directions. Forces
applied on the x- and y-axes are thus explained by the
geometry of the body as well as the environmental con-
straints (“table avoidance”).

The force along the z-axis (uz and vz) is close to zero
in the ”Norm” variant.However, in the ”Elb” variant, the
force along the z-axis at the end of the movement (vz)
(Table 7) is significantly higher (F=254.3, p < 0.001),
with a mean value close to 1, so as to pull the elbow up
during the motion. This effect is illustrated in Figures 13
and 12.
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Fig. 11 Distribution of the parameters β and δ of the wrist controller, with respect to the overshoot distance (left) and
execution time (right) for a 0.2 m movement. α = 50, γ = 0.02

Fig. 12 Example of the force Fe applied on the elbow for an intransitive movement with normal kinematics. From left to
right: projection in the xy-, xz- and yz-planes

Fig. 13 Example of the force Fe applied on the elbow for an intransitive movement with an abnormal elevation of the elbow.
From left to right: projection in the xy-, xz- and yz-planes

3.2.4 Separate controllers for wrist and elbow

As the elbow and wrist are linked by the forearm, the
curvature of the hand path for movements performed
with normal or exaggerated elevation of the elbow can
be seen as a side effect of the elbow itself. Such correla-
tion is revealed by looking at the Pearson coefficient be-
tween the forces 1 Fw and Fe (Equation (2)) applied on
the wrist and elbow. These coefficients are respectively:

1 The Pearson coefficient is the sum of the products of the
normalized values of the two measures divided by the degree
of freedom. The Pearson coefficient ranges from +1 to -1. If
ρ = 0, then there is no linear relationship between the two
variables. On the contrary, if |ρ| = 1, then there is a perfect
linear relationship between the two variables.

ρ(x) = 0.70, ρ(y) = 0.74, and ρ(z) = 0.18, where ρ(x),
ρ(y), and ρ(z) are the Pearson coefficients along the x-, y-
and z-axis, respectively. These results show that there ex-
ists a strong correlation between the force applied on the
wrist and elbow along the x- and y-axis. The curvature
of the wrist trajectories along the x- and y-axis is thus a
side-effect of the elbow motion, and would contribute to
confirm a view in which elbow and wrist are controlled
by a single controller. In contrast, the wrist and elbow
seem to be quasi-independent along the z-axis. This in-
dicates that for the Elb variant of the movements, an
exaggerated elevation of the elbow results in an increase
in the amplitude of the virtual force Fe along the z-axis
of the elbow controller only, and thus speaks in favor of
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having two separate controllers for the wrist and elbow,
albeit correlated by geometrical constraints.

4 Discussion

4.1 Accuracy of the model

In this paper, we presented a model of reaching move-
ments, which we validated against kinematic data of known
motions in two conditions (intransitive versus transitive
motions) and for two variants (movements performed
with “naturally” versus movements performed with an
exaggerated elevation of the elbow). We proposed an
extension of the VITE model to account for both the
curvature of naturally reaching movements and for the
dual control of the wrist and elbow during unnatural rea-
ching movements. The model gave an accurate account
of the kinematics of the data for all the four movement
types (Intrans Norm, Intrans Elb, Trans Norm and Trans
Elb). Discrepancies between the model’s prediction and
the data for the velocity profiles at the start and end of
the movement were observed in about 10% of the data.
Closer analysis revealed that these errors were due to the
fact that manual segmentation led to abrupt speed pro-
files, but also to the fact that in some cases, especially
in transitive motions, the speed at the end of the rea-
ching motion was not null (as subjects were transiting
directly to a motion in which they grasped and lifted up
the object). By construction, the duo-EFF-VITE model,
like the VITE model, predicts a zero velocity at target.
In effect, when transiting across two motions, subjects
tend to displace the target of the reaching motion. One
way to simulate this would be to introduce a new target
position (corresponding to the final location of the sub-
ject’s arm one the object had been lifted) slightly before
the hand reached the original target point.

As expected, we observed significant inter-subjects
and inter-trials variability across motions. To avoid these,
we considered computing and modeling the mean trajec-
tories of the wrist and elbow to capture the nature in-
trinsic to each movement independently from the subject
and trial. This was ruled out as the mean movements of
the wrist and elbow could no longer be correlated (since
the correlations are not linear). Given that one of the
hypotheses of the duo-EFF-VITE model is that the po-
sition of the wrist and elbow are controlled via two sep-
arate controllers acting in parallel but linked through
biomechanical constraints, the effect of these biomechan-
ical constraints would have been lost if we had worked
with the mean trajectories. Besides, modeling each mo-
tion’s instance allowed us to demonstrate that the cur-
vature at the wrist level cannot be explained without
taking into account the movement of the elbow.

4.2 Interpretation of the Model’s Parameters

Parameters of the model are of two types. Three pa-
rameters β, γ, and δ are used to modulate the speed
profile of the movement. They respectively control the
general form of the velocity profile (asymmetry and peak
value), enable the initiation of the movement and control
the final approaching phase of the movement. Although
the model’s parameters were optimized to model each
instance of the movements, we observed a consistency
across the values of the parameters and showed that the
parameter controlling the shape of the speed profile at
the end of the movement takes values that optimize a
trade-off between the precision and execution time of
the whole movement. This is in agreement with the ob-
servation of a correlation across speed and accuracy of
goal-directed movements (Plamondon and Alimi 1997;
Meyer et al 1988). (Meyer et al 1988) hypothesized that
this trade-off permits to cope optimally with noise in the
human system.

Most importantly, the model hypothesized the exis-
tence of virtual forces that encapsulate tasks constraints
to modulate a basic controller for reaching movements.
We showed that these forces could explain the curvature
of the movements of the wrist and elbow and could be in-
terpreted in relation to environmental and biomechanical
constraints. Further experiments should be conducted to
validate this hypothesis by varying the task constraints,
e.g. asking subjects to perform reaching motions by exag-
geratedly lowering the elbow, and showing how the forces
change as an effect of the context.

4.3 Separate Control of Wrist and Elbow

A second hypothesis inherent to the model is that el-
bow and wrist are driven by separate controllers, albeit
correlated through imagined biomechanical constraints.
Such a hypothesis corresponds to assuming that the ner-
vous system is able to plan the mechanical effects that
could arise from the motion of the arm segments (Gal-
loway and Koshland 2001). An analysis of the relation-
ship across the forces applied on the wrist and elbow at
each time step revealed a strong correlation along the
x- and y-axes. The forces along the z-axis were however
quasi-independent of the elbow’s elevation. The absence
of correlation along the z-direction suggests that the mo-
tions of the wrist and elbow are computed separately
by the brain. These conclusions are consistent with find-
ings on multi-joint arm movements and with the Leading
Joint Hypothesis (LJH) (Dounskaia et al 1998; Doun-
skaia 2005). The LJH states that there is one leading
joint that guides the motion of the entire limb. Muscles
of the secondary joints thus just play a regulatory role to
ensure that the end-effector performs the required task.
Interestingly, the LJH is applicable to our results if we
consider the elbow as the leading joint and the wrist as
the secondary joint.
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4.4 Neural Correlated to the Model’s Parameters

Similarly to the VITE model, the duo-EFF-VITE model
depends on knowing at all time the wrist and elbow posi-
tions and velocities. Evidence that the velocity and posi-
tion of the wrist may be explicitly computed and used for
motor control by the nervous system exists. For instance,
cells in the primary motor cortex (M1) of the monkey
showed a high correlation between their discharge and
the velocity profile of reaching movements (Moran and
Schwartz 1999). Moreover (Wang et al 2006) confirmed
the existence of a neural representation of the hand loca-
tion in the motor cortex during reaching. They showed
that position and velocity of the hand are simultane-
ously encoded by cortical motor neurons. Existence that
the position and velocity of the elbow are explicitly com-
puted is still questioned (Murphy et al 1982; Scott et al
1997; Reina et al 2001). While the duo-EFF-VITE model
proposes a solution to encapsulate environmental and
biomechanical constraints, it does not explain how the
brain computes such constraints. As they contribute in
several ways to the virtual forces, several brain areas may
be involved.

Finally, the duo-EFF-VITE model is based on the
idea that motions are not planned but unfold through
time as the result of the inherent dynamics of the con-
trollers. Such an approach is in line with the force-field
approach (Graziano et al 2005), where the target of the
motion acts as an attractor for the end-effector. More-
over, the model assumes that control is done in close-
loop, taking into account the current position of the arm
to correct the motion. This is supported by evidence that
the nervous system is able to estimate and anticipate the
state of the limb by integrating delayed sensory input
and motor output, through afferent and efferent internal
feedback loops (Desmurget et al 1997).

While the model exploits a representation of biome-
chanical constraints in the coupling of the elbow and
wrist controllers, it does not account for the way the com-
mand are translated into muscle activation of the upper
and lower arm limbs. While a complete understanding of
the neural control of movements would require a realistic
musculoskeletal model2, we omitted such complexity in
order to focus on explaining the gross dynamics of mo-
tor control. In particular, we aimed at explaining how
volitional control of one specific limb (upper arm) could
be done separately from that of the lower arm, as in the
exaggerated elbow elevation condition considered here.

Movements presented in this paper were unconstrained.
While this resulted in a high variability across trials and
subjects’ motions, it offered the opportunity to observe
features of motion that are inherent to natural reaching
motions. The duo-EFF-VITE model is however generic
and could also model constrained movements. To confirm

2 Such model is very complex and difficult to obtain due
to the numerous muscles and tendons present in the human
arm (Cheng and Loeb 2008).

the LJH hypothesis and the use of the duo-EFF-VITE
model in support of the latter, it would thus be inter-
esting to replicate the present study with movements
of the wrist constrained in the plane. The wrist would
then become the leading joint and the elbow the fol-
lower. Results of such a comparative study would con-
tribute to explaining the difference in the curvature of
the hand path found for constrained and unconstrained
movements (Desmurget et al 1997).
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β γ δ
Intrans Norm 2.04 ± 1.94 0.010 ± 0.005 1.31 ± 0.22
Intrans Elb 1.76 ± 1.53 0.006 ± 0.005 1.30 ± 0.37
Trans Norm 2.33 ± 1.75 0.011 ± 0.007 1.43 ± 0.30
Trans Elb 1.61 ± 1.36 0.007 ± 0.004 1.21 ± 0.39

p-value (sub.) n.s. n.s. < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) n.s. < 0.001 < 0.009

p-value (sub*cond) n.s. < 0.001 n.s.
p-value (sub*var) n.s. n.s. < 0.008
p-value (cond*var) n.s. n.s. < 0.03

Table 4 Mean and standard deviation for the parameters modulating the speed profile for the movements of the wrist.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

ux uy uz vx vy vz

Intrans Norm 0.36 ± 0.23 -0.36 ± 0.24 0.18 ± 0.19 0.87 ± 0.71 -0.92 ± 0.65 0.96 ± 0.47
Intrans Elb 0.68 ± 0.30 -0.54 ± 0.34 0.35 ± 0.59 0.32 ± 0.96 -0.24 ± 0.87 1.78 ± 0.60
Trans Norm 0.41 ± 0.26 -0.39 ± 0.26 0.10 ± 0.18 1.28 ± 0.56 -0.88 ± 0.72 0.77 ± 0.51
Trans Elb 0.73 ± 0.60 -0.73 ± 0.45 0.02 ± 0.50 0.71 ± 0.78 -0.14 ± 1.13 1.76 ± 1.00

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. < 0.001 < 0.001 < 0.001 n.s. n.s.
p-value (var.) < 0.001 < 0.001 n.s. < 0.001 < 0.001 < 0.001

p-value (sub*cond) < 0.001 < 0.005 < 0.03 n.s. n.s. < 0.001
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond*var) n.s. < 0.02 < 0.001 n.s. n.s. n.s.

Table 5 Mean and standard deviation for each parameter u and v of the model describing the force at the start and end of
the movements of the wrist. Three-way ANOVA results for each movement type across subjects, condition and variant have
been provided for each of these parameters, as well as interaction effects of the factors.

β γ δ
Intrans Norm 1.73 ± 0.66 0.011 ± 0.005 1.34 ± 0.14
Intrans Elb 1.55 ± 0.85 0.009 ± 0.004 1.22 ± 0.34
Trans Norm 1.64 ± 0.60 0.011 ± 0.005 1.33 ± 0.18
Trans Elb 1.40 ± 0.79 0.010 ± 0.005 1.27 ± 0.28

p-value (sub.) < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) < 0.03 n.s. < 0.004

p-value (sub*cond) n.s. n.s. n.s.
p-value (sub*var) n.s. < 0.002 < 0.001
p-value (cond*var) n.s. n.s. n.s.

Table 6 Mean and standard deviation for the parameters modulating the speed profile for the movements of the elbow.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

ux uy uz vx vy vz

Intrans Norm 0.61 ± 0.17 -0.34 ± 0.22 -0.08 ± 0.14 1.50 ± 0.033 -0.59 ± 0.39 -0.09 ± 0.58
Intrans Elb 0.85 ± 0.36 -0.63 ± 0.22 -0.06 ± 0.38 1.48 ± 0.43 -0.25 ± 0.64 1.09 ± 0.93
Trans Norm 0.50 ± 0.11 -0.38 ± 0.23 -0.03 ± 0.17 1.57 ± 0.38 -0.82 ± 0.55 -0.16 ± 0.35
Trans Elb 0.73 ± 0.36 -0.67 ± 0.27 -0.21 ± 0.29 1.44 ± 0.44 -0.56 ± 0.70 1.21 ± 1.05

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) < 0.001 n.s. < 0.03 n.s. < 0.001 n.s.
p-value (var.) < 0.001 < 0.001 < 0.001 n.s. < 0.001 < 0.001

p-value (sub*cond) n.s. n.s. n.s. n.s. n.s. n.s.
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.002 < 0.0001 < 0.001
p-value (cond*var) n.s. n.s. < 0.001 n.s. n.s. n.s.

Table 7 Mean and standard deviation for each parameter u and v of the model describing the force at the start and end
of the movements of the elbow. Three-way ANOVA results for each movement type across subjects, condition and variant
have been provided for each of these parameters, as well as interaction effects of the factors.
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ux uy uz vx vy vz

Sub. 1 Intrans Norm -0.07 ± 0.20 0.03 ± 0.13 0.14 ± 0.39 -0.14 ± 0.41 0.11 ± 0.30 0.17 ± 0.45
Trans Norm -0.05 ± 0.15 0.02 ± 0.05 0.14 ± 0.39 -0.13 ± 0.40 0.15 ± 0.42 0.16 ± 0.44

Sub. 2 Intrans Norm -0.05 ± 0.13 0.04 ± 0.13 0.10 ± 0.31 -0.14 ± 0.38 0.15 ± 0.43 0.17 ± 0.44
Trans Norm -0.06 ± 0.19 0.04 ± 0.13 0.17 ± 0.46 -0.15 ± 0.44 0.09 ± 0.25 0.16 ± 0.44

Sub. 3 Intrans Norm -0.07 ± 0.20 0.04 ± 0.11 -0.03 ± 0.11 -0.14 ± 0.45 0.13 ± 0.35 0.17 ± 0.44
Trans Norm -0.09 ± 0.25 0.01 ± 0.03 0.05 ± 0.17 -0.11 ± 0.38 0.13 ± 0.35 0.21 ± 0.59

Sub. 4 Intrans Norm -0.07 ± 0.20 0.03 ± 0.10 0.04 ± 0.17 -0.15 ± 0.42 0.20 ± 0.55 0.16 ± 0.44
Trans Norm -0.07 ± 0.20 0.03 ± 0.12 0.10 ± 0.30 -0.13 ± 0.40 0.18 ± 0.50 0.16 ± 0.45

Sub. 5 Intrans Norm -0.05 ± 0.13 0.01 ± 0.04 0.21 ± 0.55 -0.13 ± 0.35 0.12 ± 0.33 0.17 ± 0.44
Trans Norm -0.05 ± 0.14 -0.01 ± 0.04 0.23 ± 0.61 -0.14 ± 0.39 0.04 ± 0.17 0.20 ± 0.54

Sub. 6 Intrans Norm -0.03 ± 0.09 0.00 ± 0.01 0.14 ± 0.43 -0.12 ± 0.35 0.04 ± 0.13 0.14 ± 0.41
Trans Norm -0.02 ± 0.05 0.01 ± 0.03 0.23 ± 0.62 -0.10 ± 0.28 0.05 ± 0.16 0.17 ± 0.45

Sub. 7 Intrans Norm -0.01 ± 0.08 0.01 ± 0.05 0.12 ± 0.45 0.03 ± 0.26 0.16 ± 0.44 0.20 ± 0.55
Trans Norm -0.03 ± 0.11 0.00 ± 0.01 0.18 ± 0.52 0.07 ± 0.21 0.06 ± 0.23 0.20 ± 0.55

Sub. 8 Intrans Norm -0.01 ± 0.04 0.01 ± 0.04 0.15 ± 0.41 -0.15 ± 0.41 0.04 ± 0.12 0.14 ± 0.38
Trans Norm -0.03 ± 0.09 0.01 ± 0.03 0.18 ± 0.49 -0.18 ± 0.48 0.08 ± 0.24 0.16 ± 0.43

Table 8 Mean and standard deviation for each parameter of the model describing the force for Intrans Norm and Trans
Norm movements of the wrist for each subject respectively.

β γ δ
Sub. 1 Intrans Norm 0.43 ± 1.60 0.001 ± 0.002 0.04 ± 0.12

Trans Norm 0.21 ± 0.57 0.002 ± 0.005 0.04 ± 0.12
Sub. 2 Intrans Norm 0.22 ± 0.58 0.002 ± 0.005 0.06 ± 0.17

Trans Norm 0.36 ± 1.24 0.001 ± 0.003 0.05 ± 0.15
Sub. 3 Intrans Norm 0.25 ± 0.68 0.001 ± 0.004 0.03 ± 0.08

Trans Norm 0.42 ± 1.46 0.002 ± 0.006 0.03 ± 0.08
Sub. 4 Intrans Norm 0.36 ± 1.57 0.001 ± 0.003 0.03 ± 0.09

Trans Norm 0.29 ± 1.13 0.001 ± 0.004 0.02 ± 0.08
Sub. 5 Intrans Norm 0.22 ± 0.59 0.001 ± 0.003 0.04 ± 0.12

Trans Norm 0.32 ± 1.01 0.001 ± 0.002 0.07 ± 0.20
Sub. 6 Intrans Norm 0.15 ± 0.46 0.001 ± 0.004 0.03 ± 0.08

Trans Norm 0.23 ± 0.64 0.001 ± 0.002 0.04 ± 0.11
Sub. 7 Intrans Norm 0.24 ± 0.94 0.001 ± 0.004 0.10 ± 0.29

Trans Norm 0.29 ± 0.94 0.002 ± 0.006 0.12 ± 0.31
Sub. 8 Intrans Norm 0.17 ± 0.45 0.001 ± 0.003 0.03 ± 0.09

Trans Norm 0.21 ± 0.57 0.001 ± 0.003 0.04 ± 0.11

Table 9 Mean and standard deviation for each parameter of the model describing the force for Intrans Norm and Trans
Norm movements of the wrist and for each subject respectively.
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Abstract Human motion studies have focused primarily on
modeling straight point-to-point reaching movements. How-
ever, many goal-directed reaching movements, such as move-
ments directed towards oneself, are not straight but rather
follow highly curved trajectories. These movements are par-
ticularly interesting to study since they are essential in our
everyday life, appear early in development and are routinely
used to assess movement deficits following brain lesions. We
argue that curved and straight-line reaching movements are
generated by a unique neural controller and that the observed
curvature of the movement is the result of an active control
strategy that follows the geometry of one’s body, for instance
to avoid trajectories that would hit the body or yield postures
close to the joint limits. We present a mathematical model that
accounts for such an active control strategy and show that the
model reproduces with high accuracy the kinematic features
of human data during unconstrained reaching movements
directed toward the head. The model consists of a nonlinear
dynamical system with a single stable attractor at the target.
Embodiment-related task constraints are expressed as a force
field that acts on the dynamical system. Finally, we discuss
the biological plausibility and neural correlates of the model’s
parameters and suggest that embodiment should be consid-
ered as a main cause for movement trajectory curvature.

Keywords Motor control · Neural control of movement ·
Dynamical systems · Computational model · Goal-directed
reaching movements
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1 Introduction

The vast majority of motor control studies have focused on
highly constrained reaching movements, limiting the move-
ments to a two-dimensional plane, and in particular to the
frontal plane. These constraints are meant to ensure the repro-
ducibility and controllability of the task. They have led to
the observation of so-called “quasi-straight” reaching move-
ments with a stereotyped single-peaked, bell-shaped velocity
profile (Morasso 1981; Flash and Hogan 1985). The gentle
curvature responsible for the term “quasi” has proved hard
to explain. Some have suggested that it is due to distortions
in the visual perception of the target (Wolpert et al. 1994,
1995), which could however not explain the fact that these
are also observed in congenitally blind subjects (de Graaf
et al. 1994). Others have attributed the curvature of the move-
ment to the dynamics of the arm’s biomechanics, i.e., inertial
and viscoelastic resistive forces (Flash 1987; Bullock and
Grossberg 1988). This again could not explain the fact that the
curvature persists in isometric tasks, which indicates rather
that the curvature is encoded directly in the activation pat-
terns of the muscles (Pellegrini and Flanders 1996). Another
possible explanation for the curvature of arm movements is
Listing’s law, as the arm rotation movements were shown
to roughly lie in a 2D curved surface (Liebermann et al.
2006). Importantly, when participants are instructed to gener-
ate straight paths, they produce movements much straighter
than those generated spontaneously (de Graaf et al. 1994;
Desmurget et al. 1997; Osu et al. 1997), which argues against
the hypothesis of imperfect control (Flash and Hogan 1985).
In addition, the curvature depends on the location of the tar-
get (Soechting and Lacquaniti 1981) and is systematic within
trials and across subjects (Soechting and Lacquaniti 1981;
Pellegrini and Flanders 1996). Curved trajectories are also
more frequently observed during unconstrained movements
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Fig. 1 An example of the curvature of an unconstrained self-oriented
movement (the subject was asked to touch his nose). a Projections of the
movement in the xy-, xz-, and yz-planes. b The velocity profile is bell-
shaped and single-peaked, similarly to the velocity profiles of straight
point-to-point movements. c The movement is curved in the extrinsic
hand Cartesian space (left), which is best visible when projected on the

first two principal components following a principal component analy-
sis (PCA) (right). d The movement is curved also in the intrinsic joint
angles space (left) and its two principal components (right). The joint
angles represented here correspond to the three degrees of freedom of
the shoulder: shoulder flexion–extension (SFE), shoulder abduction–
adduction (SAA) and shoulder humeral rotation (SHR)

(Soechting and Lacquaniti 1981; Lacquaniti et al. 1986; Miall
and Haggard 1995; Desmurget et al. 1997; Osu et al. 1997).
Overall, the above evidence indicates that the curvature
underlying human motion might be a “natural” feature of
the movement, and the observed straightness an artifact of
the restricted workspace.

We show in this paper that these non-linearities are par-
ticularly important when considering reaching movements
directed to ourselves (see Fig. 1). Self-oriented movements
are part of our daily repertoire (e.g., to eat). They are among
the first to emerge in life and are likely the result of evo-
lutionary old neural structures. Their study may thus reveal
basic neural processes of motor control. For instance, elec-
trical stimulation of the precentral and motor cortices evoked
natural multijoint movements that reached to different points
in space, such as for example characteristic hand-to-mouth
movements (Graziano et al. 2002, 2005). These movements
are also routinely used in neurological examinations to test
and diagnose various movement deficits following brain
lesion (De Renzi and Lucchelli 1988; Goldenberg and Hag-
mann 1997; Petreska et al. 2007), which directly inspired the
stimuli used in our study. All in all, the study of reaching
movements toward oneself is particularly interesting from
both a behavioral and a neurological perspective.

We will argue that movement curvature is planned by the
central nervous system (CNS) and takes into account the
geometry of the body. The idea that embodiment can be
encapsulated in the control system itself is in line with our
earlier observation that differences in the kinematic features
of reaching movements in macaques and humans could be
related to the biomechanical properties of the macaques’ and

humans’ shoulder joints (Christel and Billard 2002). Impor-
tantly, the model proposed here is not limited to self-oriented
movements and can be applied to any point-to-point reach-
ing movement such as for example reaching to targets in the
extrapersonal frontal workspace.

2 Computational approach

Modeling studies are particularly useful for distinguishing
among all of the plausible mechanisms to encode movements,
as long as their predictions are tested and validated against
empirical behavioral or neurophysiological data.

However, existing models are unsuccessful at reproducing
the curvature of natural human movements (Admiraal et al.
2004), up to several exceptions (Torres and Zipser 2002;
Biess et al. 2007; Guigon et al. 2007). For instance, while
the so-called 2/3 power law (Lacquaniti et al. 1983) could
account well for the curvature observed during handwrit-
ing and drawing motions, it was unsuccessful at explaining
the curvature of reaching movements in the 3-dimensional
space (Schaal and Sternad 2001), including the movements
we consider in this paper as shown on Fig. 2. Furthermore,
the minimum work model (Soechting et al. 1995) success-
fully reproduces the final joint postures of pointing move-
ments starting from different initial joint postures, but does
not explain the time dependency across joint trajectories. A
kinematic model that intrinsically constrains the arm joints
according to Listing’s law (i.e., such that the arm rotation
vectors lie in a 2-dimensional surface) was partially success-
ful at describing the experimental data (Liebermann et al.
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Fig. 2 Two examples of unconstrained self-oriented movements where
the 2/3 power law was degraded. The tangential velocity versus radius
of curvature to the power 1/3 is shown. The subject was asked to touch
his nose (circles) or to touch his left ear (squares)

2006). The minimum hand jerk1 model (Flash and Hogan
1985) maximizes the smoothness of the hand trajectory in
the extrinsic space. The result is a straight-line trajectory,
whereas curved trajectories are obtained by specifying via-
points (e.g. for avoiding obstacles). However, it predicts a
bimodal velocity profile which is at odds with the exper-
imental data (Atkeson and Hollerbach 1985). Later it was
suggested that the hand trajectory is the result of a com-
promise between planning a straight line in the task space
and planning a straight line in the joint space (Cruse and
Brüwer 1987; Okadome and Honda 1999; Hersch and Billard
2007). Such hybrid computations offer numerous advantages
for controlling 3-dimensional reaching movements, such as
avoiding singularities and avoiding hitting the joint limits
(Hersch and Billard 2007). Unfortunately there is currently
no direct neurophysiological evidence in support of such a
control strategy. It has also been proposed that arm move-
ments are controlled by minimizing the derivative of joint
torques (Uno et al. 1989; Nakano et al. 1999; Wada et al.
2001). However, this model overestimates the magnitude of
curvature of pointing movements (Biess et al. 2007). In Torres
and Zipser (2002), the hand path is computed in the intrin-
sic joint angles space by minimizing an energy-like quan-
tity, giving realistic predictions for curved paths. However,
this model assumes a separate processing for the spatial and
temporal dynamics of motion and displays some impreci-
sions for movements similar to those addressed here. The
model by Biess et al. (2007) computes a geometrical joint
angles geodesic path with respect to a kinetic energy met-
ric in the Riemannian configuration space and subsequently

1 The jerk corresponds to the derivative of the acceleration and is a
measure of the smoothness of the trajectory.

minimizes the squared jerk along this path. This model also
treats the spatial and temporal dimensions separately and pre-
dicts identical path trajectories for different speeds. We find
it difficult to evaluate how well this model would predict
highly curved reaching movements as the pointing move-
ments addressed in the study were quasi-straight, but we
could observe that the model has difficulties with reproduc-
ing mixed curvatures (i.e., movements that deviate first to
one side and then to the other side of the idealized straight
trajectory). Another class of reaching models are stochastic
models that take into account the noise inherent to the motor
system. It has been consistently observed that the standard
deviation of neuromotor commands increases with its mean
(Sutton and Sykes 1967; Schmidt et al. 1979; Clamman 1969;
Matthews 1996; St-Amant et al. 1998; Clancy and Hogan
1999; Osu et al. 2004). In line with this evidence, it was
suggested that the brain minimizes the variance of the final
arm position in the presence of such signal-dependent motor
noise (Harris and Wolpert 1998; Hamilton et al. 2002). Even
though this model succeeds at reproducing the curvature of
2-dimensional reaching movements, it does not specify
which control laws generate these movements. In Todorov
and Jordan (2002), an optimal feedback theory of motor con-
trol is proposed, in which the variability of the movement
is distributed optimally among different degrees of freedom
that do not interfere with the task goal. This qualitative model
is appropriate for explaining the variability observed in reach-
ing movements, it is however imprecise in its prediction of
the curvature of movements. This is partly due to the deter-
mination of the appropriate cost function to optimize. This
performance criterion is chosen arbitrarily and varies with the
task. Another model based on the optimal feedback control
theory was successful at reproducing the joint and hand tra-
jectories of 3-dimensional movements (Guigon et al. 2007),
but the authors admit that the movements reproduced are
rather stereotyped. For example the model does not account
for nonsymmetric velocity profiles or avoidance of extreme
joint limits.

While it has been suggested that two different control
strategies underlie straight and curved reaching movements
(Desmurget et al. 1997; Moran and Schwartz 1999), we argue
that these two types of movements are generated by a unique
adaptive control mechanism. While none of the existing mod-
els offers a satisfactory solution for modeling the highly var-
iable curvature of human movements, here we propose a
dynamical model that accounts for both gently and highly
curved hand trajectories, consistent with recent neurophysi-
ological findings. First, unlike many of the models above,
our model is closed-loop. Closed-loop control takes into
account the uncertainty of the “real-world” and allows intel-
ligent online corrections as well as robust responses to per-
turbations, rather than “playing a prerecorded tape” (Todorov
2004). Such an approach is in agreement with the observa-
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tion that the CNS is able to estimate and anticipate the state
of the limb. This is achieved by integrating delayed sensory
input and motor output through afferent and efferent inter-
nal feedback loops (Desmurget and Grafton 2000). The state
information is used to continuously update the motor com-
mands, which is likely to occur in the posterior parietal cortex
and cerebellum.

Our model also takes advantage of the signal-dependant
neuromotor noise mentioned earlier, which may be responsi-
ble for the speed-accuracy trade-off known as Fitts’ law (Fit-
ts 1954) and trail-to-trial variability (Todorov 2004). Finally,
our model hypothesizes that the curvature of the hand tra-
jectories is not an undesirable noise on otherwise perfect
straight-line reaching movements. Rather, it is necessary and
planned as such by the CNS in order to, for example, avoid
impossible trajectories that go through the body and uncom-
fortable joint limit postures.

3 Model description

Our work was driven by the assumption that (a) a unique
controller underlies both straight and curved reaching move-
ments, and (b) that this controller is such that all the variables
can be accounted for by known neurophysiological processes.
Thus, to start with, we considered the vector integration
to endpoint (VITE) model for point-to-point reaching
(Bullock and Grossberg 1988) that accounts for typical kine-
matic features of human reaching movements such as bell-
shaped velocity profiles and speed-accuracy trade-off. The
model has been used to explain control in both hand extrin-
sic and joints intrinsic spaces (Ajemian et al. 2001; Hersch
and Billard 2007). Most importantly, the dynamics of the
VITE model’s response displays a profile of activity simi-
lar to that of populations of neurons in the primate’s brain.
In particular, the model could account for these neurons’
sensitivity to change in the velocity of the movement and
for the latency of activity at the movement onset (Bullock
et al. 1998). The VITE model, however, suffers from a major
restriction: it can generate only straight movements.2 Next,
we describe the VITE model and give a formal definition
of our extension that accounts for curved reaching move-
ments.

2 An extension of the VITE model has been proposed to account for
highly curved handwriting movements (Bullock et al. 1993; Paine et al.
2004), where three coupled VITE models control the displacement of
the hand in a 2-dimensional plane and the rotation of the wrist. The cur-
vature results from the coupling between the three models and the fact
that each model is initiated with a slight delay at onset. This approach is
not optimal for modeling simple point-to-point reaching movements as
it necessitates the characterization of a sequence of multiple arbitrary
targets, one for each change in the curvature.

3.1 The original VITE model

The original VITE model is a dynamic controller that at each
point in time reduces the distance between the estimated
and desired states of the controlled variable. First, it com-
putes the desired movement acceleration based on the dif-
ference between the present and endpoint vectors. Second,
this acceleration is integrated and primed with a faster-than-
linear time-dependent “go signal” to specify the desired
speed, which is the control signal sent to the muscle moto-
neurons. This priming signal is essential for the obtention of
a bell-shaped velocity profile.

In its complete form the VITE model succeeds for exam-
ple at: maintaining accurate proprioception while control-
ling voluntary reaches to spatial targets, maintaining postures
despite perturbations, complying with an imposed move-
ment, exerting force against obstacles, compensating for sta-
tic and inertial loads and reproducing muscle vibration effects
(Cisek et al. 1998). For simplicity, we only use the con-
cise form of the model presented in Bullock and Grossberg
(1988). For a description of the original VITE model please
see the Appendix.

3.2 Modification of the original VITE model

Our modified VITE system is governed by a non-linear and
noisy spring-damper system given by:

ẍ(t) =
damping factor

︷ ︸︸ ︷

−αẋ(t) +
noisy endpoint attractor

︷ ︸︸ ︷

βg(x∗(t) − x(t) + η) u(t) (1)

The first term is a damping factor proportional to the speed
ẋ(t) of the end-effector that prevents the system from oscillat-
ing too importantly. The second term corresponds to an elas-
tic force that drives the end-effector from its actual position
x(t) toward the desired target position x∗(t). Note that the
desired position is written as a function of time in order to
emphasize the ability of the system to track the target in real
time without any additional computation (as a result the sys-
tem is robust to perturbations of the target position). α is a
time constant set to 50. β ∈ R

+ determines the amplitude of
the speed at which the system moves globally (increasing β

would result in a higher velocity peak and shorter movement
duration, see Fig. 3a). g is a nonlinear function that modu-
lates the dynamics of the system so that it presents a typical
bell-shaped velocity profile (refer to the Appendix for the
exact form of g). Finally η is a multiplicative gaussian noise
with zero mean and standard deviation proportional (by a fac-
tor of 0.005) to the distance between the actual and desired
end-effector positions, namely |x∗(t)−x(t)|. This noise fac-
tor is necessary to initiate the movement and to account for
the trial-to-trial variability at the onset of movement (see the
Appendix).
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Fig. 3 a Effect of gradually increasing the parameter β of the modified
VITE model (see Eq. 1) on the velocity profile of the movement. Higher
β values increase the velocity peak and shorten the movement duration.
b Behavior of the extended F2REACH model (see Eq. 2) under differ-
ent repulsive forces v and w, for illustrative purpose the forces shown
are applied only on the horizontal dimension. The forces are modu-
lated such that v affects mostly the beginning of the movement and
w mostly the end of the movement. Note that the direction of the

deviation from the straight trajectory is determined by the sign of the
force. c By combining two forces v and w of different signs one can
obtain very interesting deviations that change their direction during the
execution of the movement. Reference values: α = 50, β = 500, noise
was set to 0.005. Only the speed parameter β is varied throughout the
simulations, the two other parameters (time constant and noise) are fixed
to the given values

Fig. 4 Description of the task space. The hand position x(t) is repre-
sented in a 3-dimensional space centered on the chest, at the level of the
shoulders. The input to the model consists of the initial hand position
x(0) and final target position x∗(t)

The above formulation makes two strong assumptions
from a motor control point of view: (a) it takes as control
signal the acceleration of the end-effector ẍ, expressed in
an extrinsic 3-dimensional Euclidean space centered on the
chest (see Fig. 4), and (b) it accounts only for a “high-level”
control mechanism, in that it generates the desired end-effec-
tor kinematics, and does not account for the subsequent trans-
formation required to control muscle activations.

Expressing the system in terms of desired acceleration
is not constraining, since it is conceivable to assume that a
neural population coding for the acceleration can be neu-
rally integrated out to obtain a velocity control signal, which

can in turn be integrated out to have a position control sig-
nal, see Sauser and Billard (2006). Moreover, evidence that
muscle activity may be governed by a kinematic signal, such
as the acceleration, velocity or position, or any combination
of these, has been found in the motor cortex (Wang et al.
2007). Note that we do not address the problem of redun-
dancy mapping between desired hand kinematics and actual
muscle activations in this paper. These assumptions will be
further developed in Sect. 6.1.

The above system differs from the original VITE model
in two ways (see the Appendix for the original VITE formu-
lation). First, the dynamics of the system is now governed
by a single second order differential equation and is thus
expressed in terms of the end-effector acceleration.3 Sec-
ond, we replaced the explicit time dependency of the original
VITE system by introducing a bounded nonlinearity in the
function g. In the original VITE system, this explicit depen-
dency in time through the priming signal let the velocity of
the system grow exponentially in time, which created insta-
bilities in the case of a long lasting perturbation, and was thus
biologically implausible (your arm does not start accelerating
if someone holds it).

3.3 Extension of the original model: F2REACH model

To account for the movement curvature, we next introduce
a new functional F(x(t)) that corresponds to a virtual force

3 The original VITE system was driven by two coupled first-order dif-
ferential equations. We reformulated this by writing the whole system
as a second order differential equation. This allows us to relate explic-
itly the acceleration of the system to the force-field which we introduce
in the following section.
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field, which encapsulates a geometrical representation of the
task constraints. This force field is modulated by the dynam-
ics of the control signal in order to preserve the bell-shaped
velocity profile:

ẍ(t) = −αẋ(t) + βg(x∗(t) − x(t) + η)

+
modulation factor

︷ ︸︸ ︷

β|g(x∗(t) − x(t) + η)|
force field
︷ ︸︸ ︷

F(x(t)) (2)

The force field F(x(t)) assigns a vector gradient to each
position in space that expresses constraints related to: (a)
objects in the environment that one needs to avoid (includ-
ing the subject’s body), (b) dynamic properties of the human
body such as inertial properties of the limb, (c) extreme joint
angles limits. The contribution of each of these constraints is
simply summed to result in the virtual force field. The gradi-
ent of the force field at each point in space pushes the hand
away from the undesired locations.

This force field framework reconciles the dynamic and
kinematic aspects as well as intrinsic and extrinsic approaches
to motor planning in a very convenient way. Instead of find-
ing a compromise across systems that would operate simul-
taneously in conflicting coordinates (e.g., hand position and
joint angles, see Sect. 2), our system provides both dynamic
(acceleration) and kinematic (speed or position) control sig-
nals, taking into account (a) a target for the motion expressed
in extrinsic kinematic coordinates and (b) intrinsic dynamic
motion constraints. This reconciles the observation that
objects in the environment such as a table may influence the
kinematic planning of the movement4 (Brenner and Smeets
1995) and that knowledge of the arm dynamics is necessary
for the kinematic planning of complex movements (Uno et al.
1989; Nakano et al. 1999; Sabes and Jordan 1997).

As the particular form taken by the force field is task and
context dependent, we chose a very generic expression given
by:

F(x(t)) = h(x(t))v + (1 − h(x(t)))w (3)

where v and w are constant force vectors that push the tra-
jectory away from the straight-line generated by the rest of
the system. v affects primarily the beginning of the move-
ment, whereas w affects the end of movement (as illustrated
in Fig. 3b, c). The modulation function h that associates these
two forces to different parts of the movement is given in the
Appendix.

In our framework, a 3-dimensional reaching movement
needs the specification of seven parameters in total: β that
controls the amplitude of the velocity’s peak and two
3-dimensional repulsive forces v and w, where the time con-

4 This type of computation is natural (and especially useful) if the move-
ment is considered in a constantly varying environment full of external
objects, instead of isolated in an artificial experimental setup.

stant α and noise can be fixed to 50 and 0.005 respectively.
We will show next that the latter two forces give a crude rep-
resentation of the volume and geometry of the body around
which the hand must navigate.

To conclude the description, control policies of the form
of autonomous differential equations such as the one pro-
posed here are particularly interesting, as they allow online
modifications of the input variables. Thus a very nice prop-
erty of our model is its robustness to external perturbations,
where the model shows smooth adaptation to changes such
as blocking or displacing the arm and displacing the target
(simulation results not shown here).

4 Experiments

4.1 Subjects

Ten healthy subjects, five female and five male of mean age
33 ± 11 years volunteered for the study. All the participants
except for two were right-handed according to the Edinburgh
handedness test (Oldfield 1971). All the subjects were naive
as to the purpose of the study and had no history of neuro-
logical or musculoskeletal deficits.

4.2 Procedure

The subjects were asked to perform natural reaching move-
ments toward targets situated on their head. In order to obtain
entirely natural and fully unconstrained movements, the tar-
get positions were specified verbally (for example we gave
instructions such as “on the go signal touch your nose”).
The subjects were left free to determine the location of the
reaching target (e.g., at the tip of the nose or just above
it), but they were instructed to reach to exactly the same
location across one block of repetitions of the same move-
ment. There were six target positions, shown in Fig. 5a,
indexed as follows: (1) nose, (2) right ear, (3) left ear, (4)
top of the head, (5) under the chin and (6) back of the head.
Given that the subjects had different arm lengths and given
that the targets were defined with respect to the subject’s
head, the length of the hand path varied importantly across
subjects and movements. This was done on purpose to test
the ability of the model to reproduce the generic charac-
teristics of the movements and to account for such body
variabilities, which we consider task-independent. The sub-
jects were standing in order to limit undesirable movements
of the upper body. There were no external constraints that
would confine the movement range. The movements were
performed with the right hand independently of the handed-
ness of the subject, since handedness was shown not to affect
spontaneous self-oriented movements (Dalby et al. 1980;
Lavergne and Kimura 1987). In order to verify the gener-
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Fig. 5 a Target positions on the head used in our experiment. b Two
initial conditions that yield both highly and gently curved movements.
The three motion sensors are indicated with arrows

alization of our model over movements with different cur-
vature levels, movements were initiated from two different
locations, shown in Fig. 5b: (1) upright position with the arm
extended along the body that yielded highly curved move-
ments and (2) upright position with the arm extended in front
of the body that yielded gently curved movements. Prior to
each experiment, the subjects were asked to assume the same
starting position, which was verified by the experimenter.
The subjects had at least one trial of practice per movement
to ensure that they had understood the instructions. Each
movement was repeated five times in order to have a mea-
sure of its inherent variability and consequently a measure
of the precision of the model’s reproduction.

4.3 Data acquisition

Data was recorded using 3D inertial measurement units/
motion sensors (Xsens Technologies B.V., The Netherlands).
The sensors were attached on three arm segments (the upper
arm, the forearm and the hand) and were calibrated in the
upright position with the arm vertical (see Fig. 5b, left). The
orientation of the three arm segments during the execution
of the movements was recorded at a frequency of 50 Hz.

4.4 Data analysis

All analyses were performed with custom software written
in Matlab (Mathworks, Natick, MA, USA). The trajectories

of each arm segment were reconstructed using the orienta-
tion matrices recorded by the inertial measurement motion
sensors. We used only unfiltered raw values. The movements
of interest were extracted using criteria such as percentage
of velocity change. The samples were aligned in time so that
the inter-trial Euclidean distance per movement and subject
(five samples) is minimal. The movement mean and standard
deviation (SD) of each trajectory for each movement type and
for each subject was computed with respect to the aligned
signals. We then solved numerically the original VITE and
extended F2REACH models for each of the mean move-
ments, with a time step of 20 ms. The models’ parameters
were fixed using 33 and 37 factorial experimental designs
respectively, coupled with a local search procedure (Neter
et al. 1996; Hoos and Stützle 2004).

To evaluate the predictions of the two models we measured
the following Euclidean distances and deviation indices:5

(1) mean deviation (MD) of the predicted hand trajectory
compared to the measured hand trajectory at each point in
time, (2) mean squared error (MSE), (3) hand trajectory
deviation index (HTDI) defined as the ratio between the max-
imal distance across the modeled xm(t) and real xr (t) mean
trajectories over the total length of the real path,

HTDI = maxi=1,...,N |xm(i)−xr (i)|
∑N−1

i=1 |xr (i + 1)−xr (i)|
where N is the number of points sampled (see Fig. 6a),
(4) speed deviation index (SDI) and finally (5) total accel-
eration deviation index (ADI), both defined in Fig. 6b. We
also considered the standard deviation trajectory (SD) as a
possible limit prediction (see Fig. 6c for a definition). We fur-
ther assessed the curvature index of recorded and modeled
movements, defined as the ratio between the total arc length
of the hand path and the Euclidean distance that separates the
initial and final positions. For example a curvature index of 1
indicates a perfectly straight path and a curvature of π/2 cor-
responds to a semicircular path. Finally, the speed asymmetry
index was defined as the ratio (Sa − Sd)/(Sa + Sd) where Sa

is the distance traveled up to the time at which the velocity
is maximal (referred to as the acceleration phase) and Sd the
distance traveled from the time at which the velocity is max-
imal until the end of the movement (deceleration phase). An
additional measure of the precision of the original VITE and
extended F2REACH models is the percentage of trajectory
points predicted by the models that are comprised within the
volumes defined by 1 and 2 SD away from the recorded mean
trajectory (per subject and movement type, established over
five repetitions of the movement, see Fig. 6c). This measure
accounts for the variability inherent to goal-directed reaching

5 The deviation indices are adapted from Nakano et al. (1999) and Biess
et al. (2007).
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Fig. 6 Definitions of error measures. a The hand trajectory deviation
index (HDTI) of measured and predicted hand trajectories is the ratio
of the maximum distance, R = maxi=1,...,N Ri , between the two tra-
jectories matched in time over the total length of the measured path.
b The speed deviation index (SDI) and total acceleration deviation index
(ADI) are defined as the ratio of the noncommon area enclosed by
the measured and predicted speed/acceleration profiles and the total
enclosed area. c Standard deviation volumes (SD), comprised within a
multiple of the standard deviation distance (computed from the mean
trajectory of five movement trials per subject and movement type) at
every point of the movement trajectory. A SD trajectory would follow
the corresponding corners of these volumes. We consider that a point
was well predicted if it is contained inside the SD volume of its mea-
sured counterpart, thus enforcing a higher precision at points with very
low variability

movements (Harris and Wolpert 1998; Todorov and Jordan
2002) and penalizes imprecision in parts where the variance
of the movement is minimal. For example, the subjects were
more consistent in the vicinity of the initial and target
positions.

5 Results

In this section we report on a systematic assessment of how
well the original VITE and our extended F2REACH models
account for the kinematics of the recorded human move-
ments. We also discuss the biological plausibility of our
model’s parameters. Finally, we conduct a stability analysis
of the F2REACH model and define conditions under which
the target is a stable attractor of the model and therefore
guaranteed to be reached.

5.1 Observed data statistics

We first assessed the general characteristics of the recorded
movements (summarized in Table 1). The movements addres-
sed had large spatial extent (mean path length of 1.23 m)
with significantly longer path lengths in the first experimental
condition (see Fig. 5b) when compared to the second exper-
imental condition (mean path lengths of 1.7 and 0.95 m
respectively). Movements in the first condition lasted longer
with mean durations of 1.3 and 1 s, respectively. Most impor-
tantly, the movements in the first condition were significantly
more curved with a mean curvature index of 1.59 compared
to 1.21 in the second condition. In addition, the curvature
indices of the recorded movements were distributed homoge-
neously between quasi-straight (<1.1) and highly curved (>2).

We expected to see substantial trial-to-trial fluctuations
due to noise of the motor system (Todorov and Jordan 2002),
which motivated us to model the mean trajectory of the move-
ment rather than the separate trials. We believe that the mean
movement captures the intrinsic nature of the movement,
which is task-relevant and free of noise. An example of the
inherent variability across trials per subject and movement
type is shown in Fig. 7a. Figure 7b shows that the inter-
subject variability (attributed to the difference in embodi-
ment of the subjects) is much more important.

5.2 Comparison between the observed and modeled data

Here we assess how well the original and extended models
reproduce the human data. The mean movement trajectories
were simulated with both the original VITE and our extended
F2REACH models. Typical examples of measured and pre-
dicted hand path trajectories are given in Fig. 8. The first
row in each example shows the five hand trajectories of the
movement projected in the xy-, xz- and yz-planes relative to
a schematized humanoid. The second row shows the projec-
tions of the mean recorded trajectory and generated model
trajectories. The subject’s trials are represented with light
grey lines and show the inherent variability of the move-
ment. The third row shows the x-, y- and z-components of
the hand trajectories with respect to time in order to show
the quality of the model predictions at the temporal level.
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Table 1 Path length, duration and curvature index of the movements in the two experimental conditions (see Fig. 5b)

Condition 1 Condition 2 2 Conditions 10 Subjects

P value P value

Path length (m) 1.70 ± 0.32 0.95 ± 0.18 <0.001 NS

Duration (s) 1.28 ± 0.26 0.97 ± 0.20 <0.001 <0.001

Curvature index 1.59 ± 0.22 1.21 ± 0.11 <0.001 NS

We also give one-way ANOVA results for the initial condition and subject effects on these variables. The movements in condition 1 were signifi-
cantly longer in time and space and significantly more curved when compared to the movements in condition 2. The recorded movements differed
significantly across subjects only in their duration

Table 2 Mean deviation (MD), mean squared error (MSE) and mean deviation indices (see Fig. 6) for the trajectory (HTDI), speed (SDI) and
acceleration (ADI) (± standard deviation) of the hand as predicted by the extended F2REACH and original VITE models

F2REACH model SD VITE model

MD (mm) 18.85 ± 8.10 35.67 ± 11.63 132 ± 71

MSE (cm2) 5.62 ± 5.34 15.93 ± 10.61 431 ± 413

HTDI 0.031 ± 0.010 0.04 ± 0.02 0.25 ± 0.06

SDI 0.11 ± 0.03 0.50 ± 0.11 0.29 ± 0.12

ADI 0.38 ± 0.07 0.60 ± 0.08 0.51 ± 0.13

We also consider the trajectory comprised within one standard deviation (SD) from the mean trajectory (per subject and movement type, computed
as described in Fig. 6c) as an indication for the limit prediction that would be acceptable for a model. This SD trajectory represents the inherent
variability of the movement. One-way ANOVAs performed on the error measures of the extended F2REACH model show that the effect of the
subject performing the movement was not significant and that the movements in the second initial condition, i.e., movements with lower curvature,
tended to be slightly better predicted (MD and MSE only)

Fig. 7 Trajectories of the hand for ten subjects performing five rep-
etitions of the same movement, reaching to the left ear (movement 3)
with the right arm in condition 1 (see Fig. 5). The hand trajectories
are shown relative to a schematized humanoid and the color refers to
the same subject. a All the movement trajectories are shown in order
to emphasize the movement’s inherent variability. Note that this intra-

subject variability is lower than the inter-subject variability, i.e., the
hand trajectories of one subject are consistent when compared to those
of the other subjects. b Only the mean movements are shown. The
inter-subject variability can be partially attributed to differences in the
subjects’ arm lengths and shoulder positions (see color-coded arms)
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Fig. 8 Two examples of typical movements. The recorded human data
is shown with points that respect the sampling rate, the original VITE
model is shown with a dashed line and our extended F2REACH model
with a plain line. I, The subject reaches for the back of the head (move-
ment 6) with as initial condition the right arm extended along the body
(condition 1). II The subject reaches for the back of the head (move-
ment 6) with as initial condition the right arm extended in front of the
body (condition 2). a The five recorded hand trajectories of the move-

ment projected in the xy-, xz- and yz-planes and shown relative to a
schematized humanoid. b The measured and predicted mean move-
ment trajectories projected in the xy-, xz- and yz-planes. The light grey
trajectories are the five trials and reflect the intra-subject variability
per movement type. c The x-, y- and z-components of the measured
and predicted mean movement trajectories shown with respect to time.
d The measured and predicted speed profiles of the movement. e The
measured and predicted total acceleration profiles of the movement
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Table 3 Measured (M) velocity peak amplitude and peak time, asymmetry and curvature indices (± standard deviation) compared to those predicted
by the extended (F2REACH) and original (VITE) models

Measured (M) F2REACH M versus F2REACH VITE M versus VITE
model P value model P value

Velocity peak amplitude (m/s) 2.26 ± 0.68 2.37 ± 0.69 <0.05 8.22 ± 59.31 NS

Velocity peak time (s) 0.50 ± 0.14 0.53 ± 0.13 NS 0.59 ± 0.19 <0.001

Asymmetry index −0.08 ± 0.15 −0.10 ± 0.11 NS 0.03 ± 0.06 <0.001

Curvature index 1.40 ± 0.26 1.36 ± 0.23 NS 1.03 ± 0.22 <0.001

There were no significant differences between the measured and extended model variables (with the exception of a small difference in the velocity
peak amplitude), whereas significant differences were found between the measured and original model for three of the four variables addressed (all
except for the velocity peak amplitude)

Finally, on the right we show the measured and predicted
speed and acceleration profiles. One can see that, unlike the
original VITE model, the F2REACH model is generally in
very good agreement with the human data.

We systematically evaluated the predictions of the original
VITE and extended F2REACH with several Euclidian dis-
tances and deviation indices defined in Sect. 4.4. The results
are summarized in Table 2 and show that our model is highly
precise at reproducing the kinematics of the recorded move-
ments. The deviation indices are much smaller, generally on
a different order of magnitude than those from the SD trajec-
tory and always smaller than the original VITE model. The
mean deviation was less than 2 cm for movements of average
path length superior to 1 m.

We performed one-way ANOVAs for the extended model
using, as dependent data, the different error measures defined
in the preceding paragraph. The results show that, regard-
less of the error measures used, we did not find an effect
of the subject executing the movements (P > 0.05, with the
exception of two subjects for the HTDI and ADI deviation
indices). This indicates that our model performed equally
well across the ten subjects. A significant effect (P < 0.001)
was observed for the two experimental conditions (see Fig. 5)
for the mean deviation (MD), mean square error (MSE) and
speed deviation index (SDI) suggesting that the model is bet-
ter at predicting low rather than high curvatures. This result
is not very surprising since the force field in our model is
parameterized with two constant forces, thus approximating
the real force field underlying the movement. The more a
movement is curved, the more imprecisions related to this
parametrization affect the model’s performance. Finally, the
original and extended models differed significantly in their
predictions for all the error measures (P < 0.001).

We have further investigated whether our model captures
the major temporal characteristics of the movement. We com-
pared the VITE and F2REACH models’ predictions to the
real data for the peak amplitude, time at peak amplitude and
speed asymmetry index, see Table 3. One way ANOVAs con-
firmed a very good match between our model’s prediction and

the data for all the above quantities (except for the velocity
peak which was slightly lower, P < 0.05), whereas the pre-
dictions of the original VITE model differed significantly
from the data (P < 0.001) except for the velocity peak ampli-
tude. To illustrate the quality of the extended and original
VITE models’ predictions for the time-dependency of the
signals, in Fig. 9 we compare instances of measured and pre-
dicted speed profiles (normalized in time). Finally we looked
at the percentages of trajectory points comprised within the
volumes defined by one and two standard deviations (SD) in
order to evaluate the performance of the models at portions
where the movement is very precise and systematic over tri-
als (see Sect. 4.4 for details). The results show that 81% of the
hand trajectory points predicted by our model were within
two SDs of the mean trajectory against 40% of the points
predicted by the original VITE model (Table 4 shows also
the result for 1D).

One should emphasize that the F2REACH model gener-
ates these 3-dimensional movements using few parameters:
β that controls the amplitude of the velocity and the two
repulsive force vectors v and w (see Fig. 3b) that parame-
terize the force field surrounding the subject. The other two
parameters α (time constant) and noise were fixed to 50 and
0.005 in all the simulations. The high accuracy with which the
model manages to replicate the movements confirms that the
model encapsulates the important features underlying free
reaching movements. The force field is a key variable of the
model. Next we show that the force field can be interpreted
in relation to the bio-mechanical constraints of the subject’s
body.

5.3 Understanding the force field

Figure 10 shows the components of the virtual repulsive
forces v and w parameterizing the force field of the
F2REACH model (Eq. 2). We observe that the values of
the components are clustered in two groups depending on the
starting location of the movement. They are, thus, consistent
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Fig. 9 Normalized time speed profiles of the measured human data and as predicted by the extended F2REACH and original VITE models, for
the six target positions and the two initial conditions (see Fig. 5)

within the same condition (see Fig. 10a). The fact that move-
ments to different targets are also clustered (forces underly-
ing similar movements have similar components) suggests
a certain regularity in the force field (see Fig. 10b). Finally,
the trials related to one movement are clustered according to
the subject executing the movement, which shows once more
that the parameter values found for the repulsive force fields
are not arbitrary (see Fig. 10c). Recall that the sign of the
force vector governs the direction of the deviation and that,
according to the expression of the modulating function h,
the resulting force F(x(t)) coincides with v at the beginning
of the movement and with w at the end of the movement,
F(t = 0) = v and F(x = x∗) = w.

Closer analysis of the clusters shows that the force v, dom-
inating the beginning of the movement, is highly dependent
on the starting location in the x and y coordinates (see Fig. 4),
whereas the force w, dominating the end of the movement,
varies according to the z direction. An intuitive explanation
for this result is shown in Fig. 11 where we show the direction
and amplitude of the repulsive forces v, w and their modu-

Table 4 Percentages of predicted trajectory points comprised within
one and two standard deviation volumes (1 SD and 2 SD), see Fig. 6c,
for the extended F2REACH and original VITE models

F2REACH VITE

1SD 54.64 ± 19.17 31.11 ± 8.44

2SD 80.89 ± 14.82 39.76 ± 9.18

This error measure is highly restrictive as it penalizes the model pre-
dictions at points where the five trials per subject and movement type
are very consistent

lated sum F(x(t)) (Eq. 3) for different types of movement.
We see that, in the second starting position (arm extended
in front of the body) the subject pushes his or her hand in
the direction of the target (see Fig. 11a), whereas, in the first
starting position (arm extended along the body) the subject
must first push the hand to the right in order to avoid the
body, and then bring the hand downwards in order to avoid
reaching the limit of the shoulder joints (see Fig. 11b).
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Fig. 10 Components of the
repulsive forces v and w. a We
show the components of the first
repulsive force v for the two
conditions: arm extended along
the body (red) and arm extended
in front of the body (blue). Two
practically non-overlapping
clusters can be observed
showing a consistency of the
parameter values within one
condition. b We show the
components of the second
repulsive force w in the first
condition for the six targets
(different scale). Again the
parameter values are clustered
such that movements oriented
toward one target are close
together, showing a regularity in
the repulsive force field. c We
show the components of the first
repulsive force v in the first
condition and target right ear for
the ten subjects. Clusters
corresponding to the subjects
can be identified for the five
trials representing the movement

To better understand the effect of the forces when start-
ing from the same initial condition, we compared the values
found for the force components when reaching to two differ-
ent targets (Fig. 11b, c). Unsurprisingly, the repulsive vec-
tor v is coherent across conditions irrespective of the target
position, whereas the repulsive vector w depends on the tar-
get position and moves along the normal to the head surface
at the target’s position.

We also considered whether the magnitude of the repulsive
force is related to the geometry of the subject’s body, such as
the length of the forearm for example. We observed a linear
correlation between these two quantities (shown in Fig. 12):
the shorter the arm, the more the hand must be pushed away to
circumvent the head. Finally, we observed that the vectors of
repulsive forces were coherent across subjects. These results
are in agreement with the driving hypothesis of our model,
namely that the curvature of reaching movements is the result
of an explicit encapsulation of the task constraints in a control
system which would, in the absence of constraints, produce
straight-line motions. However, the opposite is not true, as we
find non-null forces for quasi-straight movements, which are
parallel to the motion. In the movements we have considered
here, the task constraints comprise geometrical constraints
related to the body.

5.4 Stability analysis of the model

The dynamical system described in Eq. 1 is globally asymp-
totically stable around a unique equilibrium point, the target
position x∗. We have omitted the analytical proof but the
interested reader can convince themselves by computing the
determinant of the Jacobian of the dynamical system around
the fixed point and observe the latter to be always negative.
Next we define the conditions under which the F2REACH
model including the repulsive force field (see Eq. 2) is guar-
anteed to converge to the target. Let there be a perturbation
that drifts the hand far away from the initial and target posi-
tions, such that |x(t)−x(0)|−|x(t)−x∗(t)| < ε, with ε ∈ R

very small and h(x(t)) and 1−h(x(t)) approaching 1/2. The
system converges to a stable state iff |1/2(v + w)| < 1 such
that the amplitude of the repulsive force field is smaller than
the normalized attracting vector, i.e., the distance separating
the target from the present position only gets smaller through
time.6 Note that all the forces’ components found in our study
satisfied the above condition.

6 This result is, however, not valid in the vicinity of the initial position,
which acts a second unstable attractor. Since this affects only a tran-
sient part of the motion (onset of the movement), which is unlikely to
undergo perturbations, this could be ignored for the present study.
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Fig. 11 Physical interpretation of the directions and amplitudes found
for the repulsive forces v, w and their modulated sum F(x(t)) in our
extended F2REACH model (Eqs. 2 and 3) relative to a schematized
humanoid. Three movements of the same subject are shown. a The sub-
ject reaches for the top of the head (movement 4) with the arm extended
in front of the body (condition 2). b Same position target as in a with the
arm extended along the body (condition 1). c Same condition as in b, but
the subject reaches to the left ear (movement 3). Due to the nature of the
modulating function h(x(t)), i.e., h(x(0)) = 1 and limt→∞ h(x(t)) = 0
(see the Appendix), the resulting force F(x(t)) coincides with v at the
beginning of the movement and with w at the end of the movement,

i.e., F(t = 0) = v and F(x = x∗) = w (Eq. 3). From a and b one
can see that the initial condition affects the repulsive forces v and w.
For example, in the second condition (a), v is in the direction of the
target, whereas in the first condition (b and c) it is deviated to the right
in order to avoid the body and downwards such that the arm does not
reach the shoulder extension limit. In addition, v is coherent within the
same condition (see b and c). The target position particularly affects
the repulsive force w (predominant at the end of the movement) that
is similar to the normal of the head surface approached. F(x(t)) was
scaled for illustrative reasons

6 Discussion

We have hypothesized that the curvature of unconstrained
reaching movements is due to an explicit encapsulation of
the task constraints by the CNS in a virtual force field (F2).
Movements thus unfold in time according to a dynamical sys-
tem that attracts the hand to the target position while repel-
ling it from undesirable locations in space (such as objects
in the environment, the subject’s body and joint limits) and
while compensating for unexpected perturbations of the arm.
Furthermore, we have argued that the curvature observed in
natural movements is not a by-effect of the inherent dynamics
of the body but a necessary and voluntarily controlled feature.

In order to probe our hypothesis, we have conducted
motion studies in which healthy adult subjects produced nat-
ural reaching motions directed to various locations on their
head. To highlight the effect that body constraints may have
on the curvature of the movement, we asked the subjects to
initiate the movement from two locations: one that required
the subject to move alongside the body, the other which
allowed the subject to move quasi freely. We showed that
our mathematical model, the F2REACH model, could predict
the major kinematic features of the movements, such as the
bell-shaped velocity profile. Most importantly, it could
account for both the weak and strong curvatures of the
movements.
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Fig. 12 The amplitude of the repulsive force w (Eqs. 2 and 3) is line-
arly correlated to the length of the subjects’ forearms for the movement
reaching to the left ear with the right arm (condition 1), showing that
the repulsive forces in our model are affected by geometrical features
of the body. Intuitively, with a shorter forearm, the hand needs to be
pushed stronger away to circumvent the head

This led us to argue that a single controller underlies both
straight and curved movements. The controller adapts the
trajectory according to multiple constraints the subject has
consciously or not decided to take into account. Although
we have only shown that it can precisely reproduce the kine-
matics of self-oriented movements, the model is general and
can generate natural movements to any target in both intra-
personal and extrapersonal spaces, e.g., in another study that
investigates imitation of unnatural postures we successfully
use this model to simulate reaching to objects on a table.

6.1 Assumptions of the model

The first assumption we have followed is that of a function-
ally hierarchical motor control system proposed by Bernstein
(1947) and translated partly in Bernstein (1996). The hier-
archy consists of four levels: complex actions with abstract
goals, dealing with 3-dimensional space, muscle synergies,
posture and muscle tone. In our study, we considered the
first and second levels, in that we addressed 3-dimensional
goal-directed reaching movements, characterized by a sin-
gle target position. By leaving out the question of how such
high-level control is then translated into muscle synergies
and the control of posture and muscle tone, we follow the
observation that: electrical stimulation of the brain motor area
elicits reaching movements in primates (Graziano et al. 2002,
2005) and leg movements in frogs (Bizzi et al. 1982). Interest-
ingly, all of these movements converge to the same position in
extrinsic space independently from the initial posture. Thus,
the control of these movements seems to use solely the def-
inition of the desired final position, and not a description of

low-level muscle activations (in a way functionally similar
to muscle synergies when compared to activating individual
muscles, see d’Avella et al. (2003)). In addition these studies
indicate that reaching movements are extensively represented
in the motor cortex.

Another argument in favor of a “high-level” extrinsic
3-dimensional representation of movements come from evi-
dence of the many to one mappings between: (1) muscles and
joint configurations, (2) muscles and end-effector positions
or (3) joint configurations and end-effector positions. Con-
trolling the hand in a 3-dimensional extrinsic space over an
intrinsic joint space is advantageous in that it allows to easily
encapsulate task constraints, such as avoiding surrounding
objects, and plan movements accordingly (these task con-
straints would have an infinite number of possible represen-
tations in the joint and muscle spaces). Also note that we
have assumed that movements were computed in a Cartesian
frame of reference located on the body. It would however be
conceivable to compute the same movement according to a
polar coordinate system without affecting the prediction of
the model.

The fact that we do not address the above two lower-
levels of motor control, is a limitation of the model. As stated
by Bernstein, the problem of translating a kinematic signal
encoded in a 3-dimensional extrinsic frame of reference into
muscle activations (so-called degrees of freedom problem) is
complex because of the redundancy of the muscular system.
An infinity of different muscle activations leads to the same
kinematic motion of the end-effector. Although this problem
is of the highest importance for a complete motor control
theory, we do not address this problem here [see d’Avella
et al. (2003), Todorov and Jordan (2002) and Guigon et al.
(2007) for possible solutions].

Another important assumption we make is that the CNS
can represent forces internally. Our model is based upon
a force field that encapsulates the constraints of the task,
which implies the knowledge of a mapping between differ-
ent locations in the subject’s peripersonal space and virtual
repulsive forces. It thus requires the existence of an internal
model of the environment in terms of attractive or repulsive
force fields in the brain. The above hypotheses are not at
odds with the literature. There is substantial evidence that
the brain is capable of learning an internal representation of
external forces in order to adapt its control of the motion of
the hand (Shadmehr and Mussa-Ivaldi 1994; Conditt et al.
1997; Shadmehr and Brashers-Krug 1997; Thoroughman and
Shadmehr 2000; Gandolfo et al. 1996), when subjected to
these for a long enough period of time. Another force that
is centrally represented and integrated in the internal
dynamic control models for reaching is the gravitational
force (Shadmehr and Mussa-Ivaldi 1994; Papaxanthis et al.
1998). In our model the geometry of the body and external
objects, among other factors, contribute to the force field.
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Accordingly, McIntyre et al. (1995) have shown that the brain
may integrate an external constraint such as a curved surface
through an a priori internal model of the surface geometry.

6.2 Properties of the model

Interesting properties of the F2REACH model for motor con-
trol are: (i) the system is asymptotically and globally sta-
ble; (ii) it exploits a biologically plausible signal-dependant
noise and (iii) planning of the movement is done through
closed-loop control. This enables on-the-go re-computation
of the motion in the face of perturbation or imprecision in
the sensory-motor loop. Closed-loop control through afferent
and efferent internal feedback loops (Desmurget and Grafton
2000) allows to take into account the uncertainty of the “real-
world” instead of just “playing a prerecorded tape” (Todorov
2004). We suggest that only an online mechanism that tightly
couples movement planning with movement execution could
explain the irregular curvatures observed in some of the tri-
als; the latter were likely due to an on-the-go correction of
the trajectory.

Most importantly, we have proposed a force field frame-
work as a powerful mechanism for integrating various con-
straints related to, e.g., the dynamics and geometry of the
arm, external objects and the person’s own embodiment, into
a unique and generic controller. Whereas the goal of the con-
troller is encoded according to kinematic variables (a position
to reach), the constraints are encoded in dynamic variables,
the force field, and may as well be expressed in an intrinsic
(limit joint angles) or extrinsic (surrounding objects) frame
of reference. This framework could reconcile findings that
argue for both dynamic and kinematic planning (Vetter et al.
2002; Admiraal et al. 2004), in providing a computational
account for how the dynamics of the arm can be taken into
account in kinematic planning (Sabes and Jordan 1997). It
also explains how external objects might influence the tra-
jectory of the hand (Brenner and Smeets 1995).

Furthermore, the representation of this environmental for-
ce field generalizes to performing the motion faster or slower
(Harris and Wolpert 1998). This is equivalent to learning to
vary the value of the factor β in our model (see Eq. 1). Finally
the representation of the force field, although local, extends to
nearby locations (smoothly decaying away from the position
of the perturbation). Similarly, our expression of the force
field is spatially continuous.

The extent to which the model’s predictions can be gen-
eralized to any reaching movement remains to be shown,
since we only demonstrated a good agreement of the model
with data from reaching movements directed to the head.
The movements we have addressed are nevertheless quite
generic in that they were entirely unconstrained. For exam-
ple, we did not observe a reduction of the degrees of freedom
as in Klein Breteler et al. (1998) where the subjects had a ten-

dency to produce movements in 2D rather than in 3D (see
example in Fig. 1). In addition many of the velocity profiles
recorded, exhibited asymmetric velocity profiles similar to
those observed (Gielen et al. 1985; Brown and Cooke 1990).
These characteristics are present in all reaching movements
and we are thus confident that the model is generic in its
representation of the class of reaching movements.7

The force field in our model is parameterized by two con-
stant forces and is thus only an approximation of the real
underlying force field. This approximation may lead to im-
precisions in the model’s predictions, especially in places
where the field changes importantly locally.

While our model proposes a way in which the brain may
encapsulate all types of motion-related constraints (e.g., body
and joint-limits avoidance, inertia of the arm) within a general
controller of reaching movements, we do not provide a gen-
eral method for expressing these constraints in the form of a
force field. Our future efforts will concentrate on segmenting
the contributions of different constraints and on a mechanism
that would allow to learn these through experience.

6.3 Predictions of the model

Our model is consistent with several experimental observa-
tions and provides a theoretical basis for their interpretation.

For example, in different pointing and reaching studies,
systematic misdirections of the fingertip trajectory were obse-
rved (de Graaf et al. 1991, 1994; Brenner and Smeets 1995).
The misdirections were clockwise and anticlockwise when
pointing to targets on the right and on the left frontal space,
respectively. To explain their results the authors hypothe-
sized a distorted and contracted internal representation of
space (de Graaf et al. 1991, 1994) or speculated that the sub-
jects anticipate the purpose of the target (Brenner and Smeets
1995). Within the repulsive force field framework we propose
in this paper, these misdirections are created by the geomet-
rical relationship between the target and the subject’s body.8

Our model predicts that if one was to repeat the experiment in
a different part of the workspace where the misdirections are
mainly due to body avoidance, the misdirections would be
anticlockwise and clockwise when the target is respectively

7 Current work of ours has applied the model to account for reaching
movements oriented to targets on a table in natural and unnatural pos-
tures where an artificial constraint is introduced. Preliminary results
show that the model again encapsulates with high accuracy all the fea-
tures of the movements (unpublished data).
8 These two similar studies, de Graaf et al. (1991) and Brenner and
Smeets (1995), puzzlingly reported different results. We suggest that
the differences observed can be attributed to the distance chosen from
the subject to the initial position of the hand [25 cm in Brenner and
Smeets (1995) and 40 cm in de Graaf et al. (1991)], as the repulsive
forces responsible for avoiding the body would fade away as this dis-
tance increases.
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Fig. 13 Prediction of the F2REACH model: the curvature increases
with higher speed, here equivalent to higher β values. The effect is not
visible in quasi-straight movements

right and left from the closest virtual line connecting the sub-
ject’s trunk with the hand’s initial position.

Furthermore, our model predicts that faster movements
may be more curved, as shown on Fig. 13. Even though
this prediction has been empirically observed (Klein Breteler
et al. 1998), it contradicts several experimental and theoreti-
cal studies that have shown curvature-speed invariance (Nis-
hikawa et al. 1999; Sha et al. 2006; Liebermann et al. 2008)
and suggest that speed and path are planned independently
(Todorov and Jordan 2002; Torres and Zipser 2002; Biess
et al. 2007). In our model speed modulates the curvature of the
path by construction. However, the deviation is also propor-
tional to the magnitude of the repulsive force field such that
this effect is particularly important for highly curved move-
ments (see Fig. 13). This might explain why curvature-speed
invariance is more consistently observed, as highly curved
movements are rarely studied. Otherwise, an additional com-
pensatory mechanism should be added to the model that mod-
ulates the force field as a function of desired speed.

Finally, the model suggests that the asymmetry of the
velocity profile is due to the difference in directions between
the repulsive force field and attracting vector. Finally, even
though the curvature of a movement is highly systematic
and reproducible (Soechting and Lacquaniti 1981; Pellegrini
and Flanders 1996; Admiraal et al. 2004), our model would
predict that if you alter the geometry of the subject’s body,
such as adding a false belly for example, then reaching move-
ments will be displaced away from the artificial object even if
this object does not interfere with the original trajectory. Our
model also predicts that the shape of the object would matter.

6.4 Neural correlates of the model

Most importantly, the F2REACH model we propose is com-
patible with neurophysiological studies. Primate brain areas

have been identified as the loci of the computations involved
in the original VITE model (Bullock et al. 1998). Specifi-
cally, it was shown that the model’s variables display the same
dynamics of activation (e.g., response profiles and latency of
activity onset) as that of populations of neurons: the hand
velocity might be represented in area 4, whereas the hand
acceleration and position in area 5. Note that the extended
F2REACH model solicits only quantities that would be eas-
ily accessible to the CNS such as distances from the target
and initial positions.

A novel feature of the model is the repulsive force field
that shapes the landscape of the workspace, meaning that not
each position is equally likely to be visited. In other words,
the model assumes the existence of neural populations coding
for forces related to the body and surrounding objects. Area 5
is a putative region for the computation of the force field, as it
receives abundant somatosensory and visual inputs that are
necessary for the encapsulation of the geometrical proper-
ties of the body and surrounding objects in an internal model
(Scott et al. 1997; Graziano et al. 2000). We thus predict the
existence of a population of neurons in area 5, whose activ-
ity would be close to baseline during straight movements and
would rotate in curved movements. In addition, the activation
of these neurons would be modulated by the introduction of
new objects in the workspace.

6.5 Conclusion

We showed that not only the spatial, but also the tempo-
ral features of unconstrained and naturally curved reaching
movements could be modeled through a dynamical system
modulated by a virtual force-field. We found that the model
was in very good agreement with kinematic data from human
motions, during unconstrained reaching movements directed
to the head. We showed that the natural curvature of these
movements could be attributed to the interplay between a tar-
get attractor and virtual repulsive forces that encapsulate a
representation of the geometry of the subject’s body. Such a
representation is a simple and powerful way to generate kine-
matically-driven trajectories that comply with the underlying
dynamic constraints.

7 Appendix

7.1 Original VITE system

The original VITE model’s dynamics as given by Bullock
and Grossberg (1988):

ẏ(t) = α(−y(t) + x∗(t) − x(t))

ẋ(t) = βtνy(t)
(4)
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where x(t) corresponds to the current position of the hand in
a three-dimensional extrinsic frame of reference and x∗(t) is
the location of the target (see Fig. 4). y is a secondary variable
related to the hand velocity. α and β are real positive time
constants and ν is a real positive exponent parameter. The
model recomputes at each time step the hand position x(t),
so as to generate an overall straight trajectory to the target
that follows a bell-shaped velocity profile. The first term of
the equation ensures that the unprimed acceleration vector
ẏ(t) is always directed toward the target, i.e., x∗(t) − x(t),
so that the target’s position x∗ forms a unique attractor of the
system. The amplitude of the acceleration ẏ(t) is proportional
to the distance separating the hand and the target. y(t) grows
quickly at the beginning of the movement and slows down
exponentially towards the end of the movement. To compen-
sate for this asymmetric velocity profile, y(t) is scaled down
in the second equation by a time-dependent variable βtν . ẋ(t)
is the hand’s velocity and can be viewed as the output activ-
ity of a corresponding neural population that would control
agonist muscle motoneurons (Bullock and Grossberg 1988).

7.2 Nonlinear functions used in the F2REACH model

The form of the nonlinear function g in Eq. 1 is the following:

g(u) = |d − u|u (5)

where the control vector u(t) = x∗(t) − x(t) + η is the vec-
tor separating the actual hand position x(t) from the desired
hand position x∗(t) (does not need to be stationary) with sig-
nal dependant noise η. The operator | | stands for the norm
of the vector and d is defined as:

d(t) = x∗(t) − x(0) (6)

the vector between the target x∗(t) and initial position x(0),
such that the term |d − u| is equivalent to the distance sepa-
rating the actual position of the end-effector from its initial
position. t is set to 0 each time a new movement is initiated.
In the absence of noise in the control signal u, the multipli-
cative factor |d − u| would be 0 at t = 0 and no movement
would be initiated.

The function h that modulates the force field in Eq. 3 is
defined by:

h(u) = |u|
|u| + |d − u| (7)

and normalizes the amplitude of the control signal u.
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Dynamical System Modulation for Robot Learning
via Kinesthetic Demonstrations

I. INTRODUCTION

AS robots are progressively coming out of the controlled
environment of assembly lines to pervade the much

less predictable domestic environments, there is a need to
develop new kinds of controllers that can cope with changing
environments and that can be taught by unskilled human users.
In order to address this last issue, Programming by Demon-
stration (PbD) has emerged as a promising approach [1]. PbD
has been mostly used in two cases: for tasks involving no
or very loose interaction with the environment (like writing,
martial arts or communicative gestures) human demonstra-
tions are used to train a movement model, which can be
used to reproduce the task. Those movement models (also
used in computer animation or visual gesture recognition)
usually imply some averaging process (LWR [2], HSTMM
[3]), possibly in a latent space (GPLVM [4], ST-Isomap [5])
or some probabilistic model like Bayesian Networks [6]. And
for more complex tasks, involving precise interactions with the
environment, the robot learns from examples how to sequence
a set of hard-coded controllers for a given task. This has been
done using HMMs [7] or knowledge-based systems [8].
In our work, we position ourselves in between those two
approaches and combine learning of a task-dependent mod-
ulation of a built-in controller. We, thus, start with a basic
built-in controller (or motion primitive) that consists in a
dynamical system with a single stable attractor. We modulate
the trajectories generated by this controller to be task-specific,
by learning a probabilistic model of the task-based trajectory,
as shown by a human user. This results in a general framework
for learning and reproducing goal-directed gestures, despite
different initial conditions and changes occurring during task
execution. In this respect, we improve in several ways classical
control approaches for goal-directed motions, such as [9].

The closest work to ours is [2], which uses a dynamical
system for goal-directed reaching. We depart from this work
in two ways: First, we propose a hybrid controller composed
of two of our basic dynamical systems working concurrently
in end-effector and joint angle spaces. This results in a
controller that has no singularities. Second, the dynamical
system approach gives us a controller robust in the face of
perturbations, which can recompute the trajectory on-line to
adapt to sudden displacements of the target or unexpected
motion of the arm during motion, and we provide experimental
results on the robustness to static and dynamic changes in the
environment. While our controller is less precise than ad-hoc
controller (e.g. [10]), it is more general in that it can be easily
modulated to achieve arbitrary goal-directed reaching tasks.

In the experiments presented here, the motions are demon-
strated to the robot by a human user moving the robots’ limbs

passively (kinesthetic training). In Section IV, we validate the
approach on two different tasks, namely placing an object
into a box, and reaching-to-grasp a chess piece, see Fig. 2
for illustrations of these two tasks.

II. OVERVIEW

The system is designed to enable a robot to learn to
modulate its generic controller to produce any arbitrary goal-
directed motion. The model must be generic so as to repro-
duce the motion given different initial conditions and under
perturbations during execution. Moreover, the architecture of
the system must permit the use of different control variables
for encoding the motion. Here, we compare a control in
either velocity or acceleration. We refer to those further as the
velocity model (see Section II-B) and the acceleration model
(see Section II-C).

A. System Architecture

The structure of the system is the same for both models
and is schematized in Fig. 1. During training, the relevant
variables (end-effector velocity profiles for the velocity model,
or end-effector positions, velocities and accelerations for the
acceleration model) are extracted from the set of demonstrated
trajectories and used to train a Gaussian Mixture Model
(GMM) (see Table I). During reproduction, the trajectory is
specified by a spring-and-damper dynamical system modulated
by the GMM (see section III). The target is tracked by a
stereo-vision system and is set to be the attractor point of
the dynamical system. At each time step, the desired velocity
computed by the model is then fed to a PID controller for
execution. This does not hinder the online adaptation of the
movement.

B. Velocity Model

The first way to encode a motion in a GMM, is to consider
the velocity profile of the end-effector as a function of time�������� . Thus, the input variable � is the time and the output
variable 	 is the velocity, like in the following velocity model:���
������� ����� (2)

In other words, the movement is modeled as a velocity profile,
given by a function of time, which is learned as described
in Table I. Here and henceforth,

�� 
 ����� is the end-
effector velocity specified by the task model. ����� is obtained
by applying (1) with the appropriate variables.
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TABLE I
SUMMARY OF GAUSSIAN MIXTURE REGRESSION (GMR).

GMR is a method suggested by [11] for statistically estimating a function �����! #"
given by a “training set” of $ examples %��! #&('*)+&,",-/.&!021 , where )/& is a noisy
measurement of �3�4�! #&�" : ) &65 � � �! & "87:9 &
( 9,& is the Gaussian noise). The idea is to model the joint distribution of the “input”
variable  and an “output” variable ) as a Gaussian Mixture Model. If we join those
variables in a vector ; 5=<  4>2)#>@?A> , it is possible to model its probability density
function as a mixture of B Gaussian functionsC �!;�" 5EDFG 021 H GJILK ;NMPO G 'PQ G "R'TS�UWV,XZY*X\[+Y DFG 021 H G 5�]
where the H G_^ < `a] ? are the priors, and I �!;NMRO G 'PQ G " is a Gaussian function
with mean O G and covariance matrix Q G :ILK ;bMPO G 'PQ G " 5 K �!c H "*d�e Q G e f4g 1hjiRk�l K@m ]c �!; m O G " > QZg 1G �!; m O G "�f�'
where n is the dimensionality of the vector ; . The mean vectors O G and covariance
matrices Q G can be separated into their respective input and output components:

O G 5L< O >G4o p O >G4o � ? > Q G 5rq Q G#o p Q G4o p �Q G#o � p Q G4o �ts
The Gaussian Mixture Model (GMM) is trained using a standard E-M algorithm,
taking the demonstrations as training data. The GMM computes a joint probability
density function for the input and the output, so that the probability of the output
conditioned on the input are GMM. Hence, it is possible, after training, to recover
the expected output variable u) , given the observed input variable  .u) 5 u�3�4�! #" 5EDFG 021wv G �! #" K O G4o �37:Q G4o � p QZg 1G#o p �! m O G4o p "�f�' (1)

where the v G �! #" are given by:

v G �! #" 5 H G I �x 4MPO G4o p 'RQ G4o p "y DG 021 H G�I �! �MPO G4o p '(Q G4o p "bz
The tilde (u ) sign indicates that we are dealing with expectation values.

target tracking
(stereovision)

execution by
the robotdemonstrations

kinesthetic

GMM training GMR

trajectory features
modulated
spring and
damper system

executiontraining

task
model

PSfrag replacements {}| ~A� � ��� � ���� �R�
{}| ���x� �,�x� ���A� ���� �R� ��+�� �4� ��+� �

�����
�

only in the case of the acceleration model

(2,4) (11,12)

Fig. 1. The architecture of the system. During training the relevant variables
(end-effector’s position, velocity and acceleration) are extracted from the
demonstrations and used to train a GMM. During task execution, this model is
used to modulate a spring-and-damper system. ���� is the end-effector velocity
specified by the task model. �2� is the target location, and ���W� ��6�W� �� � are
respectively the actual current end-effector’s position and velocity and the
joint angles’ velocities. The numbers in parentheses refer to the corresponding
equations in the text.

C. Acceleration Model

A second way of encoding a trajectory is to take as input the
position � and velocity

�� , and as output the acceleration  � . The
rationale of this is to consider a trajectory not as a function
of time, but as the realization of a second-order dynamical
system of the form:  � 
 ����_¡� �*�£¢ ��j��¤ (3)

Again, �� �� is obtained by applying (1) with the appropriate
variables. The velocity specified by the acceleration model is
then given by ���
� ���¥§¦ �� ¡� �*�£¢ ��j��¢ (4)

where ¦ is the time integration constant (set to ¨ in this paper).
Since the position � and velocity

�� depend on the acceleration � at previous times, this representation introduces a feedback
loop, which is not present in the representation given by (2).

III. MODULATED SPRING-AND-DAMPER SYSTEM

We now show how the task model described above is used
to modulate a spring-and-damper dynamical system in order

to enable a (possibly redundant) robotic arm with © joints
to reproduce the task with sufficient flexibility. Although the
modulation

�� 
 is in end-effector space, it is advantageous (for
avoiding singularity problems related to inverse kinematics
of redundant manipulators) to consider the spring-and-damper
dynamical system in joint angle variables: ªN« �¬®�J¯ �ª ¥r°Z� ªN± ¯ ª ��� (5)

where
ª �r��² is the vector of joint angles (or arm configu-

ration vector). This dynamical system produces straight paths
(in joint space) to the target

ª ±
, which acts as an attractor of

the system. This guarantees that the robot reaches the target
smoothly, despite possible perturbations.
The above dynamical system is modulated by the variable�� 
 given by the task model (2) or (4). In order to weigh
the modulation, we introduce a modulation factor ³ �´� < `µ] ? ,
which weighs the importance of the task model relatively to
the spring-and-damper system. If ³ �·¶ , only the spring-and-
damper system is considered, and when ³ � ¨ only the task
model is considered. In order to guarantee the convergence
of the system to

ª ±
, ³ has to tend to zero at the end of the

movement. In the experiments described here, ³ is given by:¸³ �T¬j¹º��¯=»³ ¯ ¨¼ ¬½¹ ³ �¿¾aÀAÁ/Â ³ ` � ¨ ¢ (6)

where ³ ` is the initial value of ³ and ¬ ¹ �L� < `Ã] ? is a scalar.
Since

�� 
 lives in the end-effector space (and not in the joint
space), the modulation is performed by solving the following
constrained optimization problem.�ª � ÄNÅ/ÆNÇÈÀ!É�Ê � ¨ ¯ ³ ��� �ª ¯ �ª « ��ËÍÌÎ Ê � �ª ¯ �ª « �j¥

³ � ��L¯ ���
Ï�JËÐÌÎ � � ��´¯ ���
Ï� (7)Ñ�¤ ÒN¤ ��=�ÔÓ �ª ¢ (8)

where Ó is the Jacobian of the robot arm kinematic functionÕ
and ÌÎ Ê �´�Ö²º×6² and ÌÎ � �Ø���_×6� are diagonal matrices

necessary to compensate for the different scale of the � andª
variables. As a rough approximation, the diagonal elements

of ÌÎ � are set to one and those of ÌÎ Ê are set to the average
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distance between the robot base and its end-effector.
The solution to this minimization problem is given by [12]:�ª � Ù Î Ê ¥ÚÓ�Ë Î � Ó½Û m ] Ù Î Ê �ª « ¥§Ó�Ë Î � ���
ÜÛ (9)¾aÂ�Ý\Å/Ý Î Ê �� ¨ ¯ ³ �ÞÌÎ Ê ¢ Î � � ³ ÌÎ � ¤ (10)

To summarize, the task is performed by integrating the
following dynamical system: ªN« � ¬ß��¯ �ª ¥§°ß� ªN± ¯ ª �+� (11)�ª � Ù Î Ê ¥§Ó�Ë Î � Ó½Û m ] Ù Î Ê �ª « ¥ÚÓ�Ë Î � ���
ÜÛ (12)

where
Î � and

Î Ê are given by (6) and (10), and
�� 
 is

given either by (2) (velocity model) or by (4) (acceleration
model). Integration is performed using a first-order Newton
approximation (

�ª « � �ª ¥r¦  ª « ).
Since the target location is given in cartesian coordinates,

inverse kinematics must be performed in order to obtain the
corresponding target joint angle configuration which will
serve as input of the spring-and-damper dynamical system.
In the case of a redundant manipulator (such as the robot
arm used in the following experiments) the desired redundant
parameters of the target joint angle configuration can be
extracted from the demonstrations. This is done by using the
GMR technique described in Table I to build a model of the
final arm configuration as a function of the target location.

Using an attractor system in joint angle space has the
practical advantage of reducing the usual problems related
to end-effector control, such as joint limit and singularity
avoidance. Equation 9, which is a generalized version of
the Damped Least Squares inverse [13] [14], is a way to
simultaneously control the joint angles and the end-effector,
imposing soft constraints on both of them. It is thus different
than optimizing the joint angles in the null space of the
kinematic function.

IV. EXPERIMENTS

A. Setup

We validate and compare the systems described in this paper
on two experiments. The first experiment involves a robot
putting an object into a box and the second experiment consists
in reaching and grasping for an object. Those experiments
were chosen because (1) they can be considered as simple
goal-directed tasks (for which the system is intended), (2) they
are tasks commonly performed in human environments and (3)
they presents a clear success or failure criterion.
All the experiments presented below are performed with a
Hoap3 humanoid robot acquired from Fujitsu. This robot has
four back-drivable degrees of freedom (dof) at each arm. Thus,
the robot arms are redundant, as we do not consider end-
effector orientation. The robot is endowed with a stereo-vision
system enabling it to track color blobs. A small color patch
is fixed on the box and on the object to be grasped, enabling
their 3D localization. Pictures of the setup are shown in Fig.
2.

Fig. 2. The setup of the experiments. The top pictures show the first task and
the lower picture sow the second task Left: a human operator demonstrates
a task to the robot by guiding its limbs. Right: the robot performs the task,
starting from different initial positions.
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Fig. 3. The demonstrated trajectories for the box task (left) and the grasping
task (right). Circles indicate starting positions.

1) Preprocessing: During the demonstrations, the robot
joint angles were recorded and the end-effector positions were
computed using the arm kinematic function. All recorded
trajectories were linearly normalized in time ( ç �éè8¶8¶ time
steps) and Gaussian-filtered to remove noise. The number of
Gaussian components for the task models were found using the
Bayesian Information Criteria (BIC) [15], and the parameter
values used were ¬ ¹ �·¶�¤ ¶ëê , ¬ì�·¶�¤ ¨wí and °î�¶�¤ ¶8ê .
B. Putting an object into a box

1) Description: For this task, the robot is taught to put an
object into the box (see Fig.2). In order to accomplish the
task, the robot has to avoid hitting the box while performing
the movement and must thus first reach up above the box and
then down to the box. A straight line reaching will in general
cause the robot to hit the box while reaching and thus fail.

2) Training: A set of 26 kinesthetic demonstrations were
performed, with different initial positions and box locations.
The box was placed on a little table. Thus its location only
varies in the horizontal plane. Similarly, the initial position of
the object (and thus of the end-effector) lied on the table. The
set of demonstrated trajectories is depicted in Fig. 3, left. The
velocity models trained on this data are shown in Fig. 4, left.
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data, the ellipses the Gaussian components and the thick lines the trajectory
obtained by GMR alone. The thick lines show that, for the first task, the
horizontal components ôõ6ö and ôõë÷ are averaged out by the model, but the
vertical component ôõ8ø shows a marked upward movement. For the second
task, all components are almost averaged out.

C. Reach and Grasp

1) Description: In order to accomplish this task, the robot
has to reach and correctly place its hand to grasp a chess piece.
In other words it has to place its hand so that the chess piece
stands between its thumb and its remaining fingers, as shown
in Fig. 7, left. This figure illustrates that the approaching the
object can only be done in one of two directions: downward
or forward. This task is more difficult than the previous one,
as the movement is more constrained. Moreover, a higher
precision is required on the final position, since the hand is
relatively small.

2) Training: A set of 24 demonstrations were performed
starting from different initial positions located on the horizon-
tal plane of the table. The chess piece remained in a fixed
location. Depending on the initial position, the chess piece
was approached either downward or forward (as illustrated
on Fig. 7). The set of demonstrations is represented in Fig.
3, right. The resulting velocity model is shown in Fig. 4,
right. One can notice that there is no velocity feature that
is common to all demonstrated trajectories. The acceleration
model is shown in Fig. 5. This model captures well the fact that
the vertical acceleration component depends on the position in
the horizontal plane.

D. Results

Endowed with the system described above, the robot is
able to successfully perform both tasks. For the first task,
both the velocity and the acceleration models can produce
adequate trajectories (see Fig. 6, left for examples). The system
can adapt its trajectory online if the box is moved during
movement execution (see Fig. 6, right). For the second task,
examples of resulting trajectories are displayed in Fig. 7, right.
In order to evaluate the generalization abilities of the systems,
both tasks were executed from various different initial posi-
tions arbitrarily chosen on the horizontal plane of the table,
and covering the space reachable by the robot. Fig. 8 shows the
results and starting positions for both experiments. For the box
experiment (left), the velocity model was successful for 22 out
of the 24 starting locations (91%). The two unsuccessful trials,
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Fig. 5. In the center, the acceleration model for the second task. The ellipsoids
show the Gaussian components at twice their standard deviation. Only three
projections (out of nine) are shown. The vertical acceleration strongly depends
on the position in the horizontal plane. On the lower right, two trajectories
encoded by this model but starting from different positions A and B (indicated
by the crosses) are shown. The corresponding vertical velocity profiles appear
on the upper right. They differ significantly, as the model is not homogeneous
across the horizontal plane.
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Fig. 6. Left: end-effector trajectories of the robot putting the object into
the box. The thin line corresponds to the velocity model and the thick line
corresponds to the acceleration model. Right: online trajectory adaptation to a
target displacement using the velocity model. The circles indicate to location
of the box, as tracked by the stereo-vision system. The thick line shows the
produced trajectory and the thin line shows the original trajectory if the box
remained unmoved. Similar results were obtained with the acceleration model.

indicated by empty circles, correspond to initial positions close
to the work space boundaries. The acceleration model was
successful for all trials (100%).
For the chess piece experiment (Fig. 8, right), the velocity
model was successful for 5 out of 21 (24%) trials whereas the
acceleration model was successful for 18 trials (86%). This
performance gap is due to the fact that this task does not
require a fixed velocity modulation. The adequate modulation
depends on the position. This position-dependent modulation
can be captured by the acceleration model, but not by the
velocity model. As illustrated in Fig. 5, the acceleration model
is able to produce different velocity profiles, depending on the
starting position and is thus more versatile than the velocity
model.
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Fig. 7. Left: the chess piece to be grasped. For a successful grasp, the robot
has to approach it as indicated by the arrows. Right: resulting trajectories for
the grasping task, starting from two different initial positions. The acceleration
model (thick lines) adapts the modulation to the initial position, while the
velocity model (thin lines) starts upward in both cases. The trajectory produced
by the velocity model and starting left of the target is not successful.
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Fig. 8. The robustness to initial end-effector position for both tasks. The
plots represent top views of the first (right) and second (left) experiment. The
filled markers (circles or squares) indicate all initial positions for which the
velocity model was successful. The circles (filled and non-filled) indicate all
initial positions for which the acceleration model was successful. The crosses
indicate initial end-effector position, for which both models failed. The dots
indicate the starting positions of the training set.

V. DISCUSSION

Our results show that the framework suggested in this
paper can enable a robot to learn constrained reaching
tasks from kinesthetic demonstrations, and generalize them
to different initial conditions. Using a dynamical system
approach allows to deal with perturbations occurring during
the task execution. This framework can be used with various
task models and has been tested for two of them, the velocity
model and the acceleration model. The results indicate that the
velocity model is too simplistic if the task requires different
velocity profiles when starting from different positions in
the workspace. The acceleration model is more sophisticated
and can model more constrained movements, but may fail to
provide an adequate trajectory when brought away from the
demonstrations in the phase space �*�£¢ ��j� . Other regressions
techniques, such as LWR, could also be used. But if there are
inconstancies across demonstrations, simple averaging may
fail to provide adequate solutions.
In its present form, the modulation factor between the
dynamical system and the task model ( ³ ) is not learned.
Learning it from the demonstrations is likely to further
improve the performance of the system, especially for tasks
requiring a modulation at the end of the movement. It would
also be desirable to have a system that extracts the relevant
variables, and automatically selects the adequate model. A

first step in this direction has been taken in [16], where a
balance between different sets of variables is achieved.
Of course, the adequacy of this framework is restricted
to relatively simple tasks, such as those described in the
experiments. More complicated tasks, such as obstacle
avoidance in complex environments or stable grasping of
particular objects require a detailed model of the environment
and more elaborate planning techniques. The tasks considered
for this framework are those that cannot be accomplished
by simple point-to-point reaching, but still simple enough
to avoid the complete knowledge of the environment. But
this framework could be extended to learn more complicated
tasks. In a first step in this direction, [17] investigates in
simulation and on a simplified framework how Reinforcement
Learning can deal with obstacle avoidance.
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[5] O. Jenkins, G. González, and M. Loper, “Tracking human motion and
actions for interactive robots,” in Proceedings of the Conference on
Human-Robot Interaction (HRI07), 2007, pp. 365–372.

[6] D. Grimes, D. Rashid, and R. Rao, “Learning nonparametric models for
probabilistic imitation,” in Advances in Neural Information Processing
Systems (NIPS 06), 2006.

[7] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi, “Extraction of
essential interactions through multiple observations of human demon-
strations,” IEEE Trans. Ind. Electron., vol. 50, pp. 667–675, 2003.

[8] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, no. 2,3, pp.
109–116, 2004.

[9] C. Campbell, R. Peters, R. Bodenheimer, W. Bluethmann, E. Huber, and
R. Ambrose, “Superpositioning of behaviors learned through teleopera-
tion,” IEEE Transactions on Robotics, 2006.

[10] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,” International Journal of
Robotics Research, 1999.

[11] Z. Ghahramani and M. Jordan, “Supervised learning from incomplete
data via an em approach,” in Advances in Neural Information Processing
Systems 6, J. Cowan, G. Tesauro, and J.Alspector, Eds. Morgan
Kaufmann Publishers, 1994.

[12] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 370–384, 2006.

[13] C. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” IEEE Transactions on
Systems, Man and Cybernetics, Part C, vol. 16, no. 1, pp. 93–101, 1986.

[14] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with
singularity robustness for robot manipulator control,” ASME Journal of
Dynamic Systems, Measurement, and Control, vol. 108, pp. 163–171,
1986.

[15] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics,
vol. 6, 1978.

[16] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and
generalizing a task in a humanoid robot,” IEEE Trans. Syst., Man,
Cybern. B, vol. 37, no. 2, pp. 286–298, 2007.

[17] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” RSJ Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.



 

My Account | Join SfN | Directory | Online Store | News Room | Contact Us 

 

 Site Search

 

Abstracts/Annual 
Meeting Publications

Abstract Archive: 
2000-2005

Abstract PDFs: 2008

Abstract PDFs: 2009

Annual Report

Brain Briefings

Brain Facts

Brain Research Success 
Stories

Guide to Public 
Advocacy

Guidelines for Crisis 
Management

History of Neuroscience 
Autobiographies

Journal of 
Neuroscience

Neuroscience Core 
Concepts

Neuroscience Nexus

Neuroscience Quarterly

Research & Discoveries

Responsible Conduct 
Regarding Scientific 
Communication

Searching for Answers: 
Families and Brain 
Disorders 

Searching for Answers: 
From Understanding 
Principles to Optimizing 
Function

Battling Brain 
Disorders: Voices from 
Public Figures

Short Courses

Translational 
Neuroscience 
Accomplishments

Information for... 

   General Public  
   Media 
   Educators 

  

 
Home » Publications » Abstracts/Annual Meeting Publications » Abstract Archive: 2000-2005 
 

Neuroscience 2005 Abstract 

Return to the Previous Page 
Home  

  

 Abstract Archive: 2000-2005  printer-friendly version

Presentation 
Number:

469.7

Abstract Title: Eye to eye communication.

Authors: Rustichini, A.*1; Fadiga, L.2; Lungu, O.3  
1Economics, Univ. of Minnesota, Minneapolis, MN 
2Italy, 1035 Heller Hall, 71, 19th Avnue South inneapolis, MN 
55455 , 55455,  
3SBTA, Sezione di Fisiologia Umana, 1035 Heller Hall, 71, 19th 
Avnue South inneapolis, MN 55455 , 55455,  

Primary Theme 
and Topics

Cognition and Behavior  
- Human Cognition, Behavior, and Anatomy  
-- Perception and imagery 

Session: 469. Perception and Imagery I  
Slide

Presentation Time: Monday November 14, 2005 2:30 PM-2:45 PM

Location: Washington Convention Center - Room 143A

Keywords: Sympathy, Mirror Systems 

Sympathy is the ability of the observer to reproduce the internal states of others, 
either when observing an external event or the display of a reaction, motor or 
affective. We test the hypothesis that sympathy is used as an information extracting 
device: the reproduction of the neural activity of the observed subject provides a signal 
on the information available to the observed subject. An implication of the theory is 
that a subject has very little to know on his own internal states, so brain activity 
related to sympathy should be smaller than it is when a different subject is involved.  
We test this hypothesis using the simplest form of interpersonal communication: the 
exchange of gazes among human subjects, including the subject looking at himself. 
Five different conditions have been used. The key comparisons are between the brain 
activity of a subject when he is looking at a different person and when he is looking at 
his own eyes. In other conditions, subjects are looking at an observer who is not 
looking, or they are looked at as they are not looking.  
A group of 29 subjects has been observed in an fMRI study. The results support the 
hypothesis of sympathy ax an information acquisition. For example, BA 44 is involved 
specifically when two subjects exchange gazes. Anterior Insula is activated when 
subjects are being looked at and are not looking. 

Supported by NSF

 

Sample Citation:

[Authors]. [Abstract Title]. Program No. XXX.XX. 2005 Neuroscience Meeting Planner. 
Washington, DC: Society for Neuroscience, 2005. Online. 

 

Copyright © 2005-2009 Society for Neuroscience; all rights reserved. Permission to 
republish any abstract or part of any abstract in any form must be obtained in writing 
by SfN office prior to publication. 

Society for Neuroscience | 1121 14th Street, Suite 1010 | Washington DC 20005 
Phone: (202) 962-4000. To reach the Society by e-mail submit a contact form. 

 

Page 1 of 2Society for Neuroscience | Abstract Archive: 2000-2005

14/12/2009http://www.sfn.org/index.cfm?pagename=abstracts_archive&task=view&controlID=7...



About SfN | Annual Meeting | Membership & Chapters | About Neuroscience | Publications | Professional Development | Education & 
Advocacy  

Join SfN | Directory | Online Store | Contact Us | News Room | Home  

 
Disclaimer 

 
Copyright © 2009 Society for Neuroscience 

 

Page 2 of 2Society for Neuroscience | Abstract Archive: 2000-2005

14/12/2009http://www.sfn.org/index.cfm?pagename=abstracts_archive&task=view&controlID=7...



BRAIN
A JOURNAL OF NEUROLOGY

Encoding of human action in Broca’s area
Patrik Fazio,1,2 Anna Cantagallo,2 Laila Craighero,1 Alessandro D’Ausilio,1 Alice C. Roy,3

Thierry Pozzo,4,5 Ferdinando Calzolari,2 Enrico Granieri2 and Luciano Fadiga1,5

1 DSBTA, Section of Human Physiology, University of Ferrara, Ferrara, Italy

2 Department of Neuroscience Rehabilitation, Hospital and University of Ferrara, Ferrara, Italy

3 Institute of Cognitive Science, CNRS, Lyon, France
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Broca’s area has been considered, for over a century, as the brain centre responsible for speech production. Modern neuroima-

ging and neuropsychological evidence have suggested a wider functional role is played by this area. In addition to the evidence

that it is involved in syntactical analysis, mathematical calculation and music processing, it has recently been shown that Broca’s

area may play some role in language comprehension and, more generally, in understanding actions of other individuals.

As shown by functional magnetic resonance imaging, Broca’s area is one of the cortical areas activated by hand/mouth

action observation and it has been proposed that it may form a crucial node of a human mirror-neuron system. If, on the

one hand, neuroimaging studies use a correlational approach which cannot offer a final proof for such claims, available

neuropsychological data fail to offer a conclusive demonstration for two main reasons: (i) they use tasks taxing both language

and action systems; and (ii) they rarely consider the possibility that Broca’s aphasics may also be affected by some form of

apraxia. We administered a novel action comprehension test—with almost no linguistic requirements—on selected frontal

aphasic patients lacking apraxic symptoms. Patients, as well as matched controls, were shown short movies of human actions

or of physical events. Their task consisted of ordering, in a temporal sequence, four pictures taken from each movie and

randomly presented on the computer screen. Patient’s performance showed a specific dissociation in their ability to re-order

pictures of human actions (impaired) with respect to physical events (spared). Our study provides a demonstration that frontal

aphasics, not affected by apraxia, are specifically impaired in their capability to correctly encode observed human actions.

Keywords: Broca’s area; action recognition; mirror-neuron system; frontal aphasia; motor syntax

Abbreviations: IFG = inferior frontal gyrus; LST = Language sequencing task; MRI = magnetic resonance imaging; RT = reaction
time; TT = trial time

Introduction
The seminal work of the French neurologist Paul Broca established

that the posterior part of the left inferior frontal gyrus (IFG) was of

critical importance for speech production. Broca’s famous case,

Leborgne, suffered from left frontal damage extending from the

inferior part of the third frontal circumvolution to parts of the

insula and the striatum (Broca, 1861; Dronkers et al., 2007).

Broca’s aphasia was thus described as a syndrome characterized

by effortful speech production, impairment in melodic line and
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articulation, semantic and phonemic paraphasias, telegraphic

sentences with reduced and abnormal grammatical forms (Broca,

1861; Alexander et al., 1990; Caplan et al., 1996).

The first empirical evidence that Broca’s area is involved in

speech production was provided by Penfield and Roberts (1959).

These authors demonstrated that the electrical stimulation of

Broca’s area in awake neurosurgery patients could evoke a

complete arrest of ongoing speech. The hot spot for this effect

was located in the pars opercularis of the IFG (see also Ojemann

et al., 1989). Moreover, Dronkers (1996) showed that a lesion

affecting the most posterior part of left IFG (involving insula as

well) lead to apraxia of speech (AOS). AOS deficit can be defined

as a disorder in the motor programming of the speech musculature

to produce the correct sound of words in the proper sequence

with the appropriate timing.

Recently, a more complex picture of the role played by Broca’s

area in the language domain has been given. Several studies

demonstrated that Broca’s aphasics, in addition to their deficits

in production, are also impaired in speech comprehension.

Deficits are more evident when patients were tested with verbal

material requiring syntactical understanding (Caramazza and Zurif,

1974; Alexander et al., 1990; Caplan et al., 1996). The role of

Broca’s area in understanding speech has been further supported

by the work by Schäffler and collaborators (1993, 1996) showing

that the electrical stimulation of Broca’s area in non-aphasic

neurosurgery patients may elicit comprehension deficits of

complex verbal commands.

Language-related studies aside, several recent works have found

activation of Broca’s area in other cognitive domains (for a review

see Fadiga et al., 2006) and, more interestingly as far as the

objectives of the present study are concerned, in action viewing,

action execution and action imitation (Grafton et al., 1996;

Binkofski et al., 1999; Iacoboni et al., 1999; Nishitani and Hari,

2000; Buccino et al., 2001; Grèzes and Decety 2001;

Baumgaertner et al., 2007). These data have been considered as

an empirical support to the existence of a mirror-like system in

humans, mapping execution and observation of actions onto the

same neural substrate (Rizzolatti and Craighero, 2004). However,

some concerns have been raised regarding the conclusions that

can be drawn from such techniques and experimental designs

(Dinstein et al., 2007; Turella et al., 2008). In fact, the use of a

correlational approach cannot provide a final proof of the involve-

ment of Broca’s area in the human mirror-neuron system.

A possible answer to the question whether Broca’s area could

be involved in action understanding might be provided both

by neuropsychological studies of brain lesioned patients and by

temporary inactivation of Broca’s area by transcranial magnetic

stimulation (TMS) during action-understanding tasks. Pobric and

colleagues (2006) administered TMS on the IFG while subjects had

to judge the weight of an object lifted by an actor. Their data

show a reduced accuracy in performing the task, in accordance

with the hypothesis that the IFG plays an important role in encod-

ing the details of action kinematics. Moreover, several studies on

frontal aphasic patients have shown a correlation between lesion

location and action-related non-verbal impairments such as recog-

nizing signs, gestures and pantomimes (Duffy and Duffy, 1975;

Gainotti and Lemmo, 1976; Daniloff et al., 1982; Varney, 1982;

Glosser et al., 1986; Wang and Goodglass, 1992; Bell, 1994).

More recently, Tranel et al. (2003), showed that left frontal

brain-damaged patients have difficulty in understanding action

details when presented with cards depicting various actions, and

Saygin et al. (2004) have demonstrated a significant correlation

between linguistic deficits and the comprehension of actions in

patients with different types of aphasia.

It should be noted, however, that although strongly suggestive

of a strict relationship between language- and action-related

domains, the results by Tranel (2003) and Saygin (2004) were

achieved through tasks including some linguistic components

(i.e. verbal instructions). Therefore, the reported deficits in the

action domain might have, at least partially, been altered by

uncontrolled linguistic processes. Furthermore, left fronto-parietal

lesions are often associated with praxic disturbances (Goldenberg,

1996). Both studies, unfortunately, did not control for such

possibilities, which could act as a critical confounding factor in

the light of the recent study by Pazzaglia et al. (2008), showing

that limb apraxic deficits are often associated to the impairment of

gesture comprehension.

As a consequence, on the basis of the current empirical knowl-

edge, a conclusive picture of the causal relationship between

Broca’s aphasia and action understanding deficits cannot be

drawn without doubts. In the present work, we selected frontal

aphasic patients (without apraxia) on the basis of lesion localiza-

tion. We then administered a newly designed task to measure

patient’s performance in action comprehension without taxing

the language system. Patients were requested to correctly

sequence some randomly mixed pictures taken from video clips

representing human actions or physical events. Our prediction was

that Broca’s aphasics would exhibit a dissociation in dealing with

these two classes of stimuli, thus providing the evidence that

Broca’s area, beside its linguistic function, is also involved in

encoding human actions.

Methods

Participants
Medical records of twenty patients from the community of Ferrara

(Department of Neuroscience, University and Hospital of Ferrara,

Unit of Neuropsychological Rehabilitation, Italy) were evaluated after

obtaining informed consent. Patients were selected if, at the time of

the enrolment into the hospital rehabilitation program, they presented

a vascular lesion in the territory of the left middle cerebral artery,

according to computerized tomography (CT) or magnetic resonance

imaging (MRI) data. All of them presented disorders of language

production with agrammatic speech (speech was laboured, choppy

and poorly articulated), but their comprehension of normal conver-

sation was well preserved. In addition to the testing for aphasia

(Ciurli et al., 1996; Capasso and Miceli, 2001; Token test: De Renzi

and Vignolo, 1962), patients were screened for the presence of

apraxia (De Renzi et al., 1966; De Renzi et al., 1980). Further exclu-

sion criteria included diagnosis or suspicion of dementia, head traumas,

brain tumours, multiple infarcts or other neurological conditions.

All patients had normal intelligence and had no difficulty in attending

to, perceiving or retrieving visual stimuli. According to the evaluation
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of their case history, 11 patients out of the initial 20 were considered

for further testing.

The further neuropsychological testing (see below) was aimed at

selecting patients with a high degree of cognitive functionality and

with normal praxic capabilities. Following this second-level, more

restrictive testing, the number of patients recruited for the final exper-

imental phase was reduced from eleven to six. The age of recruited

patients ranged from 27 to 61 (mean 51� 12.5 SD) and their average

level of education was 12� 4.7 years. Socio-demographic data and

lesion location, as assessed by the local neuroradiology unit, are

provided in Table 1. At the time of our investigation, these patients

presented a stable lesion due to cerebro-vascular accident, which had

occurred 3–6 years before the enrolment, and none of them had been

included in other studies. As a control group we selected six adult

participants matched for age, handedness and education level, with

no history of neurological or psychiatric disorders. All of them had

normal or corrected-to-normal vision and hearing. The control group

had a mean age of 50.2�13.1 and a mean educational level of

12.7� 4 years. The procedures used in the study were in agreement

with the guidelines of the University of Ferrara Ethical Committee

and with the Declaration of Helsinki.

Neuropsychological testing
Patients were tested by a skilled neurologist in a quiet room

reserved for experimental purposes, in the neuropsychological

rehabilitation unit. We collected a series of reduced versions of

standard neuropsychological questionnaires aimed at specifically and

rapidly testing a wider range of cognitive functions. This test was

administered both to the eleven patients and to the control subjects.

The main goal of this procedure was to select patients with a high

degree of cognitive functionality. The test included three main sec-

tions—one testing general abilities, the second concerning praxis and

the third related to the language domain. The first section included

items evaluating calculus, memory span and rhythm generation as well

as the general sense of direction (questions such as: ‘Where are we

now?’, ‘Why we are here?’, ‘What day of the week is today?’). The

praxic section had 29 items with a cut-off level of 18 correct

responses. The testing included: (i) imitation of distal intransitive

movements; (ii) imitation of intransitive movements of the mouth

area; (iii) imitation of transitive movements; (iv) execution of intransi-

tive sequence of movements upon verbal instruction; and (v) panto-

mime. The language section included 67 items with a cut-off level of

18 correct responses. The complete set included: (i) denomination of

visually presented natural and manufactured objects and tools; (ii) rep-

etition of words and pseudo-words following audio-visual and auditory

presentation; (iii) verbal fluency; and (iv) auditory comprehension test-

ing. This collection of tests was administered prior to the experimental

session and only six patients met the second enrolment criteria for

participating in the study. The whole experimental session was video-

taped for further offline analysis. We then visually inspected each

movie in order to exclude the presence of any sub-clinical apraxic

signs. Particular attention was devoted to the exclusion of deficits

regarding the temporal and spatial sequencing of an action or the

loss of object knowledge. This offline analysis was carried out by

two independent professional neuropsychologists. The outcome of

this additional evaluation confirmed previous examinations.

Lesion analysis
To anatomically characterize the brain lesion, all recruited patients

underwent an additional specific MRI session at the beginning of the

study. MRI images were acquired through three-dimensional-fast

spoiled gradient recalled (3D-FSPGR) T1-weighted sequence (TR

12.6 ms, TE 2.7 ms, TI 400 ms, FOV 250 mm�250 mm, thickness

0.6 mm, gap: 0.6 mm, 256�256 matrix, 250 slices). The graphical

outline of the lesions and the co-registration of individual brains in

standard stereotaxic space were performed offline using MRIcro

software (Rorden and Brett, 2000). We transformed each anatomical

image into a standard stereotaxic space using the co-registration

method (non-linear warping) provided by SPM 96. Brain lesions

were mapped in the MNI stereotaxic space using the standard MRI

volume redefined by Colin’s Atlas (Evans et al., 1993). After individual

co-registration, the lesioned areas of each patient were superimposed

onto each other by means of the specific tool provided by MRIcro

software. We thus obtained the region of superimposition common

to all the patients shown in red in Fig. 1A. The higher lesion overlap

of this region was centred in the pars opercularis of the IFG (BA44),

as shown by the probabilistic atlas of BA44 by Amunts et al. (1999)

(Fig. 1B and C).

Experimental design, materials and
procedure
Participants sat comfortably in front of a touch screen monitor

(MicroTouch M170, 3M Touch Systems, Inc.). They were informed

of the experimental procedure and completed a first practice trial

under the experimenter’s guidance. The experimental interface was

run on a PC using custom made software. All experimental events

and their relative timing were automatically recorded during each

trial and stored on the hard-disk for further offline analysis. Each

trial began with a message displayed on the computer screen inviting

the participant to press a key to start the trial. A videoclip was then

displayed on the screen and the participant was instructed to pay

attention to it. At the end of the videoclip, after a delay of

0.5 s with black screen, four images taken from the same video

were presented simultaneously at four different spatial locations

Table 1 Socio-demographic data and lesion location

Initials Gender Age Education Main lesions

DF M 53 8 Frontal (+IFG), temporal, parietal, insula + external capsule region.

FG M 51 17 Frontal (+IFG), temporal, insula + external capsule region and basal ganglia.

SC F 27 18 Frontal (+IFG), temporal, insula + external capsule region.

EC M 56 8 Frontal (+IFG), temporal, insula.

CC M 61 13 Frontal (+IFG), temporal, insula + external capsule region.

GF M 60 8 Frontal (+IFG), parietal, insula.

Age, gender and lesion locations of patients that fulfilled the experimental requirements.
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(upper left, upper right, lower left and lower right). At this point

subjects were asked to organize the four snapshots in a meaningful

temporal order, by touching the screen. As soon as two snapshots

were touched sequentially, their spatial location on the screen was

swapped. When participants considered they had accomplished the

trial, they had to press a validation button. All subjects were instructed

to be as accurate as possible and, only in the second instance, to

complete the task as fast as possible. The particular stress given to

accuracy was justified by the observation that some patients had more

difficulty when temporally pressed, also depending on the severity of

their clinical picture.

Participants were requested to constantly focus their attention on

the task and, after each trial, were asked whether they needed a rest.

Generic motivational feedback (e.g. ‘you are doing great so far’, ‘very

good’) was given as often as considered necessary to keep participants

engaged in the task (approximately once every trial). Feedback regard-

ing the accuracy of the performance (‘OK!’ or ‘Fail!’) was given on the

computer screen at the end of each trial. At the end of each trial,

subjects were also asked to explain what the video clip was about, to

verify that they could understand the global meaning of the stimuli.

The following variables were recorded: accuracy (degree of correct

sequencing), reaction time (RT) and trial time (TT). Accuracy measured

whether the order of the snapshots, generated by the subjects, was

correct or not (in percentage). RT was the amount of time elapsed

from presentation of the snapshots to the first touch of the screen.

TT was the amount of time between presentation of the snapshots

and pressing of the validation button.

Sequencing task

The same task was administered to both patients and controls. The

video clips were subdivided into two different classes: human actions

and physical events. Human actions stimuli were transitive and intran-

sitive actions performed by a human agent (e.g. hand-grasping of a

bottle, head-turning and pointing, etc.). Video clips of physical events

represented common life dynamic events, such as a bicycle falling on

the floor or a door opening by itself. Snapshots were selected for each

video clip by the experimenters, paying attention to provide enough

cues for the successive sequencing task (see Fig. 2 for a pictorial

description of the task).

Nineteen videos (Table 2), plus one used to familiarize the partici-

pants to the experimental procedure, were used during the experi-

ment. In order not to overload the patient’s attention, we restricted

the number of videos by unbalancing the number of stimuli of the two

categories (human actions: 14 and physical events: 5). This decision

was taken after a pilot experiment on 13 healthy subjects using a

larger set of 30 movies. We found that physical events, on average,

led to a smaller variability of the time necessary to accomplish the task

(i) and of the time to begin sequencing the four pictures (ii) [standard

deviation (SD) (i) 4.52 s; (ii) 4.02 s for human actions and (i) 2.29 s;

(ii) 1.68 s for physical events]. However, task difficulty could be better

described by absolute time values, rather than SD. In fact, SD indicates

how variable performance is across different subjects, whereas mean

values describe how difficult the task was in all subjects. Therefore, we

reduced the number of items in the least variable condition (physical

events) but selected those trials that, according to mean values, were

homogeneously spread across the difficulty continuum (Table 2).

Language sequencing task

Patients also underwent a second testing phase. Their task was similar

to that outlined previously, but the stimuli differed. The videoclips

were replaced with either written sentences (8) or single words (20).

Their task was to sequence four scrambled written segments taken

from the stimuli. Sentences were divided into simpler constituents

(i.e. Press/the button/to open/the door) and words into syllables

(i.e. Cam/mi/na/re: to walk).

Statistical analysis
A Mann–Whitney U-test was used to analyse the neuropsychological

data obtained from both patients and normal controls for each sub

test. The null hypothesis was that the two samples are drawn from a

single population, and therefore their performance is similar. Three

two-way repeated-measure ANOVAs were performed on RT, TT and

Accuracy, with a between-subjects factor GROUP (Aphasics, Controls)

and a within-subject factor CONDITION (human actions, physical

events). Fisher’s LSD post hoc comparisons were then conducted

when factors showed a significant effect. Furthermore, a linear

correlation analysis was run between patient performance in the

Figure 1 Anatomical location of patient’s lesions. (A) shows the overlays of the six patients lesions on the Colin’s template brain,

where different colours represent each patient, (B) shows the probabilistic extension of Broca’s area as identified by Amunts et al.

(1999), on the same horizontal slice and (C) shows the 3D rendering of the Colin’s standard brain with the overlap of lesions marked

with a red cross on the surface. Note that the overlap corresponds perfectly with the pars opercularis of the IFG (BA44).
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sequencing task and in the language sequencing task (LST). This

analysis served to measure whether there was a performance correla-

tion across the two tests. All the analyses were performed using

Statistica 6 (StatSoft, Inc.).

Results
The score in the neuropsychological test battery was on average

23.5 out of 29 items on the apraxia section with a SD of 2.88.

The controls obtained 28.5/29 and a SD of 0.55. The language

section showed a performance of 43.5 out of 67 with a SD of

15.1 for patients, while controls scored on average 64.67 out of

67 items and a SD of 1.63. Among all neuropsychological tests,

the denomination of tools, actions and tool use showed a signifi-

cantly worse performance in patients (U = 32.5, P50.05, U = 36,

P50.01 and U = 25.5, P = 0.24, respectively), whereas denomina-

tion of natural objects was not impaired (U = 25.5, P = 0.24).

Table 3 shows the performance of patients and controls on

these items of the neuropsychological questionnaire.

The ANOVA on RTs [main effect: CONDITION, F(1,5) = 1.675;

P = 0.25. GROUP: F(1,5) = 15.95; P = 0.01; Interaction

CONDITION�GROUP, F(1,5) = 0.026; P = 0.88] as well as the

ANOVA on TT [main effect: CONDITION, F(1,5) = 0.406;

P = 0.55. GROUP: F(1,5) = 24.665; P = 0.004; Interaction

CONDITION�GROUP, F(1,5) = 0.439; P = 0.54] showed a

significant effect for factor GROUP, indicating that patients were

generally slower than controls, independent of the experimental

manipulation (physical events or human actions). The speed of

performance (RT and TT) was not specifically influenced by the

experimental condition (human actions and physical events),

except for the fact that the healthy controls were consistently

faster than the patients. This speed bias can easily be accounted

for by the general increase in reaction times and in movement

times often observed in brain-lesioned patients (Benton, 1986).

More interestingly, ANOVA performed on Accuracy showed a

significant effect for the interaction GROUP�CONDITION

Figure 2 Experimental set-up and task. (A) The videoclip is presented on the screen, (B) Four snapshots are presented at the four

corners of the screen, (C) Example of physical events snapshots and (D) Example of Human Actions snapshots.

Human action encoding Brain 2009: Page 5 of 9 | 5



[F(1,5) = 12.594; P = 0.02], but no significant effect for factor

GROUP [F(1,5) = 4.314; P = 0.09] and CONDITION [F(1,5) =

0.0005; P = 0.98]. Post hoc comparisons showed that while the

control group performed equally well in the two experimental

conditions (correct response for human actions: 0.89� 0.04;

correct response for physical events 0.77� 0.06 SEM; P = NS),

aphasics’ performance showed a trend to significance (P = 0.05)

between human actions (0.64� 0.11) compared with physical

events (0.77� 0.10), and a highly significant difference with

respect to controls for the human action condition (P = 0.004)

(Fig. 3).

A further analysis was carried out on the intransitive versus

transitive human action trials. To this purpose, we separated

Table 2 Stimuli list

Stimuli RT TM TT

Touching the tip of one’s nose 2.133� 0.724 7.058� 5.125 9.191� 5.017

A bow 2.317� 1.354 4.683� 2.46 7� 2.9

Climbing a ladder to get a box 2.358� 0.643 7.767� 3.515 10.125� 3.908

A bicycle falling* 2.459� 0.525 4.017� 0.653 6.475� 0.918

Approaching a wall on all fours and touching it 2.484� 0.759 5.725� 1.75 8.208� 1.436

Plotter* 2.691� 1.21 4.267� 2.331 6.958� 2.536

Grabbing a bottle 2.767� 1.226 7.208� 3.008 9.975� 4.065

Turning one’s head and pointing 2.991� 1.431 5.467� 3.307 8.458� 3.413

Cutting a sheet of paper with a pair of scissors 3.208� 1.291 6.075� 1.872 9.283� 2.081

Opening a wardrobe by turning the key 3.392� 1.572 10.392� 7.347 13.783� 6.739

Opening a notebook and writing 3.508� 1.185 10.975� 6.818 14.483� 7.274

A remote controlled car against a wall* 3.667� 1.593 6.542� 1.52 10.208� 1.723

Getting over an obstacle 3.725� 1.346 6.258� 3.058 9.983� 3.128

Getting up from the ground 3.783� 2.137 7� 2.607 10.783� 4.322

A door closing* 3.95� 2.457 5.692� 1.69 9.642� 3.458

Taking off one’s glasses 3.975� 1.47 7.45� 5.832 11.425� 6.943

A ball rolling down an inclined plane* 4.1� 1.762 6.517� 2.203 10.617� 2.823

Wiping out a blackboard 4.133� 1.967 8.7� 5.328 12.833� 6.041

Opening a wallet and take out an ID 4.158� 2.233 5.933� 2.753 10.092� 4.455

List of 19 movies presented to both patients and matched controls. RT, TM, TT and relative SD for each stimulus, measured during the pilot experiment in 13 subjects,
are provided. Asterisks denote physical events stimuli.

Table 3 Neuropsychological testing performance for
action-related items

Denomination Objects Tools Tool uses Action

Patients

FG 3 1 0 0

GF 11 5 3 3

SC 12 7 4 6

CC 9 1 2 0

DF 10 4 0 2

EC 12 5 6 6

Mean 9.5/12 3.83/8 2.5/8 2.83/8

Control

AF 12 8 8 8

GB 12 7 8 8

VG 11 6 8 8

VV 12 8 8 8

ES 11 6 8 8

MT 11 6 8 8

Mean 11.5/12 6.83/8 8/8 8/8

Patient’s and matched control’s performance on denomination of objects,
actions, tools and tools use items present in the neuropsychological testing.
Performance between the two groups did differ significantly in all items but not
in the denomination of natural objects.

Figure 3 Accuracy results. Histograms depict the accuracy

ratio in aphasic patients (Aphasics) and normal subjects

(Controls) for both human actions (white bars) and physical

events (black bars) conditions. Whiskers indicate the standard

error of the mean. Asterisks denote statistically significant

differences (P50.05) in accuracy ratio between aphasics

and controls in the human action condition.
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patients’ and controls’ data into transitive (n = 8) and intransitive

trials (n = 6). As transitive video clips we defined hand–object

interactions (e.g. grasping a glass). The intransitive video clips

were those representing meaningful actions but without object

(e.g. turning the head and point). Paired t-tests showed that

patients were significantly impaired with respect to controls in

both transitive (P = 0.04) and intransitive trials (P = 0.001), without

any difference in performance between transitive and intransitive

trials (P = 0.37). Therefore, results cannot be due to the presence

of a human–object interaction, since a similar impairment was also

present for the intransitive human actions.

The language sequencing test showed a severe impairment for

patients in the verbal domain and low accuracy levels in reorga-

nizing scrambled sentences or syllables (LST, mean percentage of

correct responses � SEM: All LST: 53.15� 12.24; sentences:

52.08� 15.95; syllables: 53.64� 12.41), confirming their deficits

in the language domain. Moreover the correlation analysis

between the action- and language-sequencing test showed a sig-

nificant relation between performance in sequencing transitive,

human action video clips and all items of the language sequencing

test (r2 = 0.74; two-tailed P = 0.03). Conversely, performance in

the sequencing of intransitive actions and physical events was

not correlated with the language sequencing test (Intransitive

actions: r2 = 0.04; two-tailed P = NS; physical events: r2 = 0.15;

two-tailed P = NS).

Discussion
The present work shows that frontal aphasic patients, character-

ized by a lesion centred in the left pars opercularis of Broca’s

region and by the absence of apraxic symptoms, are specifically

impaired in sequencing pictures representing actions (transitive or

intransitive) performed by a human agent but not in sequencing

physical events. Additionally, their reduced ability to sequence

sentence segments and word syllables correlated with the impair-

ment in sequencing transitive actions. Although, it is still possible

that plastic processes and/or compensatory strategies might take

advantage from the right homologue region, patients did not

restore these specific abilities.

Why are these patients not able to solve the sequencing task for

human actions only? In our experiment, subjects were requested

to understand what they were observing in the video clip, and then

order single snapshots into a meaningful sequence. To do this,

we suppose the subjects had to represent (and replay) the rules

connecting critical information presented in the videos. The interpre-

tation we favour is that, to correctly sequence human actions, sub-

jects were implicitly mapping the observed actions onto their own

motor repertoire. In other words, the subjects had to gain access to

‘how’ a given action was composed in terms of simple units, and

harmonically (and pragmatically) restructure it through an

embodiment process. Conversely, in the case of physical

events, such an implicit and embodied motor representation

was unnecessary to solve the task. This interpretation is in line

with the finding that similar results were achieved in sequencing

both transitive and intransitive actions, and complement the idea

that the human-object interaction is not a necessary prerequisite

to activate the motor system during action observation (Fadiga

et al., 1995). More interestingly, patients’ performance in human

action sequencing was also correlated to their deficit in sequen-

cing words forming sentences and syllables forming words.

Moreover, they all had severe problems in naming tools and,

more importantly, tools’ uses. On the contrary, patients’ under-

standing of the global meaning of the observed actions was

mostly preserved if they were asked to explain what they had

seen.

Why should this capacity of representing action pragmatics be

encoded in Broca’s area? A large number of recent neuroimaging

and neurophysiological studies have shown that a reproducible

network of cortical areas, comprising Broca’s region, becomes

active during action observation (for a review see Rizzolatti

and Craighero, 2004; for a critical position on the possibility to

consider these activations as a proof of the existence of a human

mirror-neuron system see Turella et al., 2008).

This productive area of research has been motivated by previous

monkey studies describing similar mechanisms at a cellular level in

macaque premotor area F5 (di Pellegrino et al., 1992; Gallese

et al., 1996; Rizzolatti et al. 1996) and in the inferior parietal

lobule (Fogassi et al., 2005; Rozzi et al., 2008).

Frontal and parietal mirror neurons found in the macaque brain

fire when the monkey executes an action and also when it

observes the same action performed by someone else. It has

been suggested that mirror neurons may provide the brain with

an implicit knowledge about the meaning of actions because seen

actions are directly matched onto the observer’s motor repertoire.

Therefore, the finding that Broca’s area, the putative human

cytoarchitectonic homologue to monkey area F5 (Petrides and

Pandya, 1997; Petrides et al., 2005), becomes active during

action observation, strongly supports the hypothesis that it may

form a crucial node of the human mirror-neuron system. It could

be a wrong, or at least too simplistic a conclusion, to think that

Broca’s area and its monkey homologue share all their functional

properties. Indeed, evolution is characterized by an increase of

cytoarchitectonically diverse cortical areas. For this reason, the

functional properties of monkey area F5 might have been

distributed to different sectors of the human premotor cortex,

probably according to their degree of response complexity.

However, functional and anatomical evidence reinforce the

intriguing possibility that the goal-related action vocabulary

stored in monkey premotor cortex (Rizzolatti et al., 1988) and

the syntax-related properties of Broca’s area, might be evolutio-

narily linked. In our view the data presented by our work strength-

ens this link by providing, for the first time, clear evidence that

Broca’s aphasics show a significant impairment in representing

observed actions.

Actions, by definition, are hierarchical compositions of simpler

motor acts (Grafton and Hamilton, 2007) aiming at a goal. Thus,

action decoding via visual information may require the harmonic

composition of low level visual-kinematic features into a high level

representation of action-goals and therefore of agent’s intention.

The same intention can be conveyed by a set of movements with

quite a large degree of inter- and intra-subject variability, which

the system has to efficiently categorize as pertaining to the same

action. What remains constant and so critically useful, are the rules
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to compose such hierarchically lower units. We might consider this

set of rules as a sort of motor syntax, the knowledge of which is,

in our view, necessary to solve our sequencing task in the case of

human actions but not in that of physical events.

In agreement with our interpretation, Dominey et al. (2003) and

Sirigu et al. (1998) demonstrated that patients with lesions of

Broca’s area are impaired in learning the hierarchical/syntactic

structure of linguistic sequential tasks. Moreover, and more

recently, an event-related fMRI study succeeded in disentangling

hierarchical processes from temporally nested elements (Koechlin

and Jubault, 2006). These authors reported that Broca’s area,

and its right homologue, control selection and nesting of action

segments, integrated in hierarchical behavioural plans, regardless

of their temporal structure. Finally, Bahlmann et al. (2008) showed

that, when comparing the processing of hierarchical dependencies

to adjacent dependencies in an artificial language, significantly

higher activations were observed in Broca’s area and in the ventral

premotor cortex. These results indicate that Broca’s area may form

a node of a neural circuit responsible for processing hierarchical

structures in an artificial grammar context.

In our view, Broca’s area might have specialized in encoding

complex hierarchical structures of goal-directed actions, and

to eventually apply these pragmatic rules to more abstract

domains. Therefore, the language-related functions sub-served

by Broca’s region could be the most eloquent part of a more

general computational mechanism shared by multiple domains.

Such mechanisms could be imagined as a polymodal syntax

(Baumgaertner et al., 2007) endowed with the ability to organize

and comprehend hierarchically dependent elements into meaning-

ful verbal and non-verbal structures.

Conclusions
The present work sheds light on the functional role of Broca’s area

by providing evidence that, in the absence of apraxia, a lesion

affecting Broca’s area impairs the ability to sequence actions in a

task with no explicit linguistic requirements. Here, we propose that

the complex pattern of abilities associated with Broca’s area might

have evolved from its premotor function of assembling individual

motor acts into goal-directed actions. This capacity of dealing with

complex motor hierarchical structures could have evolved into

a polymodal syntax serving also higher cognitive functions

sharing with action some basic grammatical rules. Consequently,

we speculate that an ancient motor syntax might have

evolved into a ‘supramodal syntax’, at the basis of the ‘modern’

linguistic one.
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ABSTRACT 
 

Social and economic literature generally considers that the relevance of  property rights  in human 

interaction arises  from an explicit cognitive processes, which emerge with social competence.  In 

the present work we  aimed  at  investigating whether  the  arbitrary  allocation  of property  rights 

automatically affects individuals’ behavior, within a context with no visual and verbal interaction 

and removed from any perspective‐taking activity. To this purpose we submitted twelve pairs of 

participants to a simple motor coordination game while recording the electromyographic activity 

of the muscle mainly involved in the task. By using the answers to a questionnaire to measure the 

participants’  degree  of  sociability,    the  correlation  between muscle  involvement  and  prosocial 

attitude revealed that low prosocial individuals, only, significantly changed their motor behavior 

in response to a reallocation of property rights. Results are discussed in relation to the endowment 

effect,  a  puzzling  phenomenon  observed  in  actual  behavior,  that  had  challenged  the  traditional 

assumption of rationality in many behavioral models. 

 
 
 
 
 
 
 
 
 
 
 
 



  2

 
 
 
 
 
INTRODUCTION  
 
In actual societies the most part of collective welfare is generated through market transactions and 

social  services.  This  bulk  of  social  coordination  requires  a  common  set  of  shared  norms  to 

effectively  take  place,  essentially  property  rights  on  things  and  actions.  The main  focus  of  the 

present paper was to investigate if the effectiveness of property rights should be entirely ascribed 

to cognitive processes related to strategic or “perspective‐taking” considerations arising with social 

competence, or whether they constitute a set of behavioral devices able to automatically influence 

individual’s behavior.  

The role of property rights  in social  interaction have been extensively  investigated within 

the  experimental  economics  framework. A  conspicuous  amount  of  recent  research  has  focused 

attention to investigate the influence of antecedents on the perceived payoffs of others in strategic 

environments. Typically, the outcomes of a game under perfect anonymity are compared to those 

obtained in a two stages experimental design. In the first stage one (or both)  players accomplish a 

task by virtue of which  they acquire a “role”.  In  the second stage, subjects  interact strategically, 

knowing  nothing  of  each  other  except  for  the  role  gained  in  the  first  stage. Overall,  empirical 

findings support the view that the subjects’ behavior, and the distribution of payoffs, considerably 

reflect  the  “entitlements”  earned  by  participants.  For  example,  in  the  ‘dictator  game’  the  first 

player  (proposer)  has  to  divide  a  sum  between  herself  and  the  second  player  (receiver), who 

passively  receives  the  share  allocated  to  her.  In  this  context,  if  the  proposer  earned  some 

entitlement1  to  the  sum  assigned  to her,  the  frequency  of  zero  offers2  to  the  receiver  increases, 

while positive offers arise more frequently on the part of the proposer if the receiver gained some 

“role” (Hoffman et al. ;1992, Oxoby and Spraggon; 2008, Cherry; 2002).   The ‘ultimatum game‘ is a 

strategic version of the dictator, widely employed  in this  literature, where the receiver can either 

accept or refuse the offer. If the receiver accepts, the stake is split according to the proposal. If she 

rejects, neither player get anything. In this setting, if the receiver earned a legitimate role, she gets 

larger shares of money  from  the  first mover  (Ruffle; 1998, Cherry; 2001).   Overall,  this  literature 

                                                      
1 Entitlement may be gained by scoring high on a general knowledge quiz (Hoffman et al.; 1992; Hoffman et al.; 1996, Cherry; 2002) or 
even by cracking a sufficient amount of walnuts (Fahr and Irlenbush; 2000). 
2 A zero offer corresponds to the standard selfishness-rationality prediction. 
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shows  that having obtained a  role by  the accomplishment of a  specific  task,    subjects appear  to 

consider that one has a right to outcomes, which in other circumstances may be regarded as unjust. 

This body of evidence has led to support the interpretation that the perception of legitimate property 

rights on the part of individuals constitutes an important element influencing social interaction. 

However, the experimental designs by which these results are obtained, make it difficult to asses 

the  relevance  of  the  subjective  perception  of  property  rights  clearly  distinguished  from  the 

legitimation  sources  of  such  entitlements.  Indeed,  the  acquisition  of  a  role  seems  to  condition 

actual behavior of participants through the modulation of other emotional and/or strategic aspects 

relevant  to  the  decision  process.  For  example,  in  the  dictator  game  the  asymmetry    in  the 

perception of  the “other”  introduced by  the distribution of “roles” might affect  the participants’ 

sense of equity, or, in the ultimatum context, it might influence the strategic assessment of the risk 

of  rejection.  In  this  respect,  the  experimental  setup  designed  by  this  research  neglects  the 

possibility that the subjective perception of “property rights” might represent a distinct dimension 

along which social interaction takes place. 

With respect to this approach, the main focus of our experiment was to verify whether the formal 

entitlements of property rights, regardless of any legitimating activity undertaken by participants, 

play a significant role within a context where interaction between individuals does not involve any 

explicit  process  related  to  emotional  cues  and/or  to  strategic  or  “perspective‐taking”  

considerations.  Furthermore,  we  wanted  to  investigate  if  the  allocation  of  property  right 

automatically  influence  individual’s behavior at a very  low  level, such as the  intensity of muscle 

involvement during  the execution of hand actions. To  this purpose,  twelve pairs of participants, 

prevented  from  any visual  or verbal  exchange, were  submitted  to  a  simple motor  coordination 

task.  Each couple had to cooperatively hold a small sphere between their right index fingers and 

to drop it alternately into one of two containers placed below their hands, while electromyography 

of  the right  first dorsal  interosseus  (FDI) muscle of each participant was recorded. Each successful 

trial was  differently  rewarded with  a  given  amount  of money  according  to  the  experimental 

condition,  and  the  rewarding  rules  were  communicated  before  starting  each  session. 

Consequently,  for  the  same  action  (e.g.,  pushing  the  ball  into  the  leftside  container)  each 

participant could receive a reward  in one session but not  in another. The  total monetary reward 

gained  by  each  subject  in  each  condition was  always  the  same.  Finally, we  correlated muscle 

involvement  to  the  scores  obtained  in  a  social  attitude  questionnaire  to  verify  if  the  degree  of 

prosocial propensity covertly modulates motor behavior. 



  4

 
 
 METHODS 

 
Subjects.  Twenty‐four  female  participants  were  recruited  among  students  of  the  Law 

Department of the University of Ferrara (mean age 26 +/‐ 3). All of them were naïve to the purpose 

of the experiment, were right‐handed according to the Oldfield questionnaire (Oldfield, 1971) and 

gave  their  informed  consent.  They  were  divided  into  two  subgroups  (the  “Green”  and  the 

“Yellow” group) of 12 participants, and kept in separate rooms after their arrival at the lab. Twelve 

pairs of subjects were then formed by extracting randomly one partner from each subgroup. Each 

pair, composed by one Green and one Yellow subject, was submitted  to an experimental session 

lasting approximately 30 minutes. 

 

Questionnaire.  In  the  first stage of  the experiment  the subjects were asked  to answer a written 

questionnaire  based  on  Putnam’s  Social  Capital  Benchmark  Survey 

(http://www.hks.harvard.edu/saguaro/communitysurvey/index.html). Following Bobo et al. (1995) 

we  employed  the  answers  provided  by  subjects  to  build  several  indexes  aimed  at measuring 

individual prosocial/proself attitude (see the Appendix for details). 

 

Coordination  game Before  entering  the  lab  room,  subjects  have  been  invited  to  remove  rings, 

bracelets, nail  enamel, or other kind of decoration,  that  could have made  them  recognizable by 

other  subjects. At  the beginning of  the experiment,  two  subjects  entered  the experimental  room 

from  two different doors,  standing  one  in  front  of  the  other,  their  face  and  trunk  hidden  by  a 

curtain. Thus, during the experimental session subjects never saw each other. Moreover, they were 

strictly recommended not to speak to exclude any possible recognition based on subject’s voice.  

Subjects were  requested  to pose  their  forearms  on  a Plexiglas  surface with  a  square  hole  in 

correspondence  of  their  hands.  Below  the  Plexiglas  was  set  an  apparatus  constituted  by  two 

adjacent containers of equal size, with the partition side aligned with participants’ sagittal plane. 

At  the  beginning  of  each  trial  a  small  glass  sphere  (1  cm  diameter) was  placed  between  the 

extended  right  index  fingers  of  the  two  subjects,  and  subjects were  requested  to  stay  on  this 

position  (starting position) until  the go‐signal.  In  this position  the  sphere was exactly above  the 

border  between  the  two  containers.  Subjects’  index  fingers were dressed with  a  soft  sponge  to 
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avoid  flexion  in  the  course  of  the  play,  and  to  increase  the  attrition  surface  to  better  keep  the 

sphere in the proper position. 

Each pair of subjects was asked  to play 30  trials of a simple motor ability game. The 30  trials 

were subdivided into three experimental conditions (C1, C2 and C3) of ten trials each, blocked into 

three  experimental  sessions,  the  presentation  of which was  pseudo‐randomly  balanced  across 

pairs. At every trial subjects followed the instruction given by the experimenter indicating to drop 

the  sphere  alternately  into  the  two  containers.  The  difference  among  conditions  C1,  C2  and  C3.  

consisted  in  the monetary  incentive  associated  to  each  trial  successfully performed  by  subjects. 

Specifically,  in condition 1, putting  the sphere  into either  target container yielded a  reward of € 

0.50  to  each  subject  (Figure  1A).    In Condition  2  and  3,  two  colored  sheets, one green  and one 

yellow, were placed onto the floor of each container, defining the Green and the Yellow container. 

The allocation of rewards coupled containers and subjects of the same color. When the sphere was 

successfully dropped  into  the  target  container  a  €  1  reward was  received by  the  correspondent 

colored subject only. In Condition 2, the Green (Yellow) container was placed at the left side of the 

Green (Yellow) subject: the winning subject had to execute an index finger abduction (contraction 

of the FDI muscle) to push the sphere towards the container (Figure 1B). In Condition 3, the colors 

of containers were reversed, so that the Green (Yellow) container was placed at the right side of the 

Green (Yellow) subject: the winning subject had to execute an index finger adduction (FDI muscle 

not  involved)  to  “pull”  the  sphere  towards  the  container  (Figure  1C). The  total money  reward 

gained by each subject was € 5 in each condition (€ 15 total). 
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Figure  1.  Schematic  view  of  the  experimental  apparatus  used  in  the  three  experimental  conditions. 
Subjects’ hands laid on a Plexiglas plate with the two index fingers positioned in correspondence of a square 
hole (the rectangle shown in the figure). Under the Plexiglas plate, at a distance of 10 cm from it, there were 
two containers  (the  two grey areas shown  in panel A) where  the subjects had  to drop  the sphere held by 
their  index  fingers  according  to  the  specific  instructions  provided  for  each  experimental  conditions. The 
moment at which  the sphere  touched  the  floor of  the container was detected by a  load cell. The monetary 
incentives associated to the three experimental conditions were the following: Condition 1 (A): each subject 
(Yellow and Green) get € 0.50 at any trial. Condition 2: the Yellow (Green) subject is coupled with the Yellow 
(Green) container; the pushing subject gets € 1 while the pulling one gets zero. Condition 3: the container are 
reversed; the pushing subject gets zero and the pulling one gets € 1. Ten trial for each condition. Each subject 
received € 5x3 = € 15. 
 
Electromyographic  potentials  (EMG)  were  recorded  from  right  first  dorsal  interosseus  (FDI) 

muscle by using Ag‐AgCl surface electrodes (diameter 6 mm) glued to the subjectsʹ skin according 

to  a  tendon‐belly  configuration. After  online  rectification  and  integration  (time  constant  0.05  s) 

EMG signal was continuously recorded during the experiment and fed to a personal computer for 

the successive analysis. The acquisition software sampled the EMG signal recorded from the two 

subjects at 25 Hz. The  instant at which  the ball  touched  the bottom of  the  target  container was 

detected by means of a load cell supporting the container itself. The load cell signal, appropriately 

amplified, was  continuously  acquired  during  the  experiment  by  the  same  acquisition  software 

used for EMG recordings (at the same sampling frequency). 

 
DATA ANALYSIS AND RESULTS 
 

  

00..5500  €€  
0.50 € 

00..5500  €€  
0.50 € 

 

11  €€    
0 €   

00  €€    
1 €   

00  €€    
1 €   

11  €€    
0 €   

(A) (C) (B) 
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As Table 1  shows, subjects were able  to coordinate almost perfectly  in all  three experimental 

conditions, with only a negligible proportion of  inefficient outcomes (2.7% of total observations), 

uniformly distributed across conditions. 

 

 

Condition  Green wins  Yellow wins Inefficient 
outcomes 

Total 
(12 pairs x 10 trials)

1  58  58  4  120 
2  59  58  3  120 
3  59  58  3  120 
Total  176  174  10  360 

 

Table 1. Outcomes of the game for each condition 

 
Figure 2 depicts the typical EMG traces recorded from both subjects’ FDI muscles (blue and red 

traces) and the signal recorded from the load cell, detecting the instant at which the sphere, after 

its releasing, touches the floor of the container (black trace), during condition 1 (A) and 3 (B).  

 

 

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1  4  8  12  16 20 24 s
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Figure  2. Typical  first  dorsal  interosseus  electromyography  rectified,  integrated  (time  constant,  0.05  s)  and 
intra‐subject  normalized  (z‐scores),  as  recorded  from  two  subjects  (red  and  blue  traces)  during  the 
interaction game. Panel A, Condition 1; panel B, Condition 3. The signal recorded from the load cell is shown 
in black and  indicates  the ten times the glass sphere fell  into the container, signaling the end of each trial. 
The figure depicts ten subsequent trials (sampling frequency, 25 Hz). Abscissas, seconds; ordinates, arbitrary 
normalization units (see text). 
 

As  it  appears  from  Figure  2,  at  the  beginning  of  each  trial  there  is  an  increase  of  both 

subjects’ EMG determined by the  involvement of subjects’  index fingers  in maintaining the glass 

sphere  in  the  starting position. After  the go‐signal  (not  indicated  in  the  figure), one of  the  two 

subjects starts to exert a phasic effort to push the sphere into the assigned container, as revealed by 

a clear peak, slightly anticipating the load cell signal. While in panel A the blue and the red peaks 

clearly alternate, in panel B the trend is less clear, showing some degree of superimposition of the 

two traces during some of the trials. Note that in both conditions the instructions were exactly the 

same: “Place the sphere into the target container”. The only difference between the two conditions 

concerned the monetary reward. In Condition 1, each member of the pair was winning at any trial, 

while in Condition 3, each member of the pair was winning only when the target container was the 

one at her right side, requiring the pulling of the sphere towards the container requiring an index 

finger adduction (FDI muscle not involved). 

This  qualitative  difference  between  conditions  is  quantitatively  shown  in  Figure  3, 

depicting  the average values of FDI muscle EMG, recorded  from each subject while pushing  the 

sphere into the target container placed at her left side in the three experimental conditions. EMG 

data,  after  normalization, were  averaged  subject  by  subject  (n=24)  by  pooling  the  last  12  trials 

before the signal recorded from the load cell. 

0 

0,2 

0,4 

0,6 

0,8 

1 
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(B) 
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Figure  4.  Mean  values  of  EMG  signals  recorded  from  the  FDI  muscle  for  all  subjects  in  the  three 
experimental conditions, when pushing the sphere into the target container placed at her left side. Whiskers 
above  each  histogram  depict  the  standard  error  of mean.  Ordinates:  z‐score  of  EMG  signals.  Asterisks 
indicate  the presence of  a  significant difference between  conditions  (*, difference  from Condition 1;  **,*** 
difference from Conditions 2 and 3, respectively). 
 

An  Analysis  of  Variance  (ANOVA)  was  performed  on  the  data  with  Experimental 

Condition  as  three  levels  within‐subjects  factor.  Results  showed  that  the  factor  Experimental 

Condition was  statistically  significant  (F(2,46)=4.48,  p<0.017). Post‐hoc  analysis  (Newman‐Keuls) 

revealed that Condition 1 was significantly (p<0.05) different from Conditions 2 and 3. This result 

means that the muscle activity is stronger in Condition 1 than in Conditions 2 and 3. However, as 

indicated in Table 1, the game outcome does not reflect this difference, and subjects, interviewed at 

the end of the experiment, never reported the voluntary use of different strategies in the different 

conditions. 

 

Questionnaire 

One of the aims of the present work was to verify if the degree of prosocial propensity modulates 

muscle  involvement of the pushing subjects,  in response to different monetary  incentives among 

conditions. Using the questionnaire’s answers, we built up three indicators (SC1, SC2, SC3) to sort 

subjects according to their attitude to coordinate and cooperate for mutual benefit (see Appendix 

**
***

*
*
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for  details).  For  each  of  these  indicators  subjects  have  been  divided  into  two  subgroups with 

respect  to  the  index‐related  median  score,  defining  the  high‐  (H=above  median)  and  the 

lowprosocial (L=below median) group of subjects. 

 

Regression Behavioural Model.  

To process the information gathered through the questionnaire and to control for the robustness of 

the results obtained with the ANOVA, we developed a regression behavioral model. Our data set 

is distributed along  four  relevant dimensions:  time,  trials, subjects and conditions. The potential 

information  of  this  stock  of  data  is  not  fully  exploited  by  standard  analysis  of  variance,  since 

ANOVA  does  not  control  for many  potential  sources  of  variability,  such  as  the muscle  effort 

exerted  by  subject’s  couplemate,  or  individual  fixed  effects.  Therefore,  we  considered  the 

following dynamic multiple regression model 

 

,3322210 itiititnjtnitit XCCEMGEMGEMG εηγββααα +++++++= −−        (1) 

 

The  dependent variable  itEMG  is subject i’s EMG signal at time t, when involved in pushing the 

sphere  towards  the  target  container.  The  righthand  side  of  the  equation  models  the  set  of 

explanatory variables. Specifically,  nitEMG −   is  the  lagged EMG of  subject  i  and  njtEMG −   is  the 

lagged EMG of subject j (couplemate of subject i). To perform successfully the task it is required a 

continuous  exchange  of  information  between  subjects,  by  the  pressure  exerted  by  their  index 

fingers. The  nitEMG −  variables reflect the  intention of subject  i to push the sphere  into the target 

container.  At  the  same  time,  since  the  task  requires  the  collaboration  of  subject  j,  the  lagged 

njtEMG − take  into  account  that  subject  i’s  effort  depends  on  the  opposition  force  exerted  by 

subject’s  j  finger.  Thus,  the  dynamic  part  of  the  regression  model  represents  the  motor 

communication  between  subjects  i  and  j.  Other  factors  that might  have  influenced  the motor 

behavior  of  subjects  could  have  been determined  by  strain  or  stress  and  learning‐by‐doing. To 

account  for  these  factors, we  introduced  in vector itX   the  time  length of  trials and  the  sequence 

order of trials over the entire experiment. The reason of our choice is that lengthy trials may have 

been more expensive in terms of attention, thus affecting the effort spent by subjects. Furthermore, 

subjects’ effort might have been differently modulated over the course of the experiment, due to a 

better knowledge of her couplemate and/or to the improvement in their motor ability. Several non 
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observable  characters  of  subjects    (such  that  religion,  education,  family  conditions  etc..)  may  

influence  the dependent variable. The  term  iη   represents  a vector  of  individual dummies,  that 

control  the  regression model  for  this  individuals’  heterogeneity.  Finally,  2C   and  3C   are  two 

dummies for condition 2 and 3 respectively, controlling for experimental conditions instructions. 

The  time horizon of  the  regression considered 12 observations before  the maximum EMG  level, 

included.  Lags in regressors  nitEMG −  and  njtEMG −  have been set at 2 and 5 time periods (n=2, 5). 

This accounts for a period of time ranging from 80 ms (2 * 40 ms, being the sampling frequency 25 

Hz)  to 200 ms (5 * 40 ms). This choice was based on  the observation  that when a perturbation  is 

applied  during  a  precision  grip  a  latency  of  60‐80 ms  is  required  to  increase  the  grip  force  to 

restore  an  adequate  safety margin,  preventing  frictional  slips  (Eliasson  et  al.,  1995).  Thus, we 

defined this time range in order to include the minimal reaction time to a change in the load force 

applied  by  subject  j,  plus  a  possible delay determined  by  the  fact  that  the  grasping  requires  a 

coordination between two subjects and not only between two fingers of the same hand.   

 

Regression Results.  

The relevant estimation results are presented in table (2) below. The first column (POOL) reports 

the  estimation  results  for  the  entire  set  of  subjects  (24).  The  other  six  columns  provide  results 

relative  to  each  high/low  prosocial  sub‐groups  according  to  indicators  SC1,  SC2  and  SC3.  In 

particular, HSCz  and LSCz (z=1, 2, 3)  refer to High and Low prosocial individuals, respectively. 

 

   POOL  HSC1  LSC1  HSC2  LSC2  HSC3  LSC3 

5−itEMG   0.1121  0.1439  0.0838  0.1840  0.0567  0.1560  0.0924 

  (4.59)***  (4.22)***  (2.32)**  (5.78)*** (1.56)  (4.72)*** (2.46)** 

2−itEMG   0.2898  0.2918  0.2634  0.2634  0.2724  0.2294  0.3233 

  (12.69)***  (8.49)***  (8.78)***  (7.67)*** (8.76)*** (6.73)*** (10.54)***

5−jtEMG   0.0898  0.0405  0.1421  0.0473  0.1552  0.0615  0.1196 

  (3.82)***  (1.38)  (3.79)***  (1.64)  (4.06)*** (2.11)**  (3.07)*** 

2−jtEMG   0.0330  0.1153  ‐0.0451  0.0748  ‐0.0073  0.0474  0.0281 

  (1.41)  (3.61)***  (1.38)  (2.46)**  (0.21)  (1.61)  (0.75) 

2C   ‐0.0041  ‐0.0095  0.0003  ‐0.0098  0.0040  ‐0.0079  0.0015 
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  (0.40)  (0.70)  (0.02)  (0.72)  (0.27)  (0.59)  (0.10) 

3C   ‐0.0244  0.0156  ‐0.0630  0.0105  ‐0.0535  ‐0.0093  ‐0.0389 

  (2.44)**  (1.10)  (4.49)***  (0.73)  (3.82)*** (0.67)  (2.72)*** 

Constant  0.1044  0.0867  0.1322  0.1319  0.1092  0.1748  0.0632 

  (4.46)***  (2.66)***  (0.3.89)***  (3.71)*** (2.80)*** (4.56)*** (2.05)** 

Observations  1755  855  870  885  870  880  875 

R‐squared  0.3955  0.4774  0.3455  0.4276  0.4121  0.4472  0.3665 

Robust t statistics in parentheses             

* significant at 10%; ** significant at 5%; *** significant at 1%         

 

 

Table  2:  Ordinary  Least  Square  Regressions  keeping  12  observations  before  the maximum  EMG  level, 
included. Normalization over the entire data set. 
 

Overall, coefficients of lagged variables are positive and significant, suggesting that each couple of 

subjects successfully tried to coordinate their index fingers as a pair of agonists. However, looking 

at  the magnitude  of  coefficients  for  different  groups  of  subjects  substantial  differences  emerge 

between high‐prosocial and low‐prosocial individuals. In particular, the following results appear 

R1)   LHLH ,
5,1

,
2,1 −− > αα  

R2)  LH
2,12,1 −− ≈ αα  ,  LH

5,15,1 −− > αα  

R3)  HH
5,22,2 −− > αα ,  LL

5,22,2 −− < αα  ( LH
2,22,2 −− > αα ,  LH

5,25,2 −− < αα ) 

where  LH
n
,

,1 −α   and  LH
n

,
,2 −α   (n=2,  5)  refer  to  coefficients  of  regressors  nitEMG −   and  njtEMG −  

respectively, while H and L apexes stay for high‐prosocial and low‐prosocial subjects. 

For  both  H  and  L  the  autoregressive  component  of  the  regression  model  (the  lagged 

nitEMG −  variables) shows that the current effort  itEMG  of subject i is positively linked to her own 

past efforts,  and that the magnitude of the coefficients decreases the farther‐off are the lags (result 

R1). This  is consistent with  figure  (3), which shows  that  intensity of muscles effort progressively 

increases, and reaches its peak at the instant at which the sphere is dropped. However, result R2 

reveals that the EMG recording  of H subjects display a smoother time profile than that of L’s.  

Result R3 describes how the current reaction of subject i  depends on past motor behavior 

of subject j. Overall, estimated coefficients are significantly non negative. However, looking at the 
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size of coefficients  it emerges a striking difference between H and L  individuals. Current muscle 

effort  of  high‐prosocial  subjects  is  influenced  mainly  by  the  more  recent  behavior  of  their 

couplemates, while muscle effort of  low‐prosocial subjects depends only on  their own behavior. 

Considering high‐prosocial  subjects,  the  estimated  coefficients  on  5−jtEMG   are not  significantly 

different from zero in two of the three regressions (HSC1 and HSC2) and significant at the 5% level 

but  close  to  zero  in  the HSC3  case. On  the  contrary,  coefficients  on  2−jtEMG   are  positive  and 

significant in HSC1 and HSC2   and not significant in HSC3. Exactly the reverse pattern occurs with 

low‐prosocial  subjects:  coefficients  on  5−jtEMG   are  significant  at  a  1%  level,  while  those  on 

2−jtEMG  are not significant in all cases (LSC1, LSC2 and LSC3). 

To  suggest  an  interpretation  for  this  result,  one may  consider  as  a  benchmark  case  of 

perfect coordination two fingers of a single hand grasping an object to the purpose of dropping it 

somewhere.  In  this case  the applied grip  force  is synchronically balanced  to optimize  the motor 

behavior,  and  therefore  the  pressure  exerted  by  finger  i  is  instantaneously matched with  the 

pressure  of  finger  j.  In  statistical  terms,  perfect  synchronicity would  be  revealed  by  a  lack  of 

significant correlation between current effort of finger i and past efforts of finger j. In light of these 

considerations,  the  estimated  coefficients  on  njtEMG − ’s    shows  that  on  average  high‐prosocial 

subjects have been able  to coordinate more efficiently with  their couplemates  than  low‐prosocial 

subjects.  

Finally,  the  estimated  coefficients  on  dummies  2C   and  3C   confirm  the  main  results 

obtained with the ANOVA procedure, indicating that on average subjects exerted a lower pushing 

effort in condition 3 than in condition 1. Only the estimated coefficient of  3C  is negative (‐0.0244) 

and  5%  significant  (t=2.44).  However,  once  we  distinguish  between  high‐prosocial  and  low‐

prosocial subjects, the estimated coefficients of  3C  is negative and significant at a 1% level in the 

low‐prosocial subsample, only. This pattern arises whatever index of social capital is used. 

 

DISCUSSION 

 

A  conspicuous  body  of  experimental  economics  literature  has  shown  that  the  allocation  of 

legitimate property rights significantly affect  the strategic behavior of  individuals  (Hoffman and 

Spitzer, 1985; Hoffman et al, 1994, 1996; Ruffle, 1998; Cherry, 2001; Cherry et al, 2002; Oxoby and 

Spraggon, 2008).  Indeed,  individuals often  interact, by simply committing  themselves  to a set of 
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shared  social norms, basically  concerned with a broad view of property  rights,  that  include not 

only specific entitlements on things but also on actions3.  In this respect, property rights provide an 

efficient device to prompt cooperation among individuals, avoiding costly mind‐reading activity. 

In the light of these considerations, we set up an experimental framework, aimed at investigating 

the effects of  formal property rights,   not supported by  the  legitimation of a specific  task,   when 

interaction  is  removed  from any complex perspective‐taking activity. Specifically, we performed 

an experiment with pairs of subjects, prevented from any visual or verbal exchange, engaged in a 

pure motor coordination game divided in three conditions, perfectly identical both from the point 

of view of the motor task and from that of the monetary stake. Each couple of subjects was asked 

to hold a small sphere between their right index fingers and to alternately drop it into one of two 

containers placed  below  their hands, while  electromyography  of participants’  right  FDI muscle 

was recorded. This muscle has  the  function  to abduct  the  index  finger,  that  is  to draw  the  index 

finger away  from  the middle  finger. Thus,  it  is  the muscle more  involved  in pushing  the sphere 

towards the leftmost container, while it remains relaxed when the participant is asked to place the 

sphere into the rightmost container by exerting a finger adduction. Our aim was to compare FDI 

muscle activity when participants were asked to push the sphere into the leftmost container under 

different rewarding schemes.  In Condition 1  the completion of each  trial entailed an equal prize 

assigned to both subjects, in Condition 2 only the subject who had pushed the sphere towards the 

leftmost container obtained  the prize. Therefore, FDI muscle  involvement  in pushing  the sphere 

was coupled with a monetary reward. Thus, in conditions 1 and 2 the rules of the game formally 

entitled  pushing  subjects  to  get  a  reward  at  every  trial.  In  condition  3  the  reward was  given 

entirely  to  the  pulling  subject.  Thus,  FDI muscle  involvement  in  pushing  the  sphere was  not 

coupled with any monetary reward.  

Subjects were  able  to  coordinate  almost perfectly  across  conditions  1,  2  and  3  (see Table  1). 

Thus, from a distributional point of view it does not emerge any difference in behavior associated 

with  the  different  incentive  protocols. However,  substantial  differences  arose  from  EMG  data 

processing, revealing not only that muscle involvement in executing the same motor act is affected 

by the allocation of formal property rights, but also that the modulation of the effort is correlated 

with the degree of prosocial propensity of subjects. To measure the social attitude of participants 

we used the answers to the questionnaire taken from Putnam’s Social Capital Benchmark Survey to 

                                                      
3 In this latter sense a property right defines a specific social role.  
 



  15

construct  three  indexes  of  social  capital,  that we  used  to  split  the  sample  of  subjects  into  high‐

prosocial and low‐prosocial individuals. With respect to these two groups of individuals our main 

result  was  that  high‐prosocial  subjects  performed  the  task  without  any  significant  difference 

among  conditions, while  low‐prosocial  subjects exerted a  significant  lower effort  in Condition 3 

than in Condition 1.  

When a small object is gripped between the tips of the index finger and thumb and held stationary 

in  space,  the  applied  grip  force  is  synchronically  balanced  to  optimize  the motor  behavior.    In 

addition,  the control of the grip force is automatically influenced by the weight of the object (load 

force) and by a safety margin factor related to the individual subject (Westling et al. 1984,  Edin et 

al., 1995). This is fundamental to avoid the accidental drop of the object. If we consider that the two 

index fingers of a pair of subjects act on the sphere as a pair of agonists, we can assume that the 

major effort exerted by low‐prosocial individuals reflects a higher level of the safety margin factor. 

Our  results  suggest  that  the  reallocation  of  property  right  from  the  ‘pushing’  to  the  ‘pulling’ 

subject  modulated  the  safety  margin  factor  in  low‐prosocial  individuals,  only.  A  likely 

interpretation of  this effect  is  that  low‐prosocials differently evaluated  the successful outcome of 

the pushing action  in response to the reallocation of property right to the pulling subject. On the 

contrary, since the safety margin set by high prosocials did not change across conditions, we argue 

that their motor behavior did not react to changes in the distribution of property rights.  

We believe  that  these  results  find place within  the debate  concerning    the  endowment  effect. The 

endowment effect describes the tendency of individuals to value a good they possess more highly 

that the same good they do not possess. In other words the mere ownership of something causes to 

increase the subjective value attributed to it. A huge amount of evidence supports the relevance of 

this effect in actual behavior (Tversky and Kahnemann; 1981, Kahneman et al., 1990, 1991;  Thaler; 

1992, Plott and Zeile, 2003) and, recently, this phenomenon has been reported even in animals such 

as chimpanzees  (Brosnan et al. 2007).   The presence of  the endowment effect has questioned  the 

traditional assumption of rationality at the basis of behavioral models in economics and law. More 

specifically,  if  the  influence of a subjective sense of ownership  induces people  to evaluate goods 

and  rights  irrationally,  then  the  standard  prediction  of  the Coase  Theorem  fails.  This  theorem 

claims  that  if  transaction  costs  are  sufficiently  low,  private  bargaining will  lead  to  an  efficient 

outcome regardless of  the  initial allocation of property rights. The  importance of  this  theorem  is 

not related to market activity only, but it applies to any conflict may arise in social interaction.  



  16

   Although  the endowment effect  is considered one of  the most robust phenomenon  in  the 

emerging  field  of  behavioral  economics,  it  is  recognized  to  be  quit  changeable,  appearing  and 

disappearing with different degrees of  intensity depending on  the context  (Brown and Gregory; 

1999,  Sayman and Öncüler; 2005). Thus, as pointed out by Jones and Brosnan (2008), to investigate 

deeply  the  nature  of  this  phenomenon,  a    primary  goal  in  the  research  agenda  should  be  the 

identification of those factors that may help to predict its appearance. We think that the evidence 

reported in our paper provides insight in this direction. In particular, our results suggest that the 

prosocial attitude might be one factor influencing the emerging of the endowment effect.  

The behavior of high‐prosocial individuals, revealing that the allocation of property rights 

doesn’t modulate  their muscle activity, seems  to agree with  the rationality principle assumed by 

the Coase  Theorem. On  the  other  side,  the  result  showing  that  low‐prosocial  individuals  exert 

different muscle  effort  according  to  the  ownership  of  the  reward,  can  be  considered  a  further 

evidence of the endowment effect.  
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APPENDIX: THE QUESTIONNAIRE AND THE SOCIAL CAPITAL INDEXES 
 

The  subjects  where  asked  to  answer  a  questionnaire,  described  in  detail  below,  designed 

following  very  closely  Putnam’s  Social  Capital  Benchmark  Survey  (Bobo  et.  al.,  2001).  An 

increasing number of applications, from sociology to health economics, political science, business 

management, human resources and politics have used the concept of Social Capital, depending on 

circumstances,  as  synonym  of  rather  diverse  concepts,  such  as  “generalized  trustʹʹ,  “civic 

engagement”,  “religious  belief”  or  “group  interaction”.  Using  the  questionnaire’s  answers we 

build  up  indicators  of  these  characteristics  to  sort  our  subjects  according  to  their  attitude  to 

coordinate and cooperate for mutual benefit. 

Following Bobo et al. (2001) we build up six indexes. Civic participation (cp) is constructed (see 

index CIVPART in Bobo et al. (2001)) as the average of three different questions, meant to measure 

individual  involvement  in civic and political activity, such as working for a political party  in the 

past year  (q1.2), attending political meetings  in  the past year  (q1.5) and  signing petitions  in  the 

past year (q1.7):  

 

 

We  also  build  an  alternative  index  cpext,  by  adding  subject’s  answer  to  a  specific  question, 

namely q5.4 which asked how  important was politics  in  their personal  life  (answer ranked  from 

4=“very important” to 1=“not important at all”: 

 

 

Faith‐based  Social Capital  (fbsc)  is  an  indicator  (see  index  FAITHBAS  in  Bobo  et  al.  (2001)) 

constructed as  the average of  two questions, designed  to measure participation  in  the  life of  the 

local  religious  community  such  as  going  to  church  in  the past week  (q2.8),  or  going  to  church 

social function in the past month (q3.6) 

 

 

By analogy with cpext, we also consider the following:  

 

 

 

 

cp=(q1.2+q1.5+q1.7)/3.

cpext=(q1.2+q1.5+q1.7+(q5.4‐1)/3)/4.

fbsc=(q2.8+q3.6)/2.

fbscext=(q2.8+q3.6+(q5.6‐1)/3)/3.
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Organized Group Interactions (ogi)  is built (see  index ORGINTER  in Bobo et al. (2001)) as the 

average of six questions, designed to measure participation in the life of the local community such 

as  serving as an officer of  some  club organization  in  the past year  (q1.1), or  in a  committee  for 

some  local  organization  in  the  past  year  (q1.2),  attending  a  public  meeting  of  club  or  civic 

organization in the past month (q3.7): 

 

 

 

Informal Group  interaction  (igi)  is  an  indicator  (see  index  SCHMOOZ  in Bobo  et  al.  (2001)) 

constructed  as  the  average  of  six  questions,  designed  to measure  participation  in  the  informal 

social network such as having friends in for the evening in the past week (q2.3); going to the home 

of  friends  in  the past week  (q2.4); going  to club, disco, bar or place of entertainment  in  the past 

week q2.11); going to friends’ house for dinner or evening in the past month (q3.4); having friends 

in for dinner or evening in the past month (q3.5); going to night club, disco, bar in the past month 

(q3.9): 

 

 

 

Bobo  et  al.  (2001)  also  considers  five  additional  indexes,  based  on  social  trust  (STRSTCAT), 

group  involvement without  church participation  (GRPINCAT), group  involvement with  church 

participation(GRP2CAT), diversity of friendship network (DIVRCAT), and composite racial group 

trust  (RACETCAT). Due  to a almost null variability  in  the  subjects’ answers  (probably due  to a 

higher homogeneity  of  our  subject pool with  respect  to  the  relevant dimensions) we  could not 

make any use of these additional indexes. 

Finally,  since we need  to  rank our  subject pool with  respect  to a  composite  scale  that would 

comprise  all  the  relevant  characteristics  revealing  attitude  to  coordinate  and  cooperate,  we 

construct three composite measures using the indexes above outlined: 

 

 

 

 

 

ogi= (q1.1+q1.3+q1.4+q3.7)/4.

isi=(q2.3+q2.4+q2.11+q3.4+q3.5+q3.9)/6 

C1=(cpext+fbscext+ogi+isi)/4 
C2=(cpext+fbscext+ogi)/3 
C3=(cp+fbsc+ogi)/3. 
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THE QUESTIONNAIRE 
 

In what follows we report the text (translated into English) of the questionnaire. 

Please answer to the following questions 

1. Which, if any, of these things have you done in the past year?  
o 1.1 Served as an officer of some club or organization  
o 1.2 Worked for a political party  
o 1.3 Served on a committee for some local organization  
o 1.4 Attended a public meeting on town or school affairs  
o 1.5 Attended a political rally or speech  
o 1.6 Made a speech  
o 1.7 Signed a petition  
o 1.8 Wrote a letter to the paper  
o 1.9 Wrote an article for a magazine or newspaper 

 

2. Which, if any, of these things have you done in the past week?  

 

o 2.1. Discussed politics  
o 2.2. Had dinner in a restaurant  
o 2.3 Had friends in for the evening  
o 2.4 Went to the home of friends  
o 2.5 Saw a movie  
o 2.6 Made a personal long distance call  
o 2.7 Read a book  
o 2.8 Went to church  
o 2.9 Watched a sports event on TV  
o 2.10 Went out to watch a sports event  
o 2.11 Went to club, disco, bar or place of entertainment  
o 2.12 Spent time on a hobby  
o 2.13 Wrote a personal letter or e‐mail 
o 2.14 Received a personal letter or e‐mail 

 

3. How many times, if any, did you do any of these activities in the past 
month?  

o 3.1 Made a contribution to charity  
o 3.2 Did volunteer work  
o 3.3 Donated blood  
o 3.4 Went to friends’ house for dinner or evening  
o 3.5 Had friends in for dinner or evening  
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o 3.6 Went to church social function  
o 3.7 Went to meeting of club or civic organization  
o 3.8 Went to dinner at restaurant  
o 3.9 Went to night club, disco, bar  
o 3.10 Went to live theater, opera, concerts  
o 3.11 Went to sporting event  
o 3.12 Went to the movies 

 

4. Which of the following things are part of ʺthe good lifeʺ in your opinion?  
o 4.1 A home you own  
o 4.2 A yard and lawn  
o 4.3 A second car  
o 4.4 A vacation home  
o 4.5 A swimming pool  
o 4.6 A happy marriage  
o 4.7 No children  
o 4.8 One or two children  
o 4.9 A job that pays more than average  
o 4.10 A job that is interesting  
o 4.11 A job that contributes to the welfare of society  
o 4.12 College education for my children  
o 4.13 Travel abroad  
o 4.14 A second color TV set  
o 4.15 Really nice clothes  
o 4.16 A lot of money  

 
5) For each of the following, indicate how important it is in your life. Would you say it is: 

1. Very important     
2. Rather important   
3. Not very important     
4. Not at all important 
5. I don’t know 

o 5.1 A home you own Family 
o 5.2 A yard and lawn Friends 
o 5.3  A second car Leisure time 
o 5.4 Politics  
o 5.5 Work 
o 5.6 Religion 
o 5.7 Service to others 

 
6) Taking all things together, would you say you are: 
 
4. Very happy 



  24

3. Quite happy 
2. Not very happy 
1. Not at all happy 
0. Donʹt know  
 
 
7) With which of these two statements do you tend to agree? (CODE ONE ANSWER ONLY) 
A. Regardless of what the qualities and faults of oneʹs parents are, one must always love and 
respect them 
B. One does not have the duty to respect and love parents who have not earned it by their behavior 
and attitudes 
7.1 Tend to agree with statement A 
7.2 Tend to agree with statement B 
7.3 Donʹt know  
 
8) Generally speaking, would you say that most people can be trusted or that you need to be very 
careful in dealing with people? 
8.1 Most people can be trusted 
8.2 Need to be very careful 
8.3 Donʹt know 
 
9) Do you think most people would try to take advantage of you if they got a chance, or would 
they try to be fair? 
9.1 Would take advantage 
9.2 Would try to be fair 
9.3 Don’t know 
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Report
The Motor Somatotopy
of Speech Perception
(MTSP) [3], an early precursor of a new zeitgeist, most radically
postulated that the articulatory gestures, rather than sounds,
are critical for both production and perception of speech
(see [4]). On neurobiological grounds, fronto-temporal circuits
are thought to play a functional role in production as well as
comprehension of speech. The coactivation of motor circuits
and the concurrent perception of self-produced speech
sounds during articulations might lead to correlated neuronal
activity in motor and auditory systems, triggering long-term
plastic processes based on Hebbian learning principles
[15–17]. The postulate of a critical role of actions in the forma-
tion of speech circuits is paralleled in more general action-
perception theories emphasizing a critical role of action repre-
sentations in action-related perceptual processes [18].
However, a majority of researchers are still skeptical toward
a general role of motor systems in speech perception, admit-
ting, if at all, only a subsidiary role of motor areas and reserving
the critical role to superior temporal and inferior parietal
cortices [19].

A recent series of studies directly investigated the activities
in motor areas during speech perception. Passive listening to
phonemes and syllables was shown to activate motor [5–8]
and premotor [9] areas. Interestingly, these activations were
somatotopically organized according to the effector recruited
in the production of these phonemes [5, 6, 8] and in accor-
dance with motor activities in overt production [8, 9]. A distinc-
tive feature of action-perception theories in general and in the
domain of language specifically is that motor areas contribute
to perception [4, 16, 20]. However, all the above mentioned
studies are inherently correlational, and it has been argued
that in absence of a stringent determination of a causal role
played by motor areas in speech perception, no final conclu-
sion can be drawn in support of motor theories of speech
perception [10]. The only empirical evidence in favor of this
view is represented by a recent repetitive TMS study suggest-
ing that ventral premotor cortex (PMv) may play some role in
phonological discrimination [21]. In our view, however, this
study fails to offer a convincing proof of the causal influence
that motor areas may exert. Because of the spread and the
variety of possible effects elicited by a 15 min TMS stimulation,
such an offline rTMS protocol might have indeed modified the
activity of a larger network of areas, possibly including poste-
rior receptive language centers [22]. Moreover, there is no
evidence of an effector-specific effect, i.e., that stimulating
tongue representation induced specific deficits in the percep-
tion of tongue-related phonemes.

Here, we set out to investigate the functional contributions
of the motor-articulatory systems to specific speech-percep-
tion processes. To this end, a cross-over design orthogonal-
izing the effect of brain-phonology concordance with those
of linguistic stimuli and TMS loci was chosen. Phonemes
produced with different articulators (lip-related: [b] and [p];
tongue-related: [d] and [t]) were presented in a phoneme-
discrimination task. The effect of TMS to lip and tongue repre-
sentations in precentral cortex, as previously described by
fMRI [8], was investigated. Double TMS pulses were applied
just prior to stimuli presentation to selectively prime the
cortical activity specifically in the lip (LipM1) or tongue
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Summary

Listening to speech recruits a network of fronto-temporo-
parietal cortical areas [1]. Classical models consider anterior

(motor) sites to be involved in speech production whereas
posterior sites are considered to be involved in comprehen-

sion [2]. This functional segregation is challenged by action-
perception theories suggesting that brain circuits for speech

articulation and speech perception are functionally depen-
dent [3, 4]. Although recent data show that speech listening

elicits motor activities analogous to production [5–9], it’s still

debated whether motor circuits play a causal contribution to
the perception of speech [10]. Here we administered transcra-

nial magnetic stimulation (TMS) to motor cortex controlling
lips and tongue during the discrimination of lip- and tongue-

articulated phonemes. We found a neurofunctional double
dissociation in speech sound discrimination, supporting

the idea that motor structures provide a specific functional
contribution to the perception of speech sounds. Moreover,

our findings show a fine-grained motor somatotopy for
speech comprehension. We discuss our results in light of

a modified ‘‘motor theory of speech perception’’ according
towhichspeechcomprehensionisgroundedinmotorcircuits

not exclusively involved in speech production [8].

Results

Recent years have seen a major change in views about the
function of motor and premotor cortex [11]. Once believed to
be an output system, slavishly following the dictate of the
perceptual brain, the motor brain is now recognized as critical
component of perceptual and cognitive functions. This chal-
lenges the classical sensory versus motor separation [12].
Similarly, traditional models of language brain organization
separated perceptual and production modules in distinct
areas [1, 2]. However, a large amount of data is accumulating
against the reality of such a strict anatomo-functional segrega-
tion [5–9, 13, 14]. The motor theory of speech perception

*Correspondence: fdl@unife.it
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(TongueM1) area (Figure 1). We hypothesized that focal stimu-
lation would facilitate the perception of the concordant
phonemes ([d] and [t] with TMS to TongueM1), but that there
would be inhibition of perception of the discordant items ([b]
and [p] in this case). Behavioral effects were measured via
reaction times (RTs) and error rates.

RT performance showed a behavioral double dissociation
between stimulation site and stimulus categories (Figure 2).
RT change of phonological decisions induced by TMS pulses
to either the TongueM1 or LipM1 showed opposite effects
for tongue- and lip-produced sounds. The interaction of the
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Figure 1. Stimuli, TMS Timing, and Regions of Stimulation

(A) Noise, speech sound, and experimental stimulus waveforms. Noise and

speech recordings were mixed into a single trace. TMS (vertical red lines)

was applied in double pulses 100 and 150 ms after noise onset. Speech

sounds started 200 ms after noise onset (gray vertical line).

(B) LipM1 and TongueM1 normalized mean coordinates are projected on

a standard template [8, 34].
phoneme type and stimulation site factors was significant
(F[1,36] = 17.578; p < 0.0005), and the post-hoc analysis evi-
denced a significant difference between labial ([b], [p]) and
dental ([d], [t]) phonemes for each of the stimulation sites. As
hypothesized, recognition of lip-produced phonemes was
indeed faster than that of tongue-produced ones when stimu-
lating the LipM1 (labial = 94.8% 6 5.3% SEM; dental = 117.3% 6
3.7% SEM; p = 0.009), and the stimulation of the TongueM1
induced the reverse pattern (labial = 113.6% 6 6.4% SEM;
dental = 93% 6 5.1% SEM; p = 0.024). In addition, labial and
dental stimuli recognition was faster when stimulating their
concordant M1 representation compared with that to the
discordant stimulation locus (labial, p = 0.015; dental, p =
0.009). Therefore, the stimulation of a given M1 representation
led to better performance in recognizing speech sounds
produced with the concordant effector compared with discor-
dant sounds produced with a different effector. These results
provide strong support for a specific functional role of motor
cortex in the perception of speech sounds.

In parallel, we tested whether TMS was able to modulate the
direction of errors (Figure 3). Errors were grouped in two
classes: lip-phoneme errors (L-Ph-miss) and tongue-phoneme
errors (T-Ph-miss). The ANOVA showed a significant interac-
tion effect (F[1,36] = 4.426; p < 0.05). Post-hoc comparisons

Tongue M1 Lips M1

Dental
Labial

**
*

*

Figure 2. Reaction Times during Speech Discrimination

Effect of TMS on RTs show a double dissociation between stimulation site

(TongueM1 and LipM1) and discrimination performance between class of

stimuli (dental and labial). The y axis represents the amount of RT change

induced by the TMS stimulation. Bars depict SEM. Asterisks indicate signif-

icance (p < 0.05) at the post-hoc (Newman-Keuls) comparison.

Tongue M1 Lips M1

* *

L-Ph-miss
T-Ph-miss

Figure 3. Accuracy Results

We tested whether TMS was able to modulate the direction of errors, i.e., if

the stimulation of the TongueM1 increases the number of labial sounds erro-

neously classified as dental and vice versa. After TMS, a dissociation

between stimulation site (TongueM1 and LipM1) and kind of errors (L-Ph-

miss, T-Ph-miss) was found. The y axis represents the amount of error

change induced by the TMS stimulation. Other conventions as in Figure 2.
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a critical role of articulatory phonetic gestures for the percep-
tion of speech. However, this theory also claimed a modular
status of the linguistic phoneme system, which was thought
to be functionally dissociated from the nonlinguistic motor
system. This position is difficult to reconcile with the finding
of congruency between cortical areas for speech perception,
articulation, and nonlinguistic movements of tongue or lips
[8]. Here we therefore provide only partial support for the
MTSP, and we propose that the motor gestures critical for
speech perception are processed by the same brain parts
and circuits involved also in the production of other, nonlin-
guistic, movements. We are not suggesting, however, that
the motor cortex is an area for phonological discrimination
per se; rather, we favor the idea that it might be part of a larger
network. This latter claim is also supported by a large number
of studies showing an integrated brain network for speech pro-
cessing as opposed to a single localized module [1, 13, 14, 16,
19, 31]. We propose that TMS of M1 might have unbalanced
the network dynamics of action-perception circuits, likely
involving motor, premotor, and temporo-parietal areas.

The present results might be of potential interest in the reha-
bilitation of aphasia. Current experimental protocols, showing
initial exciting results, are indeed evaluating the possible
benefit of repeated TMS (rTMS) application in these patients
[31]. TMS is typically used to trigger (or inhibit) plastic
processes in conjunction with standard rehabilitation proto-
cols. However, rTMS effects spread uncontrollably to other
areas, eventually resulting in a global functional reshaping of
whole-brain dynamics. Event-related TMS, such as the one
presented in our study, might be potentially more spatially
selective and thus more effective. Single pulses or short trains
might in fact be more efficient in triggering local plastic
processes in selected neuronal populations. We therefore
propose that innovative rehabilitation programs based on
recent neuroscientific findings about action-perception
circuits [13, 16], such as the intensive language-action therapy
[32], in conjunction with event-related TMS protocols might be
more effective also at chronic stages of aphasia.

Experimental Procedures

Subjects

Ten healthy right-handed subjects volunteered after giving informed

consent and were paid for their participation (mean age, 26.07; SD, 2.91; 6

female). None had any history of neurological disease, trauma, or psychi-

atric syndrome and all had normal hearing. Procedures were approved by

the local ethical committee.

Stimuli

Subjects listened to one out of four stimuli in each trial: [b], [p], [d], and [t]

spoken before a [œ] sound, through headphones. [b] and [p] are labial

sounds, requiring the critical lip movement for their production, whereas

[d] and [t] are dental sounds that require a significant tongue movement.

Each stimulus was the vocal recording of an actor. In order to avoid ceiling

effects in the phoneme identification task, we immersed vocal recordings in

500 ms of white noise. Each vocal stimulus was presented 200 ms after the

beginning of white noise. The noise/stimulus ratio was set in a pilot exper-

iment (11 subjects) to let subjects respond correctly z75% of cases.

Task RT and accuracy, grouped into labial (mean RT, 839 6 59.95 ms

SEM; mean accuracy, 77.58% 6 5.36% SEM) and dental (mean RT, 815 6

53.11 ms SEM; mean accuracy, 75.76% 6 5.78% SEM) sounds did not differ

significantly in the pilot experiments (RT, t(10) = 1.249; p = 0.24; accuracy,

t(10) = 0.234; p = 0.82).

Task

Subjects were asked to listen and recognize the consonants and respond as

fast as possible with a four-button pad. Buttons were configured in a dia-

mond shape and the relative position, with associated consonant letters,
revealed more L-Ph-miss than T-Ph-miss errors when stimu-
lating the TongueM1 representation (p = 0.049), and also
more T-Ph-miss errors when stimulating the LipM1 relative
to the TongueM1 (p = 0.012). Therefore, the error pattern
confirmed the dissociation already seen in the RT data. As
a matter of fact, the stimulation of a given motor representation
led to a perceptual bias in favor of speech sounds concordant
with the stimulation site. Stimulation of the tongue area made
lip sounds tend to be perceived as dentals and, vice versa, lip
area TMS made [d] and [t] sound like bilabials.

Discussion

The double dissociation we found in the present work provides
evidence that motor cortex contributes specifically to speech
perception. As shown by both RTs and errors, the perception
of a given speech sound was facilitated by magnetically stim-
ulating the motor representation controlling the articulator
producing that sound, just before the auditory presentation.
Inhibitory effects were seen for discordant speech sounds.
Computationally speaking, our stimulation might preactivate,
or prime, a given M1 sector by increasing the excitability of
neurons therein. This higher excitability might lead to faster
RTs if that area contributes to a task. The reduction of perfor-
mance observed in the other class of stimuli can be explained
by mechanisms of lateral inhibition between competing repre-
sentations. Similarly, TMS-induced priming of one specific
representation may bias the system toward activating the
already preactivated representation, leading to the observed
error pattern. The direction of our effects suggests that our
TMS protocol is enhancing the activity in M1 locally, in agree-
ment with other results reported in TMS literature [23–25] and
with the work by Pulvermüller and colleagues [26] describing
a similar effect at the semantic level. Two factors might have
caused facilitation of subjects’ behavioral performance: (1)
TMS timing and (2) basal cortical activity. In fact, a single
TMS pulse disrupts cortical processing for a limited time
window, by synchronizing neuronal activities. Animal models
actually hold that inhibition turns into facilitation after a short
time window depending on pulse strength [27]. Alternatively,
the direction of effects can be accounted by cortical state
dependency. It’s well known that motor thresholds vary ac-
cording to the cortico-spinal basal activity (i.e., muscle
contraction). Analogously, the recent work of Silvanto and
colleagues [28, 29] showed that TMS induces both behavioral
facilitation and inhibition according to the basal activity of the
target cortical area. Although both explanations are equally
probable, the double dissociation we found is the strongest
proof to support our central hypothesis. It should be stressed,
however, that our finding does not prove that M1 is directly
involved in speech perception. A possible explanation for the
facilitation of the perception of phonemes motorically
congruent with the stimulated site is that the synchronous
excitation of M1 neurons induced by TMS may have exerted
in turn the facilitation of neurons located in premotor areas,
somatotopically connected with M1 through bidirectional cor-
tico-cortical links.

Biologically grounded models of speech and language have
previously postulated a functional link between motor and
perceptual representations of speech sounds [8, 30]. We
demonstrate here for the first time a specific causal link for
features of speech sounds. The relevant areas in motor cortex
seem to be also relevant for controlling the tongue and lips,
respectively. As mentioned, the MTSP [3, 4] had postulated
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was shown during the experiment on a screen in front of them. Responses

were given with the left index finger. Response recording, stimuli presenta-

tion, and TMS triggering were controlled by a custom-made Basic script

running under the MS-DOS environment to warrant timing accuracy.

TMS

TMS stimulation was delivered through a figure-of-eight 40 mm coil and

a Magstim Rapid stimulator (Magstim, Whitland, UK). The 25 mm coil was

used to allow a more focal stimulation. First Dorsal Interosseus (FDI)

mapping and resting motor threshold (rMT) evaluation was assessed by

using standard protocols [33]. Motor-evoked potentials (MEP) were re-

corded by using a standard tendon-belly montage with Ag/Cl electrodes.

Signal was band-pass filtered (50–1000 Hz) and digitized (5 kHz). TongueM1

and LipM1 localization were, instead, based on standardized coordinates

with respect to the functionally defined best stimulation site of the FDI

muscle. Specifically, for lip and tongue area stimulation, we chose the

mean MNI coordinates corresponding to the peak motor cortex activation

probability (t-values), during lip and tongue movements and articulation, re-

vealed by a previous fMRI study (lips: 256, 28, 46; tongue: 260, 210, 25;

Figure 1A; [8]). In parallel, also FDI MNI coordinates were taken from the

literature (237, 225, 58; [34]). In the following step, MNI coordinates (FDI,

TongueM1, and LipM1) were first transformed into the 10–20 EEG system

space (Münster T2T-Converter: http://wwwneuro03.uni-muenster.de/ger/

t2tconv/conv3d.html) and then the distance between FDI/tongue and FDI/

lip were calculated in the same standard space. Therefore, TongueM1 and

LipM1 were located according to differential 10–20 EEG coordinates

centered on the functionally defined FDI location. In each subject, the FDI

was first functionally mapped, and then TongueM1 and LipM1 were located

according to the differential 10–20 EEG coordinates (lips: 6.6% of nasion-

inion distance in the anterior direction and 5.8% of the inter-tragus distance

in the lateral direction–FDI mean distance: 5.5 cm; tongue: 8.6% anterior

and 11.6% lateral–FDI mean distance: 3.35 cm; mean distance between

lips and tongue: 2.15 cm). In the stimulated trials, two pulses with 50 ms

interval were delivered at 110% of the FDI rMT. Coil orientation was main-

tained at 45� with respect to the interhemispheric fissure. Pulses were given

100 ms and 150 ms after noise onset; thus, the last TMS pulse occurred 50

ms prior to consonant presentation (see Figure 1).

Procedure

Subjects first completed a block of trials with no TMS intervention, to train

participants and to test their ability to accomplish the task up to our criteria

(z75% of correct trials; a total of 60 trials, 15 each stimulus category). Upon

successful completion of this learning phase, they were entered in the TMS

mapping block. The right FDI primary motor representation was located and

marked on the left hemisphere, and the rMT was measured. LipM1 and

TongueM1 representations were marked on the scalp with respect to the

functionally defined FDI spot (for the procedure see the TMS section). After

the mapping session, two blocks were presented in succession separated

by a 2 min interval. TMS stimulation over LipM1 and TongueM1 was deliv-

ered in different blocks, whose order was counterbalanced across subjects.

In each block, subjects had to complete 80 trials, 60 with TMS and 20

random catch trials. Random catch trials were exactly the same as the

TMS trials except that no TMS was applied. Catch trials were used as a refer-

ence to evaluate the effect induced by TMS on behavior.

Measures and Analysis

Experimental measures included RTs and errors. RTs were calculated from

the beginning of consonant sound presentation (200 ms after noise onset).

The RT data were collapsed into two categories: labial and dental sounds.

Preliminary analyses showed that there were no significant differences

between the voiced ([b], [d]) and unvoiced ([p], [t]) phonemes. Subjects’

performance was normalized by computing the percentage of variation of

mean RT in TMS-stimulated trials with respect to trials without TMS. Errors

were considered as the amount of responses erroneously attributed to the

other category (misses). Errors were collapsed in two categories according

to their falling in the other group of stimuli (L-Ph-miss and T-Ph-miss). Single

subjects’ error scores were expressed as the percentage of change

between stimulated trials and TMS-free ones. Separate analyses of variance

(ANOVA) were conducted on RT and error data, including the factors

phoneme type (labial versus dental or, in the error analysis, L-Ph-miss

versus T-Ph-miss) and stimulation site (LipM1 versus TongueM1). Signifi-

cant interactions were further investigated with Newman-Keuls post-hoc

comparisons (alpha = 0.05).
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ABSTRACT 

 

Several transcranial magnetic stimulation (TMS) studies report that viewing other’s actions facilitates 

the neural representation site of the onlooker’s muscles that are recruited during the actual execution 

of the observed action. With the present study, we investigated whether this muscle-specific facilitation 

of the observer’s motor system reflects the degree of muscular force that is exerted in an observed 

action. 

Two separate TMS-experiments are reported in which corticomotor excitability was measured in the 

hand area of the primary motor cortex (M1) while subjects observed the lifting of objects with different 

weights. The type of action ‘grasping and lifting the object’ was always identical but the grip force 

varied according to the object’s weight.  

In accordance to previous findings, activity of M1 was shown to modulate in a muscle-specific way, 

such that only those parts of M1 that control the specific muscles used in the observed lifting action, 

become increasingly facilitated. Moreover, the muscle-specific facilitation pattern of M1 was shown to 

modulate in accordance to the force requirements of the observed actions, such that corticomotor 

excitability was considerably higher for observing heavy object lifting compared to light object lifting. 

Overall, these results indicate that observed object grasping, requiring different force levels, is 

mirrored onto the observer’s motor system in a highly muscle-specific manner, as measured in M1.  

The measured force-dependent modulations of corticomotor activity in M1 are hypothesised to be 

functionally relevant for the observer’s ability to infer the observed grip force and consequently the 

weight of the lifted object.  
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INTRODUCTION 

 

In social interactions, humans demonstrate the remarkable ability to understand and interpret 

the behaviour of other people. Recently, neuroscience is increasingly focussing on the role of the 

observer’s motor system during action understanding (Rizzolatti & Craighero 2004). This possibility 

comes from results of single cell recordings in monkeys demonstrating the existence of “mirror 

neurons”, which were shown to respond both when a monkey performs a certain action and when it 

observes another person performing the same action (Di Pellegrino et al., 1992). In humans, several 

neuroimaging and neurophysiological studies have identified the inferior frontal gyrus (IFG) as well as 

the parietal cortex to be key areas of the ‘human mirror neuron system’ (Grafton et al., 1996;Decety et 

al., 1997;Cochin et al., 1998;Buccino et al., 2001;Grezes et al., 2003;Buccino et al., 2004;Lui et al., 

2008). In addition, with transcranial magnetic stimulation (TMS) it was shown that parts of primary 

motor cortex (M1) that control particular muscles become increasingly facilitated during the mere 

observation of actions involving these muscles (Fadiga et al., 1995;Strafella & Paus 2000). Moreover, 

M1-excitability modulations reflect specific characteristics of observed actions: Next to the robust 

finding that modulations of M1 are strongly muscle-specific (Borroni & Baldissera 2008;Alaerts et al., 

2009a;Alaerts et al., 2009b), previous research also showed that M1 activations are highly 

synchronized to the temporal dynamics of an observed movements (Gangitano et al., 2001;Borroni et 

al., 2005;Montagna et al., 2005) and lateralized to the contra-lateral hemisphere when right- versus 

left-hand actions are observed (Aziz-Zadeh et al., 2002). As such, it appears that visual-motor 

matching during observation is a highly specified process in which different features of the observed 

actions are encoded by the observer’s motor system.  

All of the above parameters (muscular involvement, temporal dynamics, used effector) can be 

easily derived from robust differences in the kinematics of the observed movement. However, until 

now, it is largely unclear whether features which are less salient in the kinematic signal, such as the 

force requirements of an observed lifting action, are also matched to the observer’s motor system. 

Some behavioural studies already indicated that the weight of a box (and consequently the force 

needed to lift it) can be inferred quite accurately by observing another person lifting it (Runeson & 

Frykholm 1981;Bingham 1987), and interestingly, some recent experiments demonstrated that the 

observer’s motor system might be involved in this task. More specifically, it was shown that the active 
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lifting of weights interferes with concomitant weight judgement tasks (Hamilton et al., 2004). These 

findings suggest that similar force-related parameters are coded both in the motor plan and in the 

action representation evoked by the observation of the action. A following study localized the sites of 

interaction between perceptual and motor processes in several frontal and parietal areas and 

particularly in the IFG and M1 (Hamilton et al., 2006). However, activations in both regions were not 

confirmed during the mere observation of weight lifting (Hamilton & Grafton, 2007). As such, their 

actual involvement in weight perception needs to be established further.  

As TMS is known to be very powerful in assessing activity modulations at the level of M1, the 

present study used this technique to explore possible force-related activity modulations in the 

observer’s motor system during the observation of lifting objects with different weights. 

In two separate experiments, performed in two laboratories, cortical excitability was measured 

in M1 during the observation of lifting objects with different weights. Thus, the type of action ‘grasping 

and lifting the object’ was always identical but the grip force varied according to the object’s weight.  

 

 

EXPERIMENT 1 

Observation of object lifting with a precision grip 

 

Experiment 1 was designed to test whether force requirements are encoded in the observer’s 

motor system during observation of an actor lifting two different objects of explicit different weights, 

using a precision grip. Experiment 1 was run in Ferrara, Italy. 

 

MATERIALS & METHODS 

 

Subjects. Eight subjects (5 males, 3 females) with age between 20 and 32 (mean: 22) 

participated after providing informed consent. All experimental protocols were approved by the local 

ethics board in accordance to The Code of Ethics of the World Medical Association (Declaration of 

Helsinki) (Rickham 1964). All participants were right-handed, as assessed with the Edinburgh 

Handedness Questionnaire (Oldfield 1971) and were naive about the purpose of the experiment.  
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Electromyographic recordings and TMS. Surface electromyography (EMG) was performed 

with Ag-AgCl electrodes placed according to a belly-tendon configuration. EMG activity was recorded 

from the right First Dorsal Interosseous (FDI) finger muscle, an intrinsic hand muscle acting as agonist 

for precision grip. 

Focal transcranial magnetic stimulation (TMS) was performed by means of a 70 mm figure-of-eight coil 

connected to a Magstim 200 stimulator (Magstim). The coil was positioned over the left hemisphere, 

tangentially to the scalp with the handle pointing backward and medially at 45° away from the mid-

sagittal line, such that the induced current flow was in a posterior-anterior direction, i.e. approximately 

perpendicular to the central sulcus. An articulated arm (Manfrotto, Italy) was used to keep coil position 

during the experiment. The optimal scalp position was defined as the position from which Motor 

Evoked Potentials (MEPs) with maximal amplitude were recorded in the right FDI muscle. The rest 

motor threshold (rMT) was defined as the lowest stimulus intensity evoking MEPs in the right FDI with 

an amplitude of at least 50µV in 5 out of 10 consecutive stimuli (Rossini et al., 1994). Stimulation 

intensity was set at 120% of the rest motor threshold for all experimental trials. EMG signals were 

band-pass filtered (50-1000Hz), digitized (2000Hz) and stored on a computer for off-line analysis.  

General Procedure. Participants were seated comfortably on a dentist like armchair, their arms 

stretched out on a arm rest and their hand lying relaxed and pronated. They faced a small stage with 

black floor and background. A square metallic platform aligned with the subject's sagittal plane 

supported the target object on which action was performed. The actor was seated fully visible on the 

front right of the participant and acted with his right hand on the target object, parallel to the subject's 

frontal plane. The actor reached to grasp the object with his right hand, lifted it, held it few seconds 

and then replaced it at its initial position. The two objects presented (Figure 1A) were of different 

shape and explicitly of different weight despite they both could be grasped by opposing the tips of the 

thumb and index finger (precision grip) thanks to a common handle. The first object (“Light”) was a 

10g piece of ribbon cable that was held erected by individualizing the wires at the lower extremity of 

the ribbon. The other object (“Heavy”) was a 500g brass balance weight with a handle made of the 

same ribbon cable used for the Light object. In each trial, the actor's hand initially lied pronated on the 

table, pushing with the fingertips a hidden switch placed at about 20 cm from the object (Figure 1B). 

One of the two objects was then placed on the platform. A vocal warning (“pronto”) was provided to 

signal the incoming of a new trial. The contact time of the actor's fingers with the object, and the lifting 
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latency were provided respectively by an electric circuit switched on by the contact between both 

fingers and the object’s handle and switched off by the separation between the object and the metallic 

platform. Each of the two objects was presented 15 times with presentation order randomized within 

subjects. A single TMS pulse was delivered at random time during the lifting phase of the observed 

movement, approximately 1.3 sec after movement onset (Figure 1B). In total, 30 MEPs were recorded 

for each subject. Before the experimental session, subjects could see the objects and were allowed to 

experience their respective weight.  

Data reduction and analysis. From the EMG data, peak-to-peak amplitudes of the MEPs were 

determined. Since EMG background activation is known to modulate MEP amplitude (Hess et al., 

1987;Devanne et al., 1997), pre-stimulation EMG was assessed in both experiments by computing 

root-mean-square error scores (RMSe) across a 50 ms interval prior to the TMS stimulation. For each 

subject and for each muscle separately, mean and standard deviation of the EMG background scores 

were computed over all trials. Trials for which EMG background was above the mean + 2.5 standard 

deviation were removed from the analysis. Trials for which the MEP amplitude was inferior to the 

mean EMG background were also discarded. Finally, extreme peak-to-peak amplitudes values in the 

remaining trials were removed from the analysis under the following criteria: outliers were considered 

as values larger than Q3+1.5 x (Q3-Q1) with Q1 the first quartile and Q3 the third quartile computed 

over the whole set of trials for each subject. Following these three criteria one subject was discarded, 

due to 80% of bad trials in one of the observation conditions. From the remaining subjects, 13 % of 

trials were discarded in total.  

For each subject, MEP amplitudes recorded for each observation condition were then normalized 

relative to the subjects’ maximal MEP amplitude (measured over all trials and conditions). 

Subsequently, normalized MEPs were averaged among subjects. RMSe scores of each condition 

were also normalized relative to the maximal RMSe score (measured over all trials and conditions) 

and averaged among subjects.  

Statistics. Paired T-tests were used to compare peak-to-peak MEP amplitude data recorded 

during the observation of the heavy and light weight lifting. Similar statistical analyses were applied to 

the background EMG data (normalized RMSE-scores) to assess whether the MEP amplitude scores 

were confounded by modulations in background EMG.  
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RESULTS  

During the observation of object lifting with a precision grip, individual normalized MEP 

amplitudes in the FDI muscle revealed a systematic modulation relative to the weight of the lifted 

object. For six out of seven subjects, MEP amplitude scores were higher during observation of heavy 

object lifting compared to light object lifting, and this difference was significant in one subject [S3, 

t=2.395, p=.038] (Figure 2A). At the group level (n=7), this consistent trend led to significantly higher 

normalized MEP amplitudes for the heavy compared to the light weight observation condition [t=2.8, 

p=.031] (Figure 2B).  

A paired T-test computed on the background EMG data (normalized RMSe-scores) confirmed that the 

EMG background was not significantly different in the two conditions [t=.972, p=.369], indicating that 

experimental results are not likely explained by a modulation in background EMG. 

 

 

EXPERIMENT 2 

Execution and observation of object lifting with a whole hand grip 

 

Experiment 2 was designed to test if the results found in experiment 1 are consistently found 

during observation of other types of grip, and if the weight-related modulation is specific for the 

muscles involved in action execution or if it reflects an unspecific activation of the motor system. In 

addition, in experiment 2, the muscle activation pattern for real execution of lifting different object 

weights was assessed and compared to the corticomotor responses obtained during the observation 

of the same lifting actions. 

The main differences between the two observational paradigms regard: (i) the observation of a 

precision grip (Exp 1) or of a whole hand prehension (Exp 2); (ii) the recording of one muscle only 

(First Dorsal Interosseus) (Exp 1) or of three muscles (Opponens Pollicis, Flexor and Extensor Carpi 

Radialis) (Exp 2); (iii) the comparison of two weights (Exp 1) or of three weights (Exp 2), and (iv) the 

involvement of a real agent performing the movement (Exp 1) or the use of videos (Exp 2). Although 

both types of stimuli (i.e., real actions or video-taped actions) are known to induce a reactivation of 

primary motor cortex, it may be worth mentioning that reactivations were shown to be more salient for 

observing real actions compared to video-taped actions (Jarvelainen et al., 2001).  
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MATERIALS & METHODS 

 

Execution 

Task. Five subjects (age range 23-30; 3 females, 2 males) were instructed to observe a video 

displaying a grasp-lift action and to simultaneously perform the same action in synchrony with the 

video. The video showed the whole hand grasp and lift of drinking bottles with three different weights 

i.e., an empty (0 kg), a half full (1 kg) and a full (2 kg) bottle (Figure 3).  

EMG. During execution, EMG was simultaneously recorded from the right Opponens Pollicis 

(OP) muscle and Flexor (FCR) and Extensor Carpi Radialis (ECR) muscles. 

Data analysis. Each subject performed the three actions 15 times. In 12 additional trials, the 

EMG was recorded during maximal voluntary contraction (MVC) of each muscle. EMG-changes 

(amplitudes) were calculated for a short time-interval of 40 ms during the lifting of the bottle (Figure 3). 

EMG changes were expressed as the percentage of subjects’ muscle-specific MVC-scores.  

 

Observation  

Subjects. Twelve subjects (3 males and 9 females) with an age range of 21-35 (mean: 23) 

participated after providing informed consent. The subjects participating in the action observation 

experiment were not the same subjects that participated in the action execution experiment. 

Electromyographic recordings and TMS. EMG and TMS procedures were similar to those 

described in Experiment 1. However, MEPs were evoked and measured from the right Opponens 

Pollicis (OP) muscle and Flexor (FCR) and Extensor (ECR) Carpi Radialis muscles. Although 

stimulation settings were prioritised for the OP muscle, simultaneous measurements from the FCR 

and ECR are assumed to be satisfactorily similar, due to the partial overlap of representations of finger 

and forearm flexor and extensor muscles (Scheiber MH 1990). For all experimental trials, stimulation 

intensity was set at 130% of the rest motor threshold of the OP muscle. EMG signals were sampled at 

5000 Hz, (CED Power 1401, Cambridge Electronic Design, UK) amplified, band-pass filtered (30-1500 

Hz), and stored on a PC for off-line analysis. Signal Software (2.02 Version, Cambridge Electronic 

Design, UK) was used for TMS triggering and EMG recordings.  
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General Procedure. Participants were seated in a comfortable chair in front of a Dell P992 

monitor (resolution, 1024 × 768 pixels; refresh frequency 60 Hz) on which video clips (Audio-Video 

Interleaved (AVI)) were displayed with a frame rate of 25 Hz (or frames per seconds). The 

experimental video clips showed the target object and the model’s right hand that acted upon it. The 

model’s hand entered the scene from the subject’s right side, reached to grasp the object and 

subsequently lifted it out of the scene in the vertical plane (Figure 3). The three target objects were 

plastic drinking bottles with a weight of respectively 0 kg (empty), 1 kg (half full) and 2 kg (full). All 

bottles were grasped with a whole hand grip i.e. by using the thumb and hand palm (Figure 3). 

Additionally, a control video clip was presented to the subjects showing only an empty white 

background without any overt action (i.e. Baseline). All video clips lasted for 10 seconds. Each of the 4 

video clips was presented 20 times in blocks of four, with the block presentation order randomized 

within and across subjects. During the presentation of each video clip, a single TMS pulse was 

delivered at a random time point during the bottle lifting phase (Figure 3). Video presentation timing 

was controlled by Blaxton Video Capture software (South Yorkshire, UK). In total, 80 MEPs were 

recorded from each subject. Before the experimental session, all video clips were presented to the 

subjects in order to familiarize them with the experimental stimuli. During the session, they were 

instructed to keep their hands and forearms as relaxed as possible and to pay full attention to the 

video presented, such that they could report the type of video after each trial. 

Data reduction and analysis. The same procedures as in Experiment 1 were adopted for data 

analysis. Following this procedure, only 4% of all trials (of all subjects) were discarded from further 

analyses for each muscle (OP-FCR-ECR).  

Statistics. MEP Amplitude data recorded during the observation of the three experimental 

video clips, were subjected to a two-way analysis of variance (ANOVA) with repeated measures, with 

the within factors ‘Muscle’ (OP, FCR, ECR) and ‘Grip force’ (Empty, Half Full, Full). All significant 

interactions were analysed further using Fisher LSD post-hoc tests (Statistica 7.0, StatSoft. Tulsa, 

USA).  

Similar statistical analyses were applied to the background EMG data (normalized RMSE-

scores) to assess whether the MEP amplitude scores were confounded by modulations in background 

EMG.  
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RESULTS  

During the execution of object lifting with a whole hand grip, OP and ECR muscles were 

found to be more involved in the action compared to the FCR muscle (normalized EMG muscle activity 

recorded from the OP and FCR are visualized in Figure 4A). This was revealed by the two-way 

ANOVA interaction between 'Muscle' (OP, FCR, ECR) and 'Grip Force' (Empty, Half Full, Full) 

[F(4,16)=3.22, p<.05]. Main effects of 'Muscle' [F(2,8)=4.91, p<.05] and 'Grip force' [F(2,8)=55.68, 

p<.001] were also found. Post-hoc analysis of the two-way interaction revealed that for the OP and 

ECR, all force levels were significantly different from one another, and that modulations in grip force - 

related to the weight of the lifted object - were more pronounced in the OP and ECR muscle, 

compared to the FCR muscle (see Figure 4A).  

 

During the observation of object lifting, normalized MEP amplitudes were shown to modulate 

systematically with the force requirements of the action. Moreover, force-related modulations in MEP 

responses were exclusively found for muscles involved in the execution of the observed action. This 

was revealed by the two-way ANOVA interaction between ‘Muscle’ (OP, FCR, ECR) and ‘Grip Force’ 

(Empty, Half Full, Full) [F(4,44)=3.46, p<.05]. A main effect of ‘Muscle’ [F(2,22)=3.81, p<.05], but not of 

‘Grip force’ [F(2,22)=2.37, p=.117] was also found. Post-hoc analysis of the two-way interaction 

revealed that MEP responses evoked from the OP muscle were significantly higher for observing the 

lifting of the half full or full bottle compared to observing the empty bottle [both, p<.01] (Figure 4B). 

MEP scores yielded from the ECR muscle showed a similar modulation (Empty: 0.48 ± 0.02; Half full: 

0.51 ± 0.03; Full: 0.53 ± 0.02) [Empty versus Half full, p=.05; Empty versus Full, p=.007]. In the FCR, 

on the other hand, no differences in MEP scores were measured for observing the different weight 

lifting [p>.2] (Figure 4B).  

The background EMG was generally small and condition-specific modulations were minimal. This was 

tested by conducting a similar two-way ANOVA analysis (within factors ‘Muscle’ and ‘Grip Force’) to 

the corresponding background EMG data (normalized RMSE-scores). None of the main or interaction 

effects reached significance [all F<1.5, p>.21], which indicated that the MEP amplitude scores were 

not confounded by modulations in background EMG. 
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GENERAL DISCUSSION 

 

With the present TMS-experiments, we tested whether the observer’s motor system reflects 

the force requirements of observed actions. Our results indicated that, in accordance to previous 

findings, corticomotor modulation during action observation is specific for those muscles involved in 

the execution of the observed action, and that this muscle specific modulation is influenced by the 

force requirements of the observed actions, such that higher corticomotor excitability was found for the 

heavy object conditions than for the light object conditions. 

 

Perception of object lifting activates the human motor system in a force-related way 

In two separate experiments, carried out in two distinct laboratories, we examined whether the 

force requirements of an observed action are encoded in the observer’s motor system during the 

process of visual-motor matching. Addressing the same research question, the two experiments 

differed mutually according to some set-up related aspects. First, in experiment 1, live actions were 

presented to the observing subjects, whereas in experiment 2, video presentation was used. Second, 

although both experiments presented (right-hand) ‘grasp-lift’ actions of different object weights, Exp 1 

showed a ‘precision grip’ (i.e., opposing the tips of the thumb and index finger), whereas Exp 2 

showed a ‘whole hand grip’ (i.e., using the thumb and hand palm). Consequently, the type of the ‘to be 

grasped objects’ also differed, particularly with respect to the weight ranging from 0 to 500g in Exp 1, 

and from 0 over 1000 to 2000g in Exp 2. However, despite these differences, both experiments 

established the same robust results, namely a facilitation of the observer’s motor system which 

corresponded to the force requirements of the observed lifting actions. Experiment 2 additionally 

confirmed that the force-related facilitation of M1 was highly specific to the actual muscles used in the 

observed lifting actions. In this view, we extend previous findings on the properties of this system by 

showing that the level of grip force is represented in the observer’s motor system. Thus, observation-

to-execution mapping includes also some dynamical features of motor control, such as grip force.  

The actual execution of successful grasps and lifts of objects involves several neuronal 

mechanisms, some of them being concerned with fine-tuning the grip force of the grasping fingers, 

and others with the transformation of object properties into motor actions (Castiello 2005). In this 

respect, the IFG is suggested to be involved in selecting the most appropriate ‘motor prototype’, such 
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as the type of grip that is effective in interacting with the target object (Fagg & Arbib 1998), whereas 

the actual fine-tuning of grip force has been shown to rely strongly on primary motor cortex activity 

(Muir & Lemon 1983;Lang & Schieber 2004). Interestingly, there are several indications that similar 

brain areas may be involved during the mere perception of object lifting. Indeed, a number of studies 

convincingly demonstrated that the IFG is not only involved during action execution, but also during 

the mere observation of actions, such that it is considered to be a key area of the human mirror 

neuron system (Rizzolatti et al., 1996;Grafton et al., 1996;Nishitani & Hari 2000;Johnson-Frey et al., 

2003;Fazio et al., 2009). More specifically, in the context of observing the lifting of different weights, an 

elegant study by Pobric (2006) demonstrated that perceptual weight judgements depends significantly 

on activity within the IFG, i.e., disruptive rTMS at this site impaired judgements of the weight of a box 

lifted by another person, but not judgements on the weight of a bouncing ball, and rTMS at a control 

site did not have this effect (Pobric & Hamilton 2006). Consistently, a study using functional magnetic 

resonance imaging (fMRI) also identified the IFG as well as M1 to be involved during perceptual 

weight judgement (Hamilton et al., 2006). Considering that IFG is strongly connected to M1 (Shimazu 

et al., 2004;Dum & Strick 2005), it can be argued that the measured force-dependent facilitation of M1 

is a result of cortico-cortical projections from IFG mirror neurons. However to date, the actual role of 

M1 in the context of movement observation is still debated. On the one hand, M1 might simply be “co-

activated” with IFG, thereby representing the same information as IFG. Alternatively however, it is 

argued that M1 plays a more functional role in movement observation by translating and representing 

the observed movement features in terms of muscle-related coordinates (Kilner & Frith 2007;Lepage 

et al., 2008;Pineda 2008;Alaerts et al., 2009b). Therefore, in relation to the studies cited above, we 

suggest that, in the present experiment, IFG might be occupied with representing ‘motor prototypes’ 

(such as the type of grip), whereas M1 is occupied with translating this information into ‘movements’, 

i.e., to map the types of recruited muscles as well as the level of force they produce.  

Importantly, activity in IFG during weight judgement seems to rely predominantly on the 

general ‘kinematics’ of observed lifting actions, and not on object-related information about to-be-

grasped objects (lifted boxes were identical in the study of Pobric et al., (2006)). However, in the 

present experiments, the force-related modulation in M1 might also have been triggered by ‘object-

related’ cues, such as the filling degree of the bottle in experiment 2, or the type of material in 

experiment 1. Indeed, the weight of an object, and consequently the grip force needed to lift it, can 
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quite accurately be estimated based on prior knowledge on characteristics of objects (Johansson 

1998). In this context, a series of fMRI studies by Grafton & Hamilton identified the parietal region of 

the mirror neuron system, namely the IPS, to be a key area in representing different target objects 

during action observation (Hamilton & Grafton, 2006; Grafton & Hamilton, 2007). However, the 

observation of different object weights alone appeared to be inefficient in triggering force-related 

modulations in M1 (Leuven group, preliminary TMS work), suggesting that ‘the action upon the object’ 

is necessary to elicit weight/force-related responses in M1. Another ongoing study (Ferrara group) 

also suggests that the force-related modulation found here is more dependent on ‘motion-related’ cues 

than on explicit or implicit object-related cues. Future experiments should confirm the relative 

contribution of object information and purely motion-related features in mediating the force-related 

responses.  

Nonetheless, our data convincingly showed that the motor system is recruited during observed 

object lifting and that its activity reflects a muscle specific force-related modulation. The potential role 

of M1 in representing the muscle- and force-related aspects of the observed movement has some 

functional significance that will be discussed in the following part. 

 

 

Functional significance of force-related activity modulations in M1 

Although perception and action were traditionally considered to be two distinct processes, a 

number of studies, using a variety of techniques, demonstrated ‘mirror’ activity in motor areas during 

the mere perception of others’ action (Rizzolatti & Craighero 2004;Fadiga et al., 2005). However, to 

date, different hypotheses exist concerning the role of this observation-to-execution matching system.  

On the one hand, it is proposed that mirror neurons contribute solely to motor planning or 

action preparation. Under this ‘motor’ hypothesis, activation of motor areas during movement 

observation is principally a motor resonant phenomenon (Jacob & Jeannerod 2005). However, the 

most widely accepted hypothesis argues that mirror neurons provide a representation of actions that 

allows the observer to ‘automatically resonate’ to observed actions in his own motor repertoire system, 

in order to understand or interpret the actions made by others (Gallese et al., 1996;Iacoboni et al., 

2005;Craighero et al., 2007;Rizzolatti & Fabbri-Destro 2008). In accordance to the latter hypothesis, 

we hypothesise that the reported force-dependent modulations of M1 activity may be functionally 
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relevant for inferring (‘understanding’) the grip force that is produced in the observed lifting actions 

(which in turn may contribute to the subjects’ ability to estimate the weight of the lifted object). 

Unfortunately however, no formal assessment of the individual subjects’ ability to judge the produced 

grip force was obtained such that no firm conclusions can be drawn on this point. 

Aside its functional relevance in action understanding, the finding of force-related M1 

activations may reveal further insights on how accurate force requirements are mapped within the 

observer’s motor system. From the execution experiment (exp. 2) it was shown that the muscle activity 

in the OP and ECR muscle was substantially higher for lifting a full compared to lifting a half full bottle. 

However, the elicited corticomotor responses differed only moderately between the ‘full’ and ‘half full’ 

observation condition and this difference did not reach statistical significance (experiment 2). This 

finding suggests that force encoding was more accurately represented during movement execution 

than movement observation, particularly when relatively large forces were applied, Similar results were 

revealed by a weight discrimination study whereby subjects observed grasp/lift actions of small objects 

with a weights range of 50 – 850g (increasing with steps of 200g) (Hamilton et al., 2004). Even though 

the objects’ weights were discriminated successfully, responses were fitted best by a quadratic 

regression, suggesting a ceiling effect for judging the highest weights (850 g). As such it can be 

tentatively hypothesised that a similar ceiling effect is reflected by M1 facilitation when considerably 

‘high’ grip forces were observed. However, it should be noted that other tasks such as weight 

discrimination based on the observation of whole-body lifting actions did not exhibit a similar ceiling 

effect. Instead, a linear relationship was found when lifting actions were observed for weights ranging 

from 3 to 27 kg (increasing with steps of 6 kg) (Runeson & Frykholm, 1981). These differences may 

relate to the fact that the optimal weight discrimination range might be different between muscles 

which develop relatively ‘weak’ maximal contractions (such as distal hand muscles involved in fine-grip 

force tuning) and muscles developing considerably ‘stronger’ maximal contractions (such as proximal 

arm muscles involved in whole body lifting actions). Nevertheless, future studies should be conducted 

to specifically address this hypothesis.  

 

In summary, the present study provides some exciting new evidence that resonant activity in 

motor areas is highly specified to map different features of observed actions. More specifically, data 

convincingly indicated that observation-induced facilitation of the observer’s primary motor cortex 
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reflects the muscular requirements of the observed movement, not only in terms of the muscle used in 

the observed motion, but also in terms of the force that is produced in the particular muscle.  
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FIGURE LEGENDS 

 

Figure 1.  

Experimental stimuli of experiment 1. 

A. Picture of the two objects grasped and lifted in front of the subject. The 500g “Heavy” object (left) 

was a typical brass balance weight. The 10g “Light” (right) object was a piece of ribbon cable. Both 

objects were grasped using the same grip hand shape.  

B. Illustration of events sequence during observation of the reach-grasp-lift action executed upon the 

heavy object: the actor started hand pronated, then reached to the object, grasped it with precision 

grip, lifted it and held it over the table during 1s. A TMS pulse was delivered during the lifting phase. 

Time-line provides the averaged intervals (mean ± std, n=7) between the main task events (button 

release, hand-object contact, lift onset, TMS pulse) for action upon both the heavy and the light object. 

 

Figure 2.  

Experimental stimuli of experiment 2. 

The experimental video clips showed a reach-grasp-lift action of a plastic drinking bottle with three 

different weights, i.e. an empty (0 kg), a half full (1 kg) and a full (2 kg) bottle. The actor entered the 

scene from the right side, reached to the object, grasped it with a whole hand grip and lifted it out of 

the scene in the vertical plane. TMS pulses were delivered at random time points during the bottle 

lifting phase.  

 

Figure 3.  

Results of experiment 1 

A. Individual mean MEP traces for the “Heavy” (black) and “Light” (grey) experimental conditions. 

Asterisks indicate significant differences (p<0.05). 

B. Averaged values (n = 7) of peak to peak amplitude MEPs recorded during observation of lifting the 

“Heavy” and the “Light” object. Whiskers indicate standard errors. Asterisks indicate significant 

differences (p<.05). Vertical bars denote ± standard errors. 

 

Figure 4.  
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Results of experiment 2. 

A. Averaged values (n = 5) of muscle activity (EMG) recorded during the execution of object lifting 

with a whole hand grip (expressed as a percentage of the subjects’ maximal voluntary contraction 

(MVC)).  

B. Averaged values (n = 12) of peak to peak amplitude MEPs recorded during the observation of 

object lifting with a whole hand grip. Lifting of three different weights was observed: an empty (0 kg), a 

half full (1 kg) and a full (2 kg) bottle. MEPs evoked from the OP and FCR muscle are presented. 

Whiskers indicate standard errors. Asterisks indicate significant differences ***p<.001 **p<.01; *p<.05. 

Vertical bars denote ± standard errors. 
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Figure 1.  
Experimental stimuli of experiment 1. 

A. Picture of the two objects grasped and lifted in front of the subject. The 500g “Heavy” object 
(left) was a typical brass balance weight. The 10g “Light” (right) object was a piece of ribbon cable. 

Both objects were grasped using the same grip hand shape.  
B. Illustration of events sequence during observation of the reach-grasp-lift action executed upon 
the heavy object: the actor started hand pronated, then reached to the object, grasped it with 

precision grip, lifted it and held it over the table during 1s. A TMS pulse was delivered during the 

lifting phase. Time-line provides the averaged intervals (mean ± std, n=7) between the main task 
events (button release, hand-object contact, lift onset, TMS pulse) for action upon both the heavy 

and the light object. 
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Figure 2.  
Experimental stimuli of experiment 2. 

The experimental video clips showed a reach-grasp-lift action of a plastic drinking bottle with three 
different weights, i.e. an empty (0 kg), a half full (1 kg) and a full (2 kg) bottle. The actor entered 
the scene from the right side, reached to the object, grasped it with a whole hand grip and lifted it 
out of the scene in the vertical plane. TMS pulses were delivered at random time points during the 

bottle lifting phase.  
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Figure 3.  
Results of experiment 1 

A. Individual mean MEP traces for the “Heavy” (black) and “Light” (grey) experimental conditions. 
Asterisks indicate significant differences (p<0.05). 

B. Averaged values (n = 7) of peak to peak amplitude MEPs recorded during observation of lifting 
the “Heavy” and the “Light” object. Whiskers indicate standard errors. Asterisks indicate significant 

differences (p<.05). Vertical bars denote ± standard errors. 
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Figure 4.  
Results of experiment 2. 

A. Averaged values (n = 5) of muscle activity (EMG) recorded during the execution of object lifting 
with a whole hand grip (expressed as a percentage of the subjects’ maximal voluntary contraction 

(MVC)).  
B. Averaged values (n = 12) of peak to peak amplitude MEPs recorded during the observation of 
object lifting with a whole hand grip. Lifting of three different weights was observed: an empty (0 

kg), a half full (1 kg) and a full (2 kg) bottle. MEPs evoked from the OP and FCR muscle are 
presented. Whiskers indicate standard errors. Asterisks indicate significant differences ***p<.001 

**p<.01; *p<.05. Vertical bars denote ± standard errors. 
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Learning the Nonlinear Multivariate Dynamics of
Motion of Robotic Manipulators

E. Gribovskaya , S. M. Khansari Zadeh , Aude Billard

Abstract—Motion imitation requires reproduction of a dynam-
ical signature of a movement, i.e. a robot should be able to encode
and reproduce a particular path together with a specific velocity
and/or an acceleration profile. Furthermore, a human provides
only few demonstrations, that cannot cover all possible contexts in
which the robot will need to reproduce the motion autonomously.
Therefore, the encoding should be able to efficiently generalize
knowledge by generating similar motions in unseen context.

This work follows a recent trend in Programming by Demon-
stration in which the dynamics of the motion is learned. We
present an algorithm to estimate multivariate robot motions
through a Mixture of Gaussians.

The strengths of the proposed encoding are three-fold: i) it
allows to generalize a motion to unseen context; ii) it provides fast
on-line replanning of the motion in the face of spatio-temporal
perturbations; iii) it may embed different types of dynamics,
governed by different attractors.

The generality of the method to estimate arbitrary non-
linear motion dynamics is demonstrated by accurately estimating
a set of known non-linear dynamical systems. The platform-
independency and real-time performance of the method are
further validated to learn the non-linear dynamics of motion
in an industrial six degree of freedom robotic arm and in a four
degree of freedom humanoid arm.

Index Terms—Non-Linear Autonomous Dynamical Systems
Robot Programming by Demonstration Learning by Imitation
Gaussian Mixture Model and Regression

I. INTRODUCTION

The versatility of tasks that modern robots should accom-
plish has forced researchers to consider alternative methods for
control. Designing task- and robot-specific controllers seems
nowadays a time-consuming and ineffective solution, and
preference gradually changes in favor of flexible and generic
control methods that can adapt to various tasks and robots’
geometries. If, in addition, the robot is expected to operate in
the vicinity of or in collaboration with unskilled human users,
control must be both intuitive and flexible to ensure safe and
easy operability by the human.

Programming by Demonstration (PbD) has appeared as one
way to respond to this growing need for intuitive control meth-
ods [Billard et al., 2008]. PbD designs user-friendly methods
by which a human teaches a robot how to accomplish a
given task, simply by demonstrating this task. One of the
requirements for such a teaching method to be effective is
that the number of training examples should remain small
(one considers between five and ten examples to be a bearable
number for the trainer). Consequently, PbD either relies on
prior knowledge to speed up learning, or results in a partial
representation of the task which can be refined later.

PbD operates at different levels of the task
representation: from copying low-level features of the
motion [Sternad and Schaal, 1999, Ude et al., 2004,
Calinon and Billard, 2008, Nguyen-Tuong et al., 2008,
Schaal et al., 2003] to inferring the user’s intention using
a symbolic representation [Demiris and B.Khadhouri, 2006,
Zollner et al., 2004]. In this paper, we focus on a low-level
representation of motions, therefore we further review work
related to this direction of PbD. Low-level representations
should determine the encoding of the demonstrated trajectories
of motion so that they can be easily modulated to enable
re-use of the skill in novel contexts. An overview of
requirements for effective movement encoding has been
summarized in [Ijspeert et al., 2001].

Most relevant to the present paper are the notions of
compactness and reusability of the representation, i.e. the
encoding should be easily transferrable to related tasks, and
the notion of robustness to perturbations, i.e. an ability of an
encoding to ensure that a motion may be quickly adapted to
perturbation and changes in a dynamic environment.

Dynamical Systems (DS) provide an effective and elegant
means of encoding motions, that fulfills the above three
criteria. DS encode trajectories through a time-independent
function that defines the temporal evolution of the motion.
Generalization of the motion to an unobserved part of the
space results immediately from the application of the function
to the new set of input variables.

In this paper, we consider the problem of estimating a time-
independent model of motion through a set of first order non-
linear multivariate dynamical systems. We exploit the strength
of parametric statistical techniques to learn correlations across
the variables of the system and show that this technique
allows the determination of a coarse representation of the
dynamics. We demonstrate advantages of such an approach
as an alternative to the time-dependent methods, by ensuring
robustness to external spatio-temporal perturbations through
on-line adaptation of the motion.

This paper is divided as follows. Section II reviews related
work on motion learning and estimation of dynamical systems.
Section III-A starts with a formalization of the problem at hand
and the particular approach of this work. This is followed by a
technical description of the modeling approach: Section III-B
introduces the learning approach to estimate the dynamics,
while Section III-C presents an iterative algorithm to improve
stability of the learned dynamics. Finally, in Section IV, we
validate the method by estimating the motion dynamics from
trajectories generated with given dynamical laws; in this way
we may systematically verify approximation qualities of the
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method. We, further, show how the same framework can be
used to learn the dynamics of motion of a 4 degree of freedom
humanoid robot arm and a 6 degree of freedom industrial arm.
The legend used in graphs throughout the paper is summarized
in Figure 1. The glossary is in Table I.

II. RELATED WORK

To better delineate this paper’s particular contribution to
both machine learning and robotics, we focus our review on
two major themes. First, to situate the dynamical systems
approach taken in our work, we make a brief historical tour
of the large volume of literature on modeling robot motion,
contrasting time-dependent and time-independent representa-
tions. We then turn to the problem of estimating arbitrary
dynamical systems and introduce the particular statistical
technique used here. We briefly summarize the broad division
across parametric and non-parametric statistical methods, and
situate our choice of parametric method in this context.

A. Motion Learning

A core issue within robot control is ensuring that, if
perturbed, the robot’s motion can be rapidly and on-the-fly
recomputed to ensure that the robot ultimately accomplishes
the task at hand. Perturbations may lead the robot to either
depart from its original trajectory (e.g. when slipping or hitting
an object) or be delayed (e.g. when slowed down because of
friction in the gears). In the rest of this paper, we will refer to
the former type of perturbations as spatial perturbations and
to the latter as temporal perturbations.

The vast majority of work on motion learning has addressed
essentially the problem of being robust to spatial perturbation.
Very little work has been yet done on handling temporal
perturbations, which is core to the model we develop here.
Next, we review these different approaches.

B. Time-dependent Modeling Approaches

Traditional means of encoding trajectories are based on
spline decomposition after averaging across training trajec-
tories [Hwang et al., 2003, Andersson, 1989, Yamane et al.,
2004, Aleotti et al., 2005]. Spline decomposition remains a
powerful tool for quick trajectory formation. It is, however,
heavily dependent on a heuristic for segmenting and aligning
the trajectories. Furthermore, spline representation, not being
statistically-based, may have difficulties in coping with noise
in data that is inherent in the robotic application.

Non-linear regression techniques were proposed as a statis-
tical alternative to spline-based representation [Calinon et al.,
2007, Schaal and Atkeson, 1998, 1994, D. et al., 2008]. These
methods allow the systematical treatment of uncertainty by
assuming the noise in data and, therefore, by estimating
actual trajectories as a set of random variables with learned
parameters.

However, similarly to spline-based approaches, regression
techniques depend on an explicit time-indexing and virtually
operate in ”open-loop”. The lack of any kind of feedback
makes regressions sensitive to both temporal and spatial per-
turbations. To compensate for this, one needs to introduce an

external mechanism to track potential deviations from the de-
sired trajectory during reproduction. Adaptation to deviations
then relies on a heuristic to re-index the new trajectory in
time or extrapolate in space. Such re-indexing or extrapolation
often comes at the cost of deviating importantly from the
desired velocity and acceleration profile, making the motion
look ”unnatural”. Furthermore, finding a good heuristic is
highly task-dependent and becomes particularly not-intuitive
in multidimensional spaces [Schaal et al., 2003].

a 2D projection of a Gaussian function

(a two-standard deviation radius is chosen)

Training set 

Trajectories of learned dynamics

Trajectories of an actual dynamics

Attractor

Fig. 1. Legend for the Figures in the paper.

Time-independent models, such as autonomous dynamical
systems (to which we will further refer to as DS), were
recently advocated as an alternative to the above approaches1.
Models based on DS are advantageous in that they do not
depend on an explicit time-indexing and thus provide a closed-
loop controller, while being able to model arbitrary non-linear
dynamics. Removing the explicit time-dependency comes at a
cost, as it re-introduced an old problem, namely the need to
consider stability of the control policy.

Next, we review current approaches to DS modeling of robot
motion and point out the limitations of these methods. For a
detailed discussion on advantages and disadvantages of dy-
namical systems encoding of motion, see also [Ijspeert et al.,
2001, Schaal et al., 2003, 2001, Schoner and Santos, 2001].

C. Dynamical Systems Modeling of Motion

A number of recent approaches in PbD, including our
prior work, investigate the use of dynamical systems for
modeling robot motions [Ijspeert et al., 2001, Righetti et al.,
2006, Dixon and Khosla, 2004, Ijspeert and Crespi, 2007,
Hersch et al., 2008]. While [Dixon and Khosla, 2004] focuses
on fitting the parameters of a first-order linear dynamical
system into training data, the other above works tackle a
problem of modulating a predefined linear dynamics with a
non-linear estimate of a trajectory [Hersch et al., 2008] or
a velocity profile [Ijspeert et al., 2001, Righetti et al., 2006].
The authors choose an uni-variate spring and damper system
as an underlying linear dynamics. In such a way, they avoid
an issue of stability of approximation that may occur if one
learns an actual dynamics from data. However, this solution
comes with its drawbacks: (1) uni-variate encoding discards
information about correlation between degrees of freedom, that
may be crucial for faithful reproduction (see Figure 23 for

1DS formulation embeds the time-dependency of a system in the math-
ematical formulation of the problem by using time derivatives of the state
variables.
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Fig. 2. A two-dimensional theoretical dynamical system is estimated from
five training samples (dotted lines). using Dynamical Motion Primitives
[Ijspeert et al., 2002](red solid line) and the method proposed in this paper
(blue solid line). As approximation with Dynamical Motion Primitives re-
quires combining statistical results with a predefined dynamics, it may deform
an actual path to follow, as it can be seen on the graph.

illustration of the uni-variate encoding problem). (2) Coupling
of the output of a predefined linear DS with a regression
estimate makes the overall system dependent on the temporal
synchronization between the two signals and thus in effect
time-dependent (see Table VI for a formal comparison between
the proposed approach and the work [Ijspeert et al., 2001]). To
handle temporal perturbations, one would need a heuristic to
maintain the synchronization. This would, however, no longer
guarantee that the overall system is globally asymptotically
stable. (3) By ensuring that the stable DS takes precedence
over the estimate when coming close to the attractor or
after a given time period, one can show global stability of
the complete estimate [Ijspeert et al., 2002]. In effect, the
global dynamics of motion is increasingly dominated by the
stable linear dynamical system, hence leading the motion to
progressively depart from the learned dynamics. This effect
is illustrated in Figure 2, where we see that the trajectory is
distorted as the system approaches the target. To ensure that
the modulation still influences the dynamics of the motion
when approaching the target, the method relies on using a
large number of Gaussians spread across the data points.

In this paper, we develop an iterative procedure to learn
a statistical estimate of an arbitrary multivariate autonomous
dynamical system. We discuss the problem of stability of a
learned estimate and propose an empirical procedure to verify
stability and the region of applicability of the estimate. This
relieves us from the need of using another a priori stable
dynamical system and ensures robustness against spatial and
temporal perturbations.

D. Estimating a Dynamical System

Data-driven methods for estimating dynamical systems con-
sider multivariate input-output data as instances of a dynamical
system and seek an estimate of the model that relates best
these pairs of datapoints. Building a local approximation of
the dynamics has been first reviewed within the time series
analysis [Priestley, 1980, Chamroukhi et al., 2009, Ljung,

2004]. These works consider solely uni-dimensional data with
a major motivation of predicting time series.

Analysis of dynamics has gradually shifted to state-space
representation as it allows a representation of more sophis-
ticated phenomena [Aoki, 1990, Crutchfield J.P., 1987]. The
vast majority of these works focus on estimating linear
dynamics [Dixon and Khosla, 2004, Ryoung K. Lim, 1998],
a restrictive assumption for robotic applications. Recently,
with the growing interest in chaos theory, more developed
approaches have been proposed that allow approximation of
complex dynamics [Crutchfield J.P., 1987, Wang et al., 2008].
While, several optimistic results in simulations have been
presented [Carroll, 2007, Xie and Leung, 2005], their appli-
cability to practical tasks with a small number of observed
data containing noise remains to be verified.

The major body of numerical approaches of non-linear
dynamical systems perform function approximation using
different orthogonal polynomials (Chebyshev polynomials,
B-splines [Lee, 1986], Radial Basis Functions [Buhmann,
2003] (RBFs)). Recently, many works have addressed the
approximating properties of RBFs [Tomohisa et al., 2008,
Travis et al., 2009, Wei and Amari, 2008]. RBFs have been
proved to form universal approximators of any function on a
compact set [Park and Sandberg, 1991]: any level of precision
of the approximation may be achieved by considering an
exhaustive number of basis functions; however, the quality of
the approximation heavily depends on tuning a considerable
amount of parameters. Thus, the problem of determining a
tuning procedures optimum according to different criteria is
a recurrent subject in the domain [Buhmann, 2003]. Fur-
thermore, as the approximation with RBFs falls naturally
into the category of non-parametrical methods discussed next,
they suffer from the same types of limitations: RBFs better
suits for approximation of uni-variate signals and quality of
approximation rapidly deteriorates with an increase in the
number of dimensions.

E. Statistical Encoding

Classically, the whole body of statical methods can be
broadly divided into parametric and non-parametric ap-
proaches.

Non-parametric methods used in robot motion estimation
include k-nearest neighbors [Moore, 1990], Gaussian Pro-
cesses [Deisenroth et al., 2009, Nguyen-Tuong et al., 2008],
Locally Weighted Regression, [Hardle, 1991, Muller, 1988,
Schaal and Atkeson, 1998, 1994] and a combination of these
[Nguyen-Tuong et al., 2008]. Non-parametric methods are
advantageous over parametric methods as they make little
assumptions about the form of the underlying distribution
function to estimate. Moreover, due to the local nature of their
estimate, non-parametric methods are well suited for accurate
data fitting in low-dimensional spaces [Schaal and Atkeson,
1998, 1994]. Initially proposed for uni-dimensional problems,
the above non-parametrical methods suffer from the curse of
dimensionality [Bellman, 1957]: sparsity of training data in
high-dimensional spaces makes accurate estimation of param-
eters almost impossible. Parametric methods, in contrast, are
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better suited to model a multivariate dataset. They, however,
rely on heuristics to choose the underlying parameters effi-
ciently.

The Gaussian Mixture Models (GMMs) and based on them
Gaussian Mixture Regression (GMR) are parametric methods.
They are thus better suited for regression on multi-dimensional
data [Sung, 2004]. Learning with GMM is classically done
using Expectation-Maximization (EM), the iterative algorithm
that optimizes the likelihood of the mixture of Gaussians over
the data. Optimal performance relies, however, on choosing
the number of Gaussians and on the stopping criterion of
EM (see [McLahlan and Peel, 2000] for a review). While
several methods have been proposed to automatically estimate
these two parameters, with the Bayesian Information Criterion
(BIC2) being the most generic, GMM estimation using EM
may lead to suboptimal results and remain very sensitive to
the initialization conditions. Here, we show that, for both our
problem at hand and in practice, these known limitations are
not an impediment and that an iterative method for choosing
the number of Gaussians leads to good performance. Most
importantly, we show that the method converges quickly and
relies on very few parameters in comparison to parametric
methods.

III. METHOD

A. Problem Statement

Consider that the state3 of our robotic system can be unam-
biguously described by a variable ξ and that the workspace of
the robot forms a sub-space X in RN .

Consider further that the state of our robotic system is
governed by an Autonomous Dynamical System 〈X , f, T 〉 (as
per Definition 1-2, Table I). Then, for all starting locations
ξ0 ∈ X , the temporal evolution of our robotic system is
uniquely determined by the state transition map (Definition
2, Table I) f(t, t0, ξ0) = ξ(t), ∀ξ0, ξ ∈ X .

Let us further assume that the state transition map f is a
non-linear continuous and continuously differentiable function
and that the system is driven by a first order differential
equation4 with a single equilibrium point ξ̄, such that:

∀t ∈ T = [t0;∞]; [ξ; ξ̇] ∈ X ⊂ RN (1)

ξ̇(t) = f(ξ(t)) (2)
˙̄ξ = f(ξ̄) = 0. (3)

Let the set of M N-dimensional demonstrated datapoints
{ξi, ξ̇i}M

i=1 be instances of the above motion model. The
problem consists then of building an estimate f̂ of f based on

2BIC introduces a penalty term for increasing the number of parameters in
the model over the resulting improvement in the modeling performance.

3The state of a dynamical system represents the minimum amount of
information required to describe the effect of past history on the future
development of this system [Hinrichsen D., 2000].

4Considering solely first order dynamical systems is not restrictive to
learning only first order relationships between trajectory and velocity, as one
can always convert dynamics of an arbitrary order into a canonical system of
first order ODEs.

TABLE I
GLOSSARY OF DEFINITIONS

Definition 1: The state-space X ⊂ RN includes all possible instantiations of ξ,
such that ξ(t) ∈ X at each time step t ∈ T = R+ = [0;∞].

Definition 2: A dynamical system is the tuple 〈X , f, T 〉, with f : t → ft a
continuous map of X onto itself.

Definition 3: A dynamical system is differentiable if ∃f : T ×X → X such that
for all t0 ∈ T, ξ0 ∈ X the problem:

ξ̇ = f(t, ξ(t)), t ≥ t0, t ∈ T

ξ(t0) = ξ0

has a unique solution.

A dynamical system governed by a time-independent transition map with
f(t, ξ(t)) , f(ξ(t)) is an Autonomous Dynamical System.

Definition 4. An equilibrium state ξ̄ ∈ X of a dynamical system is such that

f(t, t0, ξ̄) = ξ̄.

Definition 5. An equilibrium state ξ̄ ∈ X is stable if ∃ε > 0 and δ = δ(ε) such
that

∀ξ0 ∈ B(ξ̄, δ) ⇒ f(ξ0) ∈ B(ξ̄, ε),

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 5. An attractive state is an equilibrium state ξ̄ of a local flow, if there
exists ρ > 0 such that:

∀ξ0 ∈ B(ξ̄, ρ) ⇒ lim
t→∞

f(ξ0) = ξ̄.

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 6. An equilibrium point ξ̄ is asymptotically stable if it is both stable and
attractive.

Definition 7. A set ∆ ⊂ X is a Region of Attraction (or Basin of Attraction) of an
equilibrium ξ̄ if:

∆(ξ̄) = {ξ0 ∈ X; lim
t→∞

f(ξ0) = ξ̄}

See Figure 23-II for illustration.

Definition 8. A dynamical system is globally asymptotically stable at the equilibrium
ξ̄ if ξ̄ is an asymptotically stable attractor and ∆ ≡ X .

the set of demonstrations. To this end, we will approximate
the function in a subregion5 C ⊂ X , so that:

f̂ : C → C (4)

f̂(ξ(t)) u f(ξ(t)),∀ξ ∈ C.

C is further referred to as the region of applicability of a
learned dynamics.

Without loss of generality, we can transfer the attractor to
the origin6, so that ξ̄ = 0 ∈ C ⊂ X is now the equilibrium
point of f and by extension of its estimate f̂ , i.e. f̂(0) =
f(0) = 0. If C is contained within the region of attraction
∆ of ξ̄ (see Definition 7, Table I), then the estimate f̂ is
asymptotically stable at ξ̄ in C and any motion initiated from
ξ(t0) ∈ C will asymptotically converge to the target ξ̄.

5Estimating the dynamics in the whole state-space X would be practically
infeasible due to the excessive number of demonstrations that this would
require.

6To simplify the notation, we keep the same notation for the domains C
and X after translation at the origin.
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B. Approximating the Dynamics with Gaussian Mixture Re-
gression

To construct f̂ from the set of demonstrated trajectories,
we follow a statistical approach and define f̂ as a non-linear
combination of a finite set of Gaussian kernels, using Gaussian
Mixture Models (GMM).

GMMs define a joint probability distribution function
P(ξi, ξ̇i) over training set of demonstrated trajectories
{ξi, ξ̇i}, i = 1..M , M is the number of demonstrations, as a
mixture of a finite set of K Gaussians G1..GK (with µk and
Σk being the mean value and covariance matrix of a Gaussian
Gk):

P(ξi, ξ̇i) =
1
K

K∑

k=1

Gk(ξi, ξ̇i; µk, Σk) (5)

and

µk = [µk
ξ ; µk

ξ̇
] and Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(6)

Where each Gaussian probability distribution Gk is given
by:

Gk(ξi
t, ξ̇

i
t;µ

k,Σk) = (7)
1√

(2π)2d|Σk|e
− 1

2 (([ξi
t,ξ̇i

t]−µk)T (Σk)−1([ξi
t,ξ̇i

t]−µk)).

The model is initialized using the k-means clustering al-
gorithm starting from a uniform mesh and refined iteratively
through Expectation-Maximization (EM) [Dempster et al.,
1977].

To generate a new trajectory from learned GMMs, one can
then sample from the probability distribution function given
by Eq.5. This process is called Gaussian Mixture Regression
(GMR).

Taking the posterior mean estimate of P(ξ̇|ξ), the estimate
of our function ˙̂

ξ = f̂(ξ) can then be expressed as a non-linear
sum of linear dynamical systems, given by:

˙̂
ξ =

K∑

k=1

hk(ξ)(Akξ + Bk), (9)

where Ak = Σk
ξ̇ξ

(Σk
ξ )−1, Bk = µk

ξ̇
− Akµk

ξ ,

hk(ξ) = P(ξ;µk
ξ ,Σk

ξ )∑K
k=1 P(ξ;µk

ξ ,Σk
ξ )

, hk(ξ) > 0, and
∑K

k=1 hk(ξ) = 1.

Such a rewriting will prove useful when studying the
stability of the estimate, as will be discussed in Section III-C.

A geometric illustration of the GMR inference in the case
of single Gaussian is presented in Figure 3 and the GMR pro-
cedure is summarized in Table II. Figure 4 further illustrates
the encoding process from GMM to GMR for a non-linear
dynamical system with a single attractor.

TABLE II
GAUSSIAN MIXTURE REGRESSION

Let us assume that we can for each input datapoint ξI match an output datapoint
ξO , the joint probability of input and output data is then modeled using Gaussian
Mixtures. The probability that a datapoint η = [ξO; ξI ] belongs to the GMM is
defined by

P(η) =

K∑

k=1

πk N (η; µk, Σk) =

=

K∑

k=1

πk
1√

(2π)D|Σk|
e
− 1

2

(
(η−µk)>Σ−1

k
(η−µk)

)

where πk are prior probabilities and N (µk, Σk) are Gaussian distributions defined
by centers µk and covariance matrices Σk , where input and outputs components are
represented separately as

µk =

[
µIk
µOk

]
, Σk =

[
ΣIk ΣIOk

ΣOIk ΣOk

]
.

Gaussian Mixture Regression allows to compute for a given input variable ξI and a
given component k, the expected distribution of ξO as:

P(ξ
O|ξI , k) ∼ N (η̂k, Σ̂k), where

η̂k = µOk + ΣOIk (ΣIk )−1(ξI − µIk ),

Σ̂k = ΣOk − ΣOIk (ΣIk )−1ΣIOk .

where hk = P(k|ξI) is the probability of the component k to be responsible for
ξI

hk =
P(k)P(ξI |k)∑K
i=1 P(i)P(ξI |i) =

πk N (ξI ; µIk , ΣIk )∑K
i=1 πi N (ξI ; µIi , ΣIi )

.

Alternatively, by using the linear transformation property of Gaussian distributions,
the conditional expectation of ξO given ξI can be defined approximately defined
by a single normal distribution with the parameters:

µ̂ =
K∑

k=1

hk µ̂k , Σ̂ =
K∑

k=1

h
2
k Σ̂k. (8)

Fig. 3. The geometric illustration of Gaussian Mixture Regression inference
(see also Table II). GMR approximates our dynamical systems through a
non-linear weighted sum of local linear models: each regression matrix
Ak = ΣOIk (ΣIk)−1 defines coefficients of the local linear fit. Here, we
display the effect of fitting with a single Gaussian a pair of input and output
signals ξO

i ∈ RM , ξI
i ∈ RP respectively. The projection of the regression

signal to the subspace spanned by {ξO,m
i , ξI,p

i } is a line with a slope given
by the elements Amp

k of the regression matrix (i.e., ξO,m
i = Amp

k ξI,p
i ).

The mixture of covariance matrix in GMM defines a probabilistic envelope
around the regression signal. Thus, to each input ξI

i is associated a probability
distribution function for output P(ξO

i |ξI
i ), with mean ξO

i . In the present
work, we exploit the envelope to determine the boundaries for our generalized
inverse kinematics solution when the solution is not exactly the regression
signal ξO

i .
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I. Encoding of aritrary dynamics with GMM/GMR

II. Verification of spurious attractors and a considered region on a mesh
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Fig. 4. I. Illustration of a GMM/GMR encoding of an arbitrary dynamics. Top
left: Two-dimensional projection of the data with superimposed the Gaussian
Mixture envelope. Top right: All trajectories regenerated using Gaussian
mixture regression when starting from 20 different locations in space converge
correctly to the the origin, the attractor of the system. Bottom left and right: in
blue, the region of applicability C that embeds all demonstrated trajectories.
To empirically determine if C is a region of attraction, C is sampled equally
and one measures if all trajectories originating from each of sampled point
converges correctly to the target.

C. Stability Analysis

Stability analysis of linear dynamical systems is well-
studied subject [Khalil, 1996]: one either constructs a Lya-
punov function for the system or analyzes the eigenvalues of
the control matrix.

In contrast, there is no unique method to analyze the stabil-
ity of non-linear dynamical systems and theoretical solutions
exist only for particular cases. Classically, stability analysis
of non-linear dynamical systems is performed in two steps:
first, the system is linearized in a neighborhood around the
points of interest (the attractors) and their asymptotic stability
is verified; second, analysis of the region around the attractors
is done to determine the extent of the region of attraction.

Methods to analytically estimate the regions of attraction
(see Definition 7, Table I) are often based on the construction
of a Lyapunov function gradually expanding its region of
validity [Bai et al., 2007, Giesl, 2008, Genesio et al., 1985].
Such a procedure however produces a rather coarse estimation
of the region of attraction and may fail to identify regions with
non-convex boundaries. Alternative approaches take a geomet-
rical perspective by reversing the flow of motion (by analyzing
a dynamical function with a opposite sign) starting from the at-
tractor and finding repellers and boundaries for a region of at-
traction from the reversed trajectories [Loccufier and Noldus,
2000]. These methods are more accurate but require consid-
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Fig. 5. Improvement in the stability of approximation with the increase the
number of Gaussian components

erable computation time, a known structure of an attractor’s
landscape (number of existing attractors and repellers).

Theoretical estimation of the region of attraction in the
general case of multivariate non-linear systems is thus still an
open problem. In practice, one relies on numerical procedures
for evaluating whether a given region of applicability is a
region of attraction. Here, we follow such an approach.

We start from the observation that GMR gives us a non-
linear weighted sum of linear dynamical systems; see Eq. 9.
Stability of the system is governed by the GMR parameters
(the matrices Ak, Bk and mixing coefficients hk), which
are learned during training. Since the stability of the learned
dynamics depends on the parameters of the training algorithm
(Expectation Maximization) in Section III-D) we will show
that a modification of the GMM procedure to build the mixture
results in an estimate locally stable around the target.

1) Local stability at the origin: Following from the hy-
pothesis that the origin is an attractor of the true control
law ξ̇ = f(ξ(t)), we must ensure that its estimate given
by (9) is also stable at the origin. Recall that for a point
to be an attractor of the system (see Definition 5, Table I),
there must exist a region around it where all trajectories are
asymptotically stable.

Let us assume that in the neighborhood of the origin the
system is governed solely by the last Kth gaussian 7. In other
words, let us assume there exists a neighborhood of the origin,
where for points ξ in this neighborhood all mixing coefficients
expect the Kth are zeros: ∃B(ε)such that ∀ξ ∈ B(ε) hk(ξ) '
0 k = 1..K − 1, where B(ε) is a hypersphere of radius ε. In
this region, the system governed by Eq.9 reduces then to:

ξ̇ = Aξ + B (10)

with A = ΣK,ξ̇ξΣ
−1
K,ξ and B = µK,ξ̇ −AµK,ξ.

The system above, driven by Eq. 10, will be asymptotically
stable if the eigenvalues of the matrix A are all strictly
negative. For a m × m-dimensional matrix to be negative
definite, all its i-th order leading principal minors should be

7In practice, as we seek to avoid the over-fitting, the Gaussians are
sufficiently set apart, therefore at the origin the influence of all other Gaussians
except for the last one becomes numerically zero.
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negative if i is odd and positive if i is even; stability, therefore,
is guaranteed when the following set of constraints is satisfied:

‖Aξ̇ξ,[1:i,1:i]‖(−1)i < 0 ∀i = 1, ..., m that is satisfied if
(11)

(1) aii < 0 and (2) aij ¿ aii ∀ i, j = 1, ..., m and i 6= j,

(12)

where Aξ̇ξ = {aij}N
i,j=1.

Figure 6 illustrates geometrically the effect of the local
stability condition on the dynamics of motion and the form
of the Gaussian. When projected on the {ξi, ξ̇i} axes, the
Gaussian corresponds to an ellipse with the main axis forming
a negative slope. This results in a homogenous flow of motion
toward the attractor along all dimensions.

For EM to result in such an elongated Gaussian, training
data must homogeneously cover the space of motion around
the target. This means that one should show the robot how to
approach the target by uniformly starting all around the target.
In practice, because the training set is finite and gives only
a partial coverage of the state space, GMM estimate will be
imprecise, resulting in both a shift of the slope of the Gaussian
and a shift of the attractor’s location, see Figure 6. Additional
measures should, thus, be taken to guarantee the convergence
to the target, which we describe next.

D. Practical approach to ensuring and analyzing stability

1) Ensuring local stability empirically: To overcome the
lack of uniformly distributed training data around the origin
in the experiments presented here, we generate additional so-
called synthetic data by rotating a subset of training data,
selected within a small neighborhood, around the origin. In
addition, we set the center of the last Gaussian of the GMM
at the target, i.e. at the origin (µK,ξ = µK,ξ̇ = 0), and do not
update this center during training. This procedure is illustrated
in Figure 6.

Fig. 6. Influence of the accurate positioning of the last Gaussian at the
origin. Top: the last gaussian is positioned at the origin through addition of
synthetic datapoints, that guarantees asymptotic stability of the system in the
neighborhood of the origin, as can be seen from the vector field trajectories
(the very right graph). Bottom: however, the real data asymptotically converge
to the origin (the very left graph), the statistical EM does not automatically
position the last Gaussian at the origin, that leads to the convergence to the
spurious attractor (the very right graph).

The system driven by the truncated dynamics is given by
Eq.(10) and a system generated through this procedure is
ensured to be asymptotically stable within a neighborhood
around the origin. Next, we describe a procedure by which
we can empirically estimate boundaries of the region of
applicability C.

TABLE III
MODEL TRAINING

1 Collect a dataset of demonstrations and initialize C (see Section III-D2).

2 Add synthetic data around the target

3 Choose an initial number of GMM components K
(K = 2 in the experiments reported here)

4 LOOP until stable approximation is found

5 Train the joint probability P(ξ, ξ̇) with Expectation Maximization
[Dempster et al., 1977]:

6 Verify local stability at the origin Eq. (12)

6 IF (the origin is not asymptotically stable)
THEN increase the number of GMM components K = K + 1

ELSEIF (estimate of C does not include all training trajectories) OR
(∃ spurious attractors inside the region C)
THEN add training data AND retrain

END

8 END

2) Determining the region of stability empirically: As men-
tioned in Section III-A, estimating dynamics in the whole
state-space X is impractical. Instead, we will estimate stability
locally within a subset C ⊂ X . C includes training data points
and lies inside the robot’s workspace. Initialization of C is
data-driven: size of C along each dimension is defined by the
amplitude of the training dataset along this dimension.

After training, the initial guess regarding C should be
restimated, to empirically verify that C is a region of attraction
of the origin and that it does not include any other attractors
. We follow a numerical procedure in which we integrate
trajectories forward starting from a uniform mesh defined on
the boundaries, and verify that all the trajectories converge
toward the origin.

To do this, we construct a mesh M covering boundaries
of C: M(τ1..τN ) = {(ξ1

i1
..ξN

iN
) = (i1τ1..iNτN ), i1 =

1..n1, ..., iN = 1..nN}, where τ1 = c1/n1 ..τN = cN/nN ,
c1 .. cN – size of each of dimensions of C; n1.. nN – size of
the mesh along each of dimensions in RN (see Figure 4-II).

We integrate trajectories starting from each node (ξ1
i1

..ξN
iN

)
on the mesh M and verify that the velocity is zero only at the
origin, thus ensuring that only the origin of the system is an
attractor. If this condition is satisfied all trajectories starting
inside C will not leave the boundaries, due to the properties
of differential equations.

To improve stability, we increment the number of Gaussians
K and re-estimate the system using EM. Augmenting the
number Gaussians allows a more precise encoding of the
dynamics locally along the trajectory; see Figure 5. Since
instabilities result often in the motion exiting the desired
trajectory (e.g. if there are sharp turns in the trajectory that
have been poorly approximated by the mixture), increasing
the granularity of the encoding ensures that the system will be
better guided along the various non-linearities of the trajectory.

Table III summarizes the steps of the complete procedure by
which we iteratively test and re-estimate the system to improve
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and ensure local stability within the domain C.

IV. EXPERIMENTAL RESULTS
To validate the performance of the proposed method itself

without blurring it with noise inherent to human demonstra-
tions, we first tested its ability to reconstruct given theoretical
dynamical systems. With a known system we may generate a
clean training set, learn an approximation of the dynamics and
further compare how well the learned dynamics approximate
the real one.

Further, we verify the applicability of the method to robotics
by teaching two robots manipulation tasks. We report on each
of these next.

A. Learning Theoretical Dynamics

The method was validated to estimate four two-dimensional
dynamical systems (Systems 1-4) and one three-dimensional
dynamical system (System 5), each of them contains different
number of attractors and exhibits different stability properties.
In each case, we generated six trajectories using the theoretical
dynamics and used these for training the GMM. When the
dynamical system had more than one asymptotically stable
attractor, trajectories were generated only in the subpart of the
state space around one of them.

Note, the legend for Figures 7 - 10 is described in Figure 1.
Each of the figures encompasses, in the first row, plots giving
a general view of the original dynamics with vector fields (a)
and three-dimensional phase plots (b-c), in the second row, a
view of the GMM superimposed to the training data, and in
the 3rd row, vector field (a) and phase plots (b-g) of the the
estimated dynamics superimposed on the original dynamics.

System 1.

ẋ1 = −x1 + 2x2
1x2; (13)

ẋ2 = −x2.

The system has a single locally asymptotically stable equi-
librium point at the origin. We approximate the dynamics of
this system in a region [−4; 0] × [0; 2], where it is locally
asymptotically stable. Results are presented in the Figure 7.

System 2

ẋ1 = 700− 2x1 + 200x2e
25x1−104

x1 ; (14)

ẋ2 = 1− x2 − x2e
25x1−104

x1 ;

The system has two equilibrium points – one asymptot-
ically stable (x1 = 335; x2 = 0.089) and one unstable
(x1 = 489; x2 = 0.5). We approximate the dynamics in the
region [0; 400] × [−2; 2], where it is locally asymptotically
stable. Results are presented in Figure 8.

System 3

ẋ1 = −x2; (15)

ẋ2 = x1 − x3
1 − x2;

The system has three equilibrium points - two unstable
(x1 = −1; x2 = 0 and x1 = 1; x2 = 0) and one asymptotically
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Fig. 7. System 1. The proposed method encodes this system with 7
Gaussians; the learned system exhibits good precision in the area covered by
demonstrations, outside this area the precision is also admissible except for a
region in the direct proximity to y-axis, where actual trajectories represent an
excess curvature as approaching to the equilibrium, e.g., a trajectory starting
at the bound x2 = 2. In this region, a flat part of trajectories is reproduced
well, though the steep parts that were not demonstrated are attracted towards
the region covered by the training set.
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Fig. 8. System 2. As the behavior of the system in the considered area is
relatively simple, 2 Gaussians are sufficient to achieve the good performance,
even in areas unseen during demonstration. Interestingly, the learned dynamics
is extrapolated very well beyond the area covered by the training set.
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Fig. 9. System 3. Despite manifest non-linearity in the trajectories, the
dynamics is successfully approximated with 6 Gaussians. Note, even unseen,
circular shape trajectories (starting around x2 ≈ 0) are reproduced correctly
in both position and velocities spaces.
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Fig. 10. System 4. The system is strongly non-linear, 13 Gaussians are
necessary to achieve a good precision in the considered region. Complex
dynamics and increased number of Gaussians lead to less strong generalization
abilities of the method. Indeed, trajectories started beyond the region covered
by the training set tend to depart from the real trajectories generated by the
dynamics, it is particularly noticeable in the velocity space, see section III-(g).
However, even in this non-trivial case the system generate admissibly good
results from few demonstrations.

stable x1 = 0; x2 = 0. We approximate the dynamics of this
system in a region [−1.5; 1]× [−1.5; 0.5], where it is locally
asymptotically stable. Results are presented in Figure 9.

System 4

ẋ1 = −x1; (16)
ẋ2 = −x1 cosx1 − x2;

The system exhibits strong nonlinearity due to the cosine term;
the system is globally asymptotically stable and converges
asymptotically to the origin. We approximate the dynamics of
this system in a region [−20; 0]×[−4; 4]. Results are presented
in Figure 10.

System 5

ẋ1 = −x1 − x2 + x2
3; (17)

ẋ2 = x1 + 10 cos x2 ∗ x2 − x2
3;

ẋ3 = x1 + 2x2 − x3;

Locally asymptotically stable three-dimensional dynamics

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction
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Fig. 11. System 5. Strongly non-linear 3D dynamics. In this case, a slight
increase in a number of demonstrations allows for accurate approximation
and generalization.

with a single attractor at [12.98;−7.75;−2.5213]. We approx-
imate the dynamics of this system in a region [−20; 30] ×
[−11;−5] × [−10; 2]. Results of the learning process are
presented in the Figure 11.
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1) Quantification and discussion of results: Quantification
of results achieved on both theoretical systems and actual
robotic motions are presented in Table IV. As it can be seen
all systems permit coarse representation with a relatively small
number of Gaussians, moreover such a sparse representation
achieves good precision in reproducing the actual dynamics.
Furthermore, as shown in Figures 7-11, the system can gener-
alize outside the training domain. This property is particularly
useful for practical applications as this allows to predict the
behavior of the system outside the region covered during
training, hence reducing the amount of training data required.
In the examples covered here, only 6 training trajectories were
required in each case.

−25 −20 −15 −10 −5 0 5
−35

−30

−25

−20

−15

−10

−5

0

5

10

15  

x1

 

x
2

−600 −400 −200 0

Fig. 12. Extrapolation properties of the GMMs encoding. A color map
reflects changes in values of the the likelihood (18) of datapoints, the dark-red
area represents an area of the most reliable inference regarding the velocity.
For reconstructed trajectories starting outside this area, the deviation from the
actual dynamics may be considerable. Interestingly, in the region of attraction
of the origin, trajectories are strongly attracted towards a region covered by the
training set. It is a useful property for practical applications as this allows to
predict the behavior of the system outside the region covered during training,
hence reducing the amount of training data required.

Note that, since the dynamics is learned from data covering
only a subpart of the domain, it does not necessarily have the
same attractor landscape and the region of attraction across the
complete domain as the original system, even if it accurately
approximates the original system locally. For example, in
System 3, the original dynamical system has three equilibrium
points, while its approximation has a unique asymptotically
stable equilibrium. To overcome this, one may provide addi-
tional demonstrations covering dynamics in the neighborhood
of the other equilibriums: Figure 15 presents results of learning
the dynamics around the two different attractors of System
5. The demonstrations were provided in the neighborhood
of the two asymptotically stable attractors; during learning,
positions of two Gaussians were fixed on the attractors, and the
algorithm was running to verify local asymptotical stability of
both attractors. The regions of approximation C were analyzed
separately for each attractors. The learned system managed

to accurately grasp the complex dynamics, further, it allowed
to separate the two flows of trajectories leading to different
attractors based on the initial conditions of motion.
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Fig. 13. Robustness to perturbations. The target is shifted several times (to
positions 2, 3, 4) after the onset of motion.
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−30
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Fig. 14. Numerically estimated region of stability for the System 6; updated
boundaries of the considered region taking into account boundaries of RA are
plotted in red. An actual and spurious attractors are red circles. We extended
a considered region from [−20; 0] × [−4; 4] to [−10; 0] × [−10; 4]. Note,
the numerical method estimated a lower bound that goes along a trajectory
with a good precision. Other bounds were left unchanged, i.e., in the other
directions the considered region does not cross boundaries of the region of
attraction.

In addition to stability of reproduction, one should keep in
mind that the considered region of applicability should not
exceed a region where the likelihood of observing new data
allows performing a confident inference regarding the velocity.
In Figure 12 we depict how the likelihood changes beyond the
region covered by the training set. Likelihood was computed
as follows:

L(ξ) = log [max
i

hi(ξ)]. (18)

L gives a measure of the maximum probability of a point
ξ to belong to any of the K Gaussians. The region where
L exceeds a given threshold8 represents the region where the
system can still make a confident probabilistic inference. Note

8We took an empirically chosen threshold of −10.
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TABLE IV
QUANTIFICATION OF RESULTS

System Dimension Number
of
demon-
strations

Number
of GMMs
compo-
nents

Number
of
iterations
in model
training1

Precision
2

System 1 2 6 7 252 8 · 10−3

System 2 2 6 2 70 3 · 10−3

System 3 2 6 6 150 10−4

System 4 2 6 13 475 10−1

System 5 3 10 12 393 8 · 10−2

KATANA ex-
periment

3 4 4 132 -3

HOAP experi-
ment

3 4 5 160 -3

[1] The algorithm iterates until the change in the likelihood falls below 10−8

[2] Precision is computed as a mean square error, on both seen and unseen

trajectories, according to:
∑M

i=1 ‖ξ̂i−ξi‖2
M·∆ξ , where ξ̂i – learned trajectory

ξi – theoretical trajectory, ∆ξ is an average amplitude of motion.

[3] Estimation of precision is non-applicable due to the presence of
noise in the training data.

that all the trajectories that start in areas where L is too small
will significantly depart from the real dynamics. This is due to
the effect of the weights hi associated to each Gaussian and
how these influence the direction of the velocity vector: nearby
the demonstrations, the influence of the closest Gaussian dom-
inates that of all Gaussians, hence guiding closely the motion.
However, far away from the demonstrations, the influence of
all Gaussians becomes comparable and the resulting direction
of velocity may point away from the signal.

As mentioned in the introduction, an inherent property of
stable dynamical systems is their robustness to spatial and
temporal perturbations. Figure 13 illustrates this aspect for one
of the learned dynamical system, when the target is moved
after the onset of the motion. As we see, the trajectories
adapt smoothly to the change. Note, however, that the velocity
profile may change abruptly when the perturbation occurs. To
overcome this drawback it would be necessary to consider
second-order dynamics.

As discussed previously, the GMMs encoding may result
in spurious attractors outside the empirical stability domain C
and in regions with low likelihood, see, e.g., Figure 12.

There are several reasons for the emergence of spurious
attractors: first, the training set gives only a partial and noisy
representation of the dynamics. Providing additional data in
the regions around spurious attractors usually improves greatly
performance. Second, the shape of the signal influence greatly
stability. For instance, if the curvature of the trajectories
changes smoothly, the spurious attractors, if any, will usually
lie outside of the region of the confident inference, see
Figure 12. However, if the system trajectories experience sharp

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction
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Fig. 15. Learning motion with two attractors. 3-dimensional trajectories
are generated by System 5 that displays a periodic behavior. Trajectories were
demonstrated in the neighborhood of two asymptotically stable attractors. Dur-
ing the reproduction, the system managed to accurately reproduce dynamics
around both attractors.

changes in the curvature, as e.g., System 1, see the Figure 7,
the likelihood of having spurious attractors in the considered
region increases. By adding more Gaussians around the point
with a sharp curvature one increases the guidance provided
by the GMM and thus decreases the chances. By considering
these practical shortcomings, one may improve a particular
encoding to achieve the admissible performance.

V. APPLICATION TO ROBOT CONTROL

Further, we validate the method to learn the dynamics of
motion of a robot endeffector when trained through human
guidance. Here, the dynamics of motion becomes the control
law that iteratively moves the robot’s arm along a trajectory.

A. Encoding motion in the operational space

Since the framework we defined above does not make any
assumption as to the type of variables to be used for training,
we are unconstrained in our choice of variables for controlling
a robot. Here, we choose to describe motions according to the
following variables: the translation component of motion of the
end-effector is described by a vector of Cartesian coordinates
x ∈ R3.

Each demonstrated trajectory is, thus, represented by the
following dataset: D = {xt, ẋt}M

t=1, where M is the number of
datapoints in a trajectory. To reproduce a task, we first learn an
estimate of the dynamical system using the method described
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Fig. 16. (a) If a trajectory in the operation space passes through non-reachable
joint positions IK may return velocity in the operation space that sends a
robot too far from original trajectory, so linear assumptions of approximation
of kinematics does not satisfy and overall trajectory tracking will fail. (b)
In the case of motion encoding with a dynamical system, after perturbation
the robot will not try to return to the previous trajectory violating the linear
approximation of kinematics, instead the dynamical system will generate other
trajectory from the point where the robot occurs.

{xyz}

{x*y*z*}

{x’y’z’}

Fig. 17. We encode tasks in a referential located at the target and moving
with it{x∗y∗z∗}; this referential is expressed in the fixed global referential
{xyz}(usually we choose one attached to static parts of a robot). Actually,
the motion of the robot end-effector is expressed as moving a referential
associated with the end-effector {x′y′z′}.

in Section III-A and then use the Moore-Penrouse pseudo-
inverse to compute the corresponding joint angles. Table V
summarizes the steps of the reproduction algorithm.

B. Set-up

We validated the above method in two practical tasks, see
Figure 18 where a human teacher guides the robot through
the motion. We also implemented the learned 3-dimensional
System 5, as a control law for our robot. To demonstrate the
generic character of the approach we ran experiments with two
different robotic platforms: a 6 degrees of freedom industrial-
like KATANA arm from Neuronics and a 4 degrees of freedom
robot arm of the humanoid robot HOAP-3 from Fujitsu.

C. Experiments with KATANA

The first experiment consists in the KATANA putting an
object into a container. Here, the KATANA arm was taught to
put a rectangular wooden brick into a rectangular container;
see fig.18-left.

TABLE V
ON-LINE TASK REPRODUCTION

1 Assume that a controller f̂x has been learned,
the robot is thus ready to reproduce a task

2 Detect a target position in the global referential {xyz}; see Figure 17: x∗

3 Recompute the current position of an end-effector in
the target referential {x∗y∗z∗}: x0

4 LOOP until the target position is reached

6 infer the velocity for the next iteration t through GMR Eq.9: ˙̂xt
˙̂xt =

∑K
k=1 hk,x(µk,ẋ + Σk,ẋxΣ

−1
k,x(x− µk,x))

8 Solve the Inverse Kinematics problem to find: ẋt, θ̇t

9 compute a new position xt, θt

10 END

In the second experiment, the KATANA was controlled
with System 5 with the origin of the system positioned on
an arbitrary object. This experiment meant to test the ability
of the learned system to generalize to context unseen during
training and to quickly adapt to perturbations.

D. Experiments with HOAP-3

The clench of the HOAP-3 is rather small, therefore it can
grasp only thin objects. In this task the robot had to grasp a
box which is thin along one dimension, so the robot should
follow a specific path to properly position its hand; see fig.18-
right.

Fig. 18. Set-up of the experiments. Left: KATANA puts a wooden brick
into the container, to achieve the task the robot should lift the brick and move
it following an elevating trajectory. Right: HOAP-3 grasps a box, to achieve
the task HOAP should approach the box with a specific orientation and than
lower its arm, as the clench is small, see small figure in the corner.

During training, the robots were shown the tasks 5 times
by a human user guiding their arms. Values of the robots
joints were recorded during this passive motion and used for
reconstructing the position of the end-effector.

E. Results of Learning Dynamics from Motion Data

After training, we tested the system by requesting the robots
to reproduce the tasks in various conditions. The results of the
experiments are summarized in Figures 19-22.

To test the generalization abilities and the stability to per-
turbations we performed experiments in different conditions,
by changing the starting positions of the robots and shifting
the container (for the KATANA’s experiment) or the box (for
the HOAP-3’s experiment). Results are presented in Figure
22; in both experiments learning of position control was
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successful and the robots all reached successfully the targets
and accomplished the tasks.

Results of generalization for the second experiment with
KATANA reproducing System 5 are presented in Figure 20 -
II. The area where demonstrations were provided is depicted in
Figure 20 - II (b) with red squares. The system further allowed
to reproduced the motion starting from any position of the sub-
space of the workspace, depicted in grey. Note, that even few
demonstrations provide good generalization properties.

The ability to generate a trajectory from arbitrary initial
position to the target with a relevant velocity profile is a
strong point of encoding motion with Dynamical Systems in
the state-space, furthermore it provides real-time adaptation
to perturbations in the position of the target. The Figure 20-I
presents results of tracking a marked object mapped into the
attractor of the dynamical system. After shifts of the target,
the robot finally reaches the object following the demonstrated
position and velocity profile.

VI. DISCUSSION AND FUTURE WORK

Below, we discuss the major hypotheses postulated in this
work together with possible alternative solutions.

A. Multi-dimensional systems, first order dynamics

The method proposed here allows learning of non-linear
multivariate dynamics where the correlation between the
variables is important. Other works on dynamical control
consider each degree of freedom separately, hence discarding
information pertaining to correlation across the joints. While
storing correlations across the joints is costly (in GMM, it
forces one to compute the complete covariance matrix, rather
than computing only the diagonal elements), it is advantageous
as correlations contain features characteristic of the motion.
For instance, in bimanual coordination tasks in which left and
right arms should follow different dynamics while doing so in
coordination [Gribovskaya and Billard, 2008], embedding the
correlations in the representation ensures the reproduction of
both the dynamics of each arm and the correlations across the
arms. Furthermore, learning correlation between a multivariate
signal and its derivatives allows to considerably decrease a
number of Gaussians required to accurately encode the training
dataset.

While we started with the hypothesis that the control law
followed a first order dynamics, the method proposed here
may be extended to learn higher-order dynamics (as higher-
order systems can always be expressed in the canonical form
as a set of first-order systems). That is particularly relevant for
applications where it is necessary to control the acceleration
profile. We intend to address this problem in future work.

Potential difficulties concerning shifting into higher-order
derivatives that can be envisioned, are associated with the
increased dimensionality of a resultant statistical problem.
With an increase in the number of dimensions, a stable
approximation would require more training data or need to
introduce certain heuristics to partially decouple the problem
into a set of systems with lower dimensions.
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ẋ
2

−400 −300 −200 −100 0 100
−20

0

20

40

60

80

x 2

ẋ
1

−600 −400 −200 0 200
−150

−100

−50

0

50

100

x 1

x
3

−600 −400 −200 0 200
−400

−300

−200

−100

0

100

x 1

x
2

−600 −400 −200 0 200
−20

0

20

40

60

80

x 1

ẋ
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I. KATANA: Original data (time domain)

II. KATANA: Training data in state-space. Encoding with GMM (4 Gaussians)
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 III. KATANA: Reproduction

Fig. 19. KATANA experiment 1: Results of encoding and reproduction of
the experiment where KATANA had to put a brick into a container.

B. Time independency vs time dependency

In this paper, we advocate that time-independent encoding in
the state-space offers more robust representation in comparison
to traditional time-dependent encoding. Results confirmed that
for a certain range of motions, the state-space representation
is indeed highly robust to spatial and temporal perturbations.
Moreover, it allows to reproduce tasks even in unseen parts of
the workspace.

Yet, certain motions, such as those requiring the synchro-
nization with an external dynamics, should be encoded using
a time-dependent representation or, if the external dynamics is
known, using an explicit parametrical coupling of two time-
independent dynamics, such as that done in [Ijspeert et al.,
2001]. Another limitation of the time-independent representa-
tion relates to the possibility of encoding compound motions:
in this case, the whole motion may be segmented into a set
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KATANA experiment 2: real-time adaptation to perturbation 

KATANA experiment 2: generalization to the unseen context
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Fig. 20. KATANA experiment 2: I. Real-time adaptation to perturbations.
The target was consequently shifted from the position 1 to the position 4.
First row: trajectory of the robot’s end-effector; second row: velocity profile.
II. Generalization to the unseen context. (a) The workspace of KATANA is
highlighted by the blue box, the reproduction was systematically tested starting
robot from positions on the yellow plane. (b) The starting plane from the robot
workspace is in yellow. The robot was required to reproduce the motion from
points monotonically covering the part of the starting plane (in grey). For
comparison, the part of space, where the demonstrations were provided is
in pink. Notice, that demonstrations are sparse, but the system manages to
generalize to other parts of the workspace.

of simpler ones governed by a single attractor. However, the
problem of how to transit across these systems remains an
open issue.

C. Kinematic controller

In the experiments reported here, control of the robot was
purely kinematical, encoding the desired kinematic trajecto-
ries, but not taking into consideration the dynamical properties
(actual torques) of the robot limbs. An additional control step
was then necessary to convert positions into motor commands
by means of the inverse dynamics (KATANA) or a PID
controller (HOAP-3). Learning the inverse dynamics, while a
highly value topic in itself, is beyond the scope of the present
paper. Further, considering that many of the current robotic
platforms are position-controlled, while providing position
feedback in real-time, the proposed approach is thus valid for
a large set of applications.

D. Choice of statistical framework

GMMs being a global statistical techniques (by opposition
to local non-parametric methods such as LWPR, GPR) was
shown to be suitable for estimating dynamics from sparse
demonstrations, that are typical of programming by demon-
stration applications. However, neither GMMs nor LWPR and
GPR ensure stability of a learned approximation. Here, we
proposed an algorithm that leads to local asymptotical stability
and gradually improves the quality of the approximation while

I. HOAP-3: Original data (time domain)

II. HOAP-3: Training data in state-space. Encoding with GMM (5 Gaussians)
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ẋ
1

−100 −50 0 50
−40

−20

0

20

40

60

80

x 2

x
3

−100 −50 0 50
−20

−10

0

10

20

30

40

x 2

ẋ
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 III. HOAP-3: Reproduction
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Fig. 21. HOAP-3 experiment: Results of encoding and reproduction of the
experiment where HOAP-3 had to grasp a box.

Fig. 22. The results of reproduction of dynamically generated trajectories
on the robots. To check the generalization abilities of the learned dynamics
the trajectories were reproduced from different initial positions.
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widening the region of applicability C. Potentially, the same
procedure may be adopted for other statistical frameworks.
However, the accuracy of the approximation may significantly
vary depending on a particular choice.

One should note that EM is more computationally expensive
than LWPR with a number of iteration steps during training
of O(K · M · N) in comparison to O(N). Both of these
however remain small in comparison to GPR. Similarly to
LWPR and in contrast to the GPR-based methods, GMR’s
computational costs for the retrieval procedure are low and
increase linearly with the number of parameters. Additionally,
GMM-based models result in much less parameters due to the
coarse representation.

E. Real-time adaptation to perturbation vs traditional plan-
ners

One of the strengths of the proposed approach is its
ability to cope with perturbations in real-time. By pertur-
bation we referred to unexpected changes in the positions
of the attractor or of the robot’s joints during motion. We
demonstrated how the learned dynamics with a position of
an object mapped into an attractor can successfully track
the object. Such a flexibility combined with the guarantee
of ultimately reaching the object is one of the major ad-
vantages of the proposed method in comparison with tra-
ditional planners [Yokoi et al., 2009, Yoshida et al., 2008,
Diankov and James Kuffner, 2007, Kuffner et al., 2002]. One
should emphasize that planners, in turn, are advantageous
when the environment is known and for providing mecha-
nisms for obstacle avoidance. The latter is, however, achieved
by introducing a heuristic-based cost function that penalizes
certain directions. Potentially, our approach may be combined
with such a cost function that perturb an output of a learned
dynamical system pushing it away from obstacles.

Note, that our system though introduces certain hypotheses,
still remains rather generic regarding tasks it may reproduce,
furthermore, it may work with limited and inaccurate informa-
tion about the environment, as it does not require any costly
replanning. At the same time, to benefit from optimal planning
and capacity for obstacle avoidance, one should provide an
algorithm with precise information regarding objects in the
workspace and introduce certain task-related heuristics to
improve convergence.

F. Single vs several attractors
A further hypothesis pertaining to the work presented here

was the idea that the dynamical system to be discovered had
a single or several known fixed point attractors. This can be
considered as a limitation, as a dynamics may be governed by
the existence of more complex orbits than merely fixed points.
For example, an arbitrary free motion may have a particular
curve in space as attractor. The applicability of the proposed
method in this case will mostly depend on the quality of train-
ing data; further no stability can be guarantee. Procedures for
ensuring stability of complex orbits may substantially widen
the class of motion under consideration, covering dancing or
sport motions that are usually characterized by the existence
of certain curves to which all trajectories converge.

G. Training data

The generalization properties of dynamical controllers di-
rectly depend on the quality of training data; the aspect
common to all statistical learning methods. It might be com-
pensated in different ways: 1) by providing an exhaustive
set of accurate demonstrations; 2) by allowing a robot to
explore on its own (considered in Reinforcement Learning
[Guenter et al., 2007]); 3) by providing more variability in a
limited set of demonstrations (the problem has been discussed
in [Calinon and Billard, 2007]). The first option does not agree
with a requirement of user-friendliness of teaching interfaces,
as a number of demonstrations should be kept bearable for
a user; the second approach may require additional time;
therefore, we concentrate on improving quality of demon-
strations by introducing more variability into a small set of
demonstrations.

H. Kinesthetic teaching

For demonstrating tasks we used the kinesthetical teaching
approach that consists of directly demonstrating the task using
a robot’s own body. One of advantages of this approach is
that the human can feel limitations of the robot’s architecture
and adapt his/her intuition about an optimal or efficient mo-
tion accordingly. Although we actively exploit this learning
paradigm, other approaches such as vision-based learning are
also widely used and can be more intuitive for humans. Our
system may be applied to the motion data obtained through
different modalities.

I. Practical consideration

From a practical point of view, mapping position of ma-
nipulated objects into attractors of Dynamical Systems con-
siderably improves the precision of motion at a target and
therefore allows considering prehensile tasks in the framework
of Programming by Demonstration; where so far generation of
large-scale motions has been addressed.

The approach was shown to be generic in that it did
not depend on the particular geometry of the robot’s arm,
nor on the particular variables to be learned. Indeed, it
could be successfully implemented to control robot arms
with different geometries and for learning the dynamics of
different variables inherent to position and orientation control.
Source code and supplementary material is available at
http://lasa.epfl.ch/elena/learning-dynamics.htm

VII. SUMMARY

In this paper, we proposed a method for learning a non-
linear multi-dimensional dynamics of motion through statis-
tically encoding demonstrated data with Gaussian Mixtures.
Further, we addressed the problem of ensuring stability of
a resultant control law: first, we formulated conditions that
parameters of GMMs should satisfy to guarantee local asymp-
totical stability of an attractor, then we proposed a numerical
procedure to verify boundaries of the region of applicability
where the control law can be securely applied.
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To test the method, we conducted two types of experiments:
1) learning theoretical dynamics with known mathematical
forms to estimate the accuracy of approximation and 2)
learning dynamics of manipulation tasks recorded with two
different robotic platforms to assess the applicability of the
approach to the noisy data. In all experiments the system
demonstrated good results in terms of high accuracy during
reproduction, ability to generalize motions to unseen contexts,
and ability to adapt on-the-fly to spatio-temporal perturbations.
We also showed how the system can encode more than one
attractor, successfully reproducing each separate dynamics
locally around each attractor and separating the flows leading
to the different attractors.
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Fig. 23. Appendix II. Geometrical illustration of stability and multi-
dimensional correlation in the state-space. I. Stability problem: stability of
a dynamical system is defined by a maximum value of its Lyapunov exponent
λ (in the linear case, it coincides with eigenvalues of a control matrix). (a)
In systems with negative Lyapunov exponents volume between trajectories
contracts; (b) In systems with positive Lyapunov exponents two arbitrary near
trajectories diverge from each other exponentially fast. In the linear case,
one may easily find Lyapunov exponents and estimate the global behavior of
the overall system. In the non-linear case, the system may have different
Lyapunov exponents in different parts of the state-space, moreover, non-
linearities make analytical investigation of properties particularly tedious. IV.
Multi-dimensional dynamics Analyzing dynamics of vector-valued timeseries
requires their encoding in multi-dimensional state-spaces. Generally, one
cannot unambiguously decouple dynamics of each dimension. Consider a
simple 2D motion in Figure II-(a), the phase-space of this motion in {ẋ1, x1}
is in Figure II-(b): for each value x1 there exist two different values of
velocity, therefore, it is not possible to unambiguously encode dynamics of
motion as two decoupled system ẋ1 = f1(x1), ẋ2 = f2(x2). However, if
one look at the dependence ẋ1 = f(x1, x2) depicted at Figure II-(c) this
ambiguity can be easily eliminated. This problem is know in the literature
on Dynamical Systems as a problem of searching for a minimum embedding
dimension. In this particular example, the minimum embedding dimension is 4
(x1, ẋ1, x2, ẋ2). Alternatively, one may argue that in this case we may avoid
an ambiguity and separate dimensions encoding ẍ1 = f1(x1, ẋ1), though it
is possible in this particular case, it will lead to the necessity to analyze 5 state
variables (x1, ẋ1, ẍ1, x2, ẋ2). Furthermore, to preserve a spatial correlation
pattern between x1 and x2 the decoupled systems should be synchronized by
an external mechanism.

TABLE VI
APPENDIX I. COMPARISON OF THE PROPOSED METHOD WITH

[IJSPEERT ET AL., 2001]

GMR-based method proposed in this paper:

a single multidimensional system is running to control several DOFs

ẋ = f̂(x)
f̂(x) , ∑K

k=1 hk(x)(µk,ẋ + Σk,ẋxΣ
−1
k,x(x− µk,x))

where x ∈ RN ; Σk,ẋx, Σk,x ∈ RN×N are estimated matrices
µk,ẋ, µk,x ∈ RN are estimated vectors

LWPR-based method proposed in [Ijspeert et al., 2001] (see also Figure 2):

the velocity along each DOF ẋ is defined by a linear combination of
two velocities ż and ν̇, according to:

ẋ = ż + f̂∗(ν)ν̇

f̂∗(ν) ,
∑K

k=1 Ψk(ν)ωk∑K
k=1 Ψk(ν)

where x, z, ν ∈ R
Ψk(ν) = exp (ν−ck)2

2σ2
k

, ωk ∈ R.

The variables z and ν are governed by two dynamical system:

(S1) (S2)
ν̈ = αv(βv(g − ν)− ν̇) z̈ = αz(βz(g − y)− ż)

ẏ = ż + f̂∗(ν)ν̇

where g, v ∈ R, αv, βv ∈ R are
known constants

where y, z ∈ R; αz, βz ∈ R are known
constants

Comparison between GMR-based f(x) and LWPR-based f∗(ν):

Function f∗(ν) represents a uni-dimensional simplified version of a function f(x),
indeed, weights hk(x) have the same form of Gaussians as Ψk(ν), further instead of
introducing a variable components (µk,ẋ + Σk,ẋxΣ

−1
k,x(x− µk,x)), LWPR considers

merely constants ωk , which is equivalent to using solely µk,ẋ.

Weights ωk are tuned so to minimize a mean-square error between the velocity ẏ
and a demonstrated velocity profile.

Note, that according to the LWPR-based method [Ijspeert et al., 2001]
the function f̂∗(ν) modulating
the velocity ẋ does not depend on the actual position x, but instead depends on
the internal state ν and, therefore, does not introduce a feedback loop. Practically
it means that the only term adapting during perturbations is ż, while f̂∗(ν)ν̇
remains the same and may deform a trajectory.

The system (S1) is a spring and damper system, which attracts a trajectory ν
towards the target g following a straight line path.

The system (S2) is a perturbed spring and damper system: initially it starts to go
exactly as the system (S1), but due to the perturbed velocity ẏ, it departs
from the straight line trajectory ν; the source of perturbation is
a component f̂∗(ν)ν̇.
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Abstract
We present results from an empirical study investigating the effect of embodiment and minimal gestures in
an interactive drumming game consisting of an autonomous child-sized humanoid robot (KASPAR) playing
with child participants. In this study, each participant played three games with a humanoid robot that played
a drum whilst simultaneously making (or not making) head gestures. The three games included the partici-
pant interacting with the real robot (physical embodiment condition), interacting with a hidden robot when
only the sound of the robot is heard (disembodiment condition; note that the term ‘disembodiment’ is used
in this paper specifically to refer to an experimental condition where a physical robot produces the sound
cues, but is not visible to the participants), or interacting with a real-time image of the robot (virtual em-
bodiment condition). We used a mixed design where repeated measures were used to evaluate embodiment
effects and independent-groups measures were used to study the gestures effects. Data from the implemen-
tation of a human–robot interaction experiment with 66 children are presented, and statistically analyzed in
terms of participants’ subjective experiences and drumming performance of the human–robot pair. The sub-
jective experiences showed significant differences for the different embodiment conditions when gestures
were used in terms of enjoyment of the game, and perceived intelligence and appearance of the robot. The
drumming performance also differed significantly within the embodiment conditions and the presence of
gestures increased these differences significantly. The presence of a physical, embodied robot enabled more
interaction, better drumming and turn-taking, as well as enjoyment of the interaction, especially when the
robot used gestures.
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1. Introduction

Social robots are being used widely in interaction games with human interaction
partners, e.g., in the application areas of entertainment robotics [1–4], socially as-
sistive robotics [5] and robot-assisted therapy [6–9]. Their physical appearance as
well as behavior affect the participants and motivate them to take part in the interac-
tion. The use of social cues such as gestures produced by the robots also has a great
impact on the motivation of the human participants. In human–human interaction,
gestures play an important role in communication, coordination and regulation of
joint activities. In the related field of virtual agents, the beneficial effects of ges-
tures and expressions used by virtual agents were shown both in short-term and
long-term interactions, in maintaining user involvement with the tasks encouraged
by the agent [10, 11].

Given that the term ‘social robots’ refers to robots that are designed to evoke
meaningful social interaction with their users [12], social robots may not neces-
sarily need a physical body to accomplish their goals [13], unlike other robotic
systems where the task requires a physical form (e.g., object manipulation). Socially
interactive robots are used in various kinds of applications, such as toys for enter-
tainment, rehabilitation aids or educational tools. Often their primary functionality
is not strictly related to physical interaction or manipulation, which implies that a
physical body may not be required (a virtual embodiment could be sufficient). For
example, in the field of rehabilitation robotics, which often focuses on physically
assistive robots, non-contact socially assistive robots have been developed with the
primary goal to motivate and monitor the user during the rehabilitation phase [14,
15]. Thus, this raises the question of whether physical embodiment is essential for
successful interactions between a human and a social robot.

In the context of this paper we follow the notion of embodiment that has been
defined as “that which establishes a basis for structural coupling by creating the
potential for mutual perturbation between system and environment” [16, 17]. Note
that this definition of embodiment does not necessarily require a system to pos-
sess a physical shape. According to Chrisley and Ziemke [18], embodiment can be
classified in four different levels, from physical realization, where the system must
simply be realised in some physical substrate, to organismal embodiment where the
body must be alive (i.e., metabolize, reproduce, etc.).

Previous research has shown that physical embodiment has positive effects on the
quality of interaction between social robots and humans. Lee et al. [19] conducted
two experiments to investigate the effects of physical embodiment and tactile com-
munication in human–agent interaction. They found that physical embodiment, as a
bodily presence, played an important role in social interactions between human and
social agents, although social robots were not particularly related to physical func-
tions. Participants preferred interactions with physical social robots to interaction
with virtual social robots. In the first experiment they found that physical embodi-
ment positively impacted the agent’s social presence, as well as the evaluation of the
interaction with the agent, while a second experiment showed that physical embod-
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iment with restricted tactile interaction caused insignificant or even negative effects
in human–agent interaction.

Positive effects of physical embodiment have also been found by Bartneck [20]
in his study with an emotional robot (eMuu). Specifically, he claimed that phys-
ical embodiment facilitated social interaction. In an empirical study, participants
acquired a higher score in a negotiation game when they interacted with a robotic
character than when they interacted with a character on a computer screen.

Tapus and Mataric [21] studied the effect of embodiment in a human–robot inter-
action (HRI) experiment with social robots playing music. Here a physical robot or
a simulated computer animation played recorded songs and patients with cognitive
impairments tried to distinguish between up to four songs. Future work needs to
demonstrate whether the physical embodiment of the robot motivated the patients
positively and helped them to improve their cognitive impairments.

Two experiments conducted by Wainer et al. [15, 22] add further support to the
importance of physical embodiment on performance and impression of social inter-
actions. Their results demonstrate that a physically situated robot is more appealing
than a non-embodied robot, and it is also seen as more helpful, watchful and enjoy-
able when compared to a remotely tele-present robot and a simulated one. These
results suggest that a physical robot may be more effective in assistive physiother-
apy (the particular application area that the authors aimed at) than a disembodied
one.

Conversely, a study conducted by Powers et al. [23] showed that an interaction
with a ‘collocated robot’ (physical embodied robot) compared to a remote projected
robot does not always lead to better results. They found that the projected robot had
almost as much social influence as the collocated one, i.e., it was equally engaging,
elicited equal disclosure, but may have had somewhat less influence (the partici-
pants did not rate the projected robot as highly when they evaluated its helpfulness,
the usefulness of its advice and its effectiveness as a communicator).

Interestingly, all the above results are related to studies that have been conducted
with adults. Children, even if they are the main target in the area of entertainment
robotics, have not been involved extensively in such research comparing physical
and virtual embodiment conditions. One of the few studies conducted with children
participants has been carried out by Pereira et al. [2], involving 18 children in a
gaming scenario against a robotic agent or a virtually embodied agent. In spite
of the results of this study suggesting that embodiment has a positive effect on
participant’s enjoyment, there is still sparse evidence of the effect that embodiment
has on children and further investigation is needed.

A social robot needs a set of social skills in order to successfully encourage a
user’s social behavior, which might require the ability to use social cues and ges-
tures to motivate users to interact with it and keep them motivated to interact with
the robot beyond the first few moments of ‘novelty’. This is especially the case for
assistive robotics [5]. A variety of robotic systems have been using social cues and
gestures in order to encourage HRI, e.g., KISMET [24, 25], where the interaction
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itself was the primary goal. Different from this work, our own studies include an
enjoyable task that will need to be achieved jointly by the human–robot pair. There-
fore, we have chosen drumming as a test bed for our studies. Drumming is relatively
straightforward to implement and test, and can be implemented technically without
special actuators like fingers or special skills. Additionally, it is an easy and enjoy-
able task for the participants, who do not require any detailed information or skills.
There are several approaches concerning drumming in HRI. For example, robotic
percussionists play drums in collaboration with human interaction partners, where
they use robotic arms that are specially designed to play drums [26, 27]. Similarly,
humanoid drumming is used as a test bed for exploring synchronization [28].

Drum-mate is an interaction-based imitation game based on the autonomous
drumming game of a human interaction partner and a humanoid robot [29, 30]. In
Drum-mate studies, the humanoid robot KASPAR (Kinesics and Synchronization
in Personal Assistant Robotics) plays drums autonomously with a human ‘partner’
(interactant), trying to imitate the rhythms produced by the human. However, the
social interaction is not limited to the replication of drumming, but also involves
studying the impact of non-verbal robot gestures that are meant to motivate the hu-
man. KASPAR produces head gestures from a limited repertoire and eye-blinking
as it drums. KASPAR is a minimally expressive child-sized humanoid robot devel-
oped previously by our research group for its use in human–robot social interaction
games (for more details of the robot, see Ref. [31]). In previous work, two studies
with 24 adult participants each [29, 30] analyzed the interaction between partici-
pants and the humanoid robot in terms of imitation, turn-taking and the impact of
non-verbal gestures as social cues [30]. Different computational probabilistic mod-
els were used to achieve turn-taking that is not deterministic, but emerging from
the interaction between the human and the humanoid robot. The humanoid robot is
no longer a passive ‘follower’, but can also play the ‘leader’ role in the game [29].
Also, different orders of the game conditions were tested and a significant effect
of play time was found. The error rates in drumming and turn-taking significantly
decrease as the human players play more games [29, 30].

The above-mentioned Drum-mate scenario (with adult participants) formed the
basis for the current study which is a modified version of the Drum-mate game.
It was tested with 66 primary school students, where different embodiment con-
ditions, together with their relation with the head gestures, were studied. Each
participant played three interactive drumming games with the humanoid robot. In
each game the participant interacted either with the real robot (physical embodiment
condition), with a real-time image of the robot (virtual embodiment condition) or
with the hidden robot (disembodiment condition) — in this last condition only the
sound of the robot is heard. Half of the children played games while the humanoid
robot was simply drumming without making any head gestures; during the games
with the other half of the children, KASPAR played its drum whilst simultaneously
making gestures and waving its hand ‘good-bye’ at the end of the game.
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Compared to the previous Drum-mate experiments with adults, several modifica-
tions were made in the current study to adapt the experiment to the child participants
(e.g., simpler gestures were used, and the single game duration and the time be-
tween turns were decreased).

The paper is organized as follows. Section 2 presents the research questions and
hypotheses. The experiment design and data collection are described in Section 3.
In Section 4, the experimental results are described. Section 5 includes a brief con-
clusion of the experiment, lessons learned and presents ideas for future work.

2. Research Questions and Hypotheses

The goal of the study was to determine whether embodiment and gestures have
an effect on how users perceive a social robot. In this experiment, we examined
three levels of embodiment, each of which was used both with and without robotic
gestures.

To study the effects of the embodiment, each child played a drumming game in
the following three conditions:

K The physical embodiment condition in which KASPAR sat on a table and
played a drum in front of the child;

V The virtual embodiment condition in which KASPAR’s image was projected on
the wall (keeping its real dimension in terms of size), while the robot played a
drum behind an opaque barrier that separated it from the child;

D The disembodiment condition (only sound), in which KASPAR and the child
were in two different areas, and KASPAR played a drum behind an opaque
barrier. Note that in this case participants were not able to see the robot, but
they could actually hear when it was producing gestures (i.e., in the gesture
condition the children could hear the robot’s motors moving behind the screen).

Note that different areas had to be created for practical reasons, i.e., in order to
allow each child to be tested in three experimental conditions and allowing quick
changes between the experimental settings.

Based on the results of previous research (see Section 1), we expected that a
social robot, in order to be able to engage in a playful interaction with a child,
would require a certain degree of embodiment. Thus, we investigated the following
hypotheses:

H1 Children would evaluate a social robot and the interaction with it more posi-
tively when they played with an embodied robot (conditions K and V ), than
when they interact with a disembodied robot (condition D); and comparing the
physical and virtual embodiment conditions, they will evaluate the physically
embodied social robot (K) more positively. Moreover, we expected that the
presence of gesture would increase the difference in how the children evaluate
the embodiment conditions. Specifically, we expected the children would eval-
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uate the case K(physical embodiment) more positively than the other cases (V
and D) when gestures were used.

H2 The error rates in drumming and turn-taking would decrease when the children
played with an embodied robot (conditions K and V ) compared when they in-
teract with a disembodied robot (condition D); and comparing the physical and
virtual embodiment conditions, the error rates in the physically embodied robot
(K) condition will be lower than the virtually embodied robot (V ). The differ-
ences between the drumming and turn-taking performances when the children
play with different conditions (K , V or D) are expected to be higher when the
gestures were introduced.

H3 As the play time increases, the error rates would decrease. In other words, the
more the child plays, the better her/his drumming and turn-taking would be.
Therefore, we expect their drumming and turn-taking to improve over time
and, consequently, we expect a better performance (lower error) in the third
game played than the first game played. The differences between the drumming
and turn-taking performances between first and third games are expected to be
higher when the gestures were introduced.

To study the effects of gestures, the robot played half of the games while making
a gesture (‘gesture’ condition) and half of the games without making any gesture
(‘no-gesture’ condition).

In addition to the above hypotheses, we will also consider the effects of gender.
Previous works show gender differences have an impact on the subjective and ob-
jective evaluation of human participants. Kose-Bagci et al. showed that females and
males evaluate the robot and the interaction games differently, and their drumming
and turn-taking performances differ significantly [30]. Here the males were more
‘task oriented’, whereas females tended to value interactional aspects of the sce-
nario. However, in Ref. [32] it was found that the males like to see the robot as more
‘human-like’ and achieve a social facilitation, while females saw it ‘machine-like’.
Gender differences were also revealed in HRI experiments [33–35]. This suggests
the possibility of gender as a confounding variable in this experiment, which will
be examined in the data analysis below. However, gender issues do not play a major
role in our research goals (and for this reason our sample is not gender balanced).

3. Experiment

3.1. Participants and Sample

Sixty-six participants in the age range of 9–10 years took part in the study. All
participants were primary school students from six schools in Hertfordshire, UK.
Gender was not balanced in the sample; the majority of the children were female
(n = 39, Table 1). None of the children had interacted with the robot KASPAR prior
to the experiment. Most of them were used to playing computer games (Table 2)
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Table 1.
Distribution of the sample’s gender

N %

Male 27 41
Female 39 59

66 100

Table 2.
Distribution of the sample’s familiarity with robots

N %

I’ve played with a robot before 19 29
I’ve never played with a robot 47 71

66 100

Figure 1. Distribution of how often the children play computer games.

and they were generally unfamiliar with robots (Fig. 1). Prior to the experiment
the children’s parents had consented for their children to take part in the study, and
allowed us to obtain photos and video recordings of the experiments for scientific
purposes.

3.2. Design

To test the hypotheses, a 3 (embodiment)×2 (gestures) mixed design was used. The
experiment consisted of drumming games with a humanoid robot in three different
embodiment conditions (physical embodiment, virtual embodiment and disembod-
iment) and two gesture conditions (with and without gestures).

Each participant played an equivalent drumming game with the robot in the three
different embodiment conditions, each of which took 2 min (making embodiment
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a repeated measures variable). Half of the children were randomly assigned to the
gesture condition while the remaining half was assigned to the no-gesture condition
(making gestures an independent groups variable).

In the no-gesture condition, KASPAR only played the drum without making
any gestures, while in the gesture condition, the robot made simple head gestures,
e.g., nodding and moving the head from side to side during its drumming session.
These head gestures were played in a fixed sequence to encourage the participants
to believe that they were executed on purpose and not at random [30]. KASPAR
smiled when it started drumming and if it did not detect the child’s drumming when
expected (e.g., if the drumming beats were too light, too fast or if the child did
not play), then it blinked and expressed a neutral smile. At the end of the game
KASPAR waved its hand with a ‘good-bye’ gesture to notify the end of the game.
Note that in the disembodiment condition participants did not see the gestures, but
they could hear them (i.e., they could hear the robot’s motors moving behind the
screen) and the production of the gestures also slightly influenced the robot’s behav-
ior timing. Thus, for completeness purposes we also included the condition where
the disembodied robot used gestures.

A repeated measures design has the advantage that individual differences be-
tween participants are removed as a potential confounding variable, but a drawback
related to the order effects. As we assumed that the order in which the three em-
bodiment conditions were presented could influence the participant’s opinion and
behavior, their order was counterbalanced and all six possible presentation orders
were used. This was essential to account for possible fatigue, habituation or learning
effects.

3.3. Experimental Setup

The experiment was conducted during the event called ‘Take Part In The Future
And FearNot!’ [36], hosted by the University of Hertfordshire, School of Computer
Science and School of Education in May 2008, where 8- to 12-year-old children
had the opportunity to interact with robots and trial anti-bullying software. In addi-
tion, in a different large room, the children were also able to interact with a number
of humanoid and non-humanoid robots that are used in our research group. While
screens were used to separate the experimental area from the other robotics demon-
strations, the experimental setting was challenging as it was not an easily controlled
laboratory environment.

Moreover, in conducting the experiment the enjoyment of the activities for the
participants was taken into account and children were encouraged to experience
an interaction with a social robot in an enjoyable manner. While this setting might
have made it easier for children to express a more positive opinion than they would
in a different setting (all the variables’ means were quite high), such a setup pro-
vided an enjoyable and relaxing environment that creates situations more similar
to those where children’s play naturally occurs. It has been argued by Sabanovic et
al. [37] that ‘Interactions with robots in the laboratory, under the watchful eye and
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expert guidance of the robot’s designers, do not provide insights into the aspects of
human robot interaction that emerge in the less structured real-world social settings
in which they are meant to function. It is, therefore, necessary to evaluate human–
robot interactions as socio-culturally constituted activities outside the laboratory,
or “in the wild” ’ (p. 576). Studying social and enjoyable games that children play
with a robot requires a suitable setting, not one where the children may be under the
impression that they are being evaluated or monitored (similar to an examination).
Thus, we had to find a trade-off between such an enjoyable setting and the need
to control the experiments. The solution we decided on is to have an experimental
setup on University premises, but to situate it in the context of an enjoyable activity
for the children. Also, our sample was an ‘opportunity sample’ — we could not
freely select the children we worked with, which meant that we could not control
all the variables (e.g., gender). Thus, our research approach is similar to other HRI
experiments in public places, museums, shopping malls, school environments, etc.
(e.g., Refs [37–39]).

We designed a separate experimental area in the room where the robotics demon-
strations took place. Two almost identical cubicles isolated from the rest of the room
by tall screens were used to carry out the study (Fig. 2). In the remainder of the room
other robotic activities took place at the same time with other children. In the first
cubicle (area 1), the robot KASPAR was seated on a table with a toy drum on its lap.
A chair was placed in front of the robot where the participant was seated (Fig. 3).
In the second cubicle (area 2), there was a table and a chair for the participant. In
the virtual embodiment condition, a real-time image of KASPAR (the same size as
the physical robot) was projected on the wall in front of the seated child partici-
pant. In the disembodiment condition, the projector was switched off and the child
participant could just hear the drumming sound of the robot hidden behind a screen
(Fig. 4). To study the effect of the different embodiment conditions, all the others
features of the setup in the cubicles were kept the same.

During the experiments, a drum (with a microphone attached) and a stick to hit
the drum were made available to the children to make it easier for the robot to
recognize the drumming sound through audio analysis. Although some of the chil-
dren used the stick to hit on the top of the drum as we suggested, others preferred
to use both their hands or to hit the tambourine-style bells around the drum’s sides,
which increased their enjoyment and involvement in the game, but negatively ef-
fects the audio analysis. Note that since the interaction was meant to be enjoyable
and playful, we did not insist on the children using the drum stick.

Participants were instructed that they could play drumming games with the robot
KASPAR. Simple general instructions about the game were given (e.g., hit the drum
strongly so that KASPAR can ‘hear’ you better).

The children entered the experimental area in groups of three. On arrival, one
of the experimenters gave them a 30-s demo of the first condition they were go-
ing to play. That was done simply to show them what the game was about and to
familiarize them with the setup of the cubicle (e.g., if the first condition was ‘vir-
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Figure 2. Setup of the experiment. The experiment took place in two identically designed cubicles. In
the right cubicle (area 1), the game with the physical embodied condition was played, with KASPAR
sitting on a table in front of the child. The left cubicle (area 2) was used to play the disembodiment and
the virtual embodiment conditions. In the virtual embodiment condition, a real-time image (the same
size as the physical robot) of the drumming robot was projected on the wall just above the desk at a
height comparable to the physical embodied condition. In the disembodiment condition, the projector
was switched off and only the sound of the robot hidden on the other side of the screen was presented.
All the other features in the cubicles were identical. In all three conditions the child was playing alone
in the cubicle. The control desk with the laptop controlling the robot was equidistant to both cubicles
and the experimenter could be seen from both cubicles. Several cameras were located in the room to
record the experiment.

tual embodiment’, then the demo was carried out in area 2 and the children would
see the experimenter playing with the projected image of KASPAR — not with the
physical robot itself).

After the demo, only one child was asked to remain in the cubicle — the other
two children were taken by the other experimenter outside the cubicle to wait for
their turn. Each child individually interacted with the physically embodied (K),
virtually embodied (V ) and disembodied robot (D), in one of the two gesture con-
ditions.

During the games, the experimenter who was located in the experimental area
kept silent and did not interfere with the child’s or the robot’s performance. The
children were given very basic information about the difference between the games
(e.g., ‘Now you will play with the projected image of KASPAR’; ‘Now you will
hear KASPAR’s drumming sound, but you cannot see KASPAR itself’).

The sessions were videotaped and the video recordings were used as a source of
behavioral data (described in detail in the following subsections).

In the current study, KASPAR acted totally autonomously. Thus, the experi-
menter was always in view of the participant, especially when the physical robot
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Figure 3. Screen shot from the experiment showing a person playing a drumming game with the
physically embodied robot.

Figure 4. Screen shot from the experiment showing a person playing a drumming game with the
hidden robot (disembodiment condition).

was not visible. Participants may otherwise have believed that the performer of the
drumming was not KASPAR, but the experimenter (i.e., a hidden puppeteer in the
Wizard-of-Oz technique — a widely used technique in human-computer interaction
and HRI research where a human, who is unknown to the participants, is controlling
the behavior of the system; e.g., Ref. [40]).
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3.4. KASPAR

The study was carried out with the humanoid robot called KASPAR. KASPAR is
a child-sized humanoid robot that was designed and built by the members of the
Adaptive Systems Research Group at the University of Hertfordshire to study HRIs
with a minimal set of expressive robot features. This humanoid robot has been used
in a variety of projects, e.g., in research to mediate interaction for people with and
without special needs [41, 42].

KASPAR has 8 d.o.f. in the head and neck, and 6 d.o.f. in the arms. Its width
is 30 cm, depth is 35 cm and height is 45 cm, and its shape is modeled after a 2-
to 3-year-old child. The face is a silicon-rubber mask, which is supported by an
aluminum frame. It has eyelids capable of blinking, and a mouth capable of opening
and smiling (a detailed description can be found in Ref. [31]).

3.5. Interaction Game Implementation

In this work, as in the previous study [30], the participant played a rhythm that
KASPAR tried to replicate in a simple form of imitation (mirroring). KASPAR
had two modes — listening and playing. It recorded and analyzed the human’s
rhythm in the listening mode and it played the rhythm back by hitting the drum
positioned on its lap in the playing mode. Then the participant played again. This
(deterministic) turn-taking in this game continued for a fixed time duration (2 min
for the current work). Due to its limited motor skills, KASPAR did not imitate the
strength of the beats, but only the number of beats and durations between beats.
For beats beyond its motor skills, it used instead minimum values allowed by its
capabilities: KASPAR needed at least 0.3 s between beats to get its joints ‘ready’,
so that, even if the human played faster, KASPAR’s imitations would still require
minimum durations of at least 0.3 s between beats. It also needed to wait for a few
seconds before playing any rhythm in order to get its joints into the correct reference
positions.

3.6. Software Features

The implementation of robot perception and motor control used the YARP envi-
ronment [43]. YARP is an open-source framework used in the project RobotCub
that supports distributed computation and emphasizes robot control as well as ef-
ficiency. It enables the development of software for robots without considering a
specific hardware or software environment. Portaudio [44] software was used to
grab audio from the audio device within the YARP framework.

The acoustic sound waves recorded by the sound grabber module were converted
to digital music samples, which allows mathematical computations and sample-
based techniques to be used on them. To detect the patterns of a sound wave, a filter-
based method is used, based on the work of Ref. [45] that was originally used to
detect visual patterns.
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3.7. Measures

During the experiment several sources were used to collect data. These sources
included asking the children to complete a questionnaire related to the trials, record-
ing the sessions by video cameras for later video analysis and collecting the behav-
ioral (drumming) data of each robot–child pair.

3.7.1. Questionnaire
A paper-based questionnaire was used to collect data relevant in investigating the
differences in the embodiment conditions (H1) and the gesture effect (H2). The
questionnaire is available from E. F. request. It was comprised of three sections.
The first section gathered general information about the child, their experience with
robots and video games, and gave instructions on how to complete the question-
naire. The second section consisted of 15 closed-ended questions (repeated for the
three embodiment conditions) and the third section consisted of two open-ended
questions.

Considering the sample population and time limitations, the questionnaire was
kept as simple and short as possible. It was pilot tested with one participant of a
similar age group (a 9-year-old child). The pilot test confirmed that both the length
of the questionnaire and the questionnaire’s administration time were acceptable
(below 6 min). In order to develop the final version of the questionnaire, a few
minor language changes were made.

After each trial condition, the child was asked to answer the 15 closed-ended
questions in order to express their opinions about the game they just played (the
same questions were presented after each of the three embodiment trial conditions).

The closed-ended questions were used to evaluate the robot in terms of: enjoy-
ment, social attraction, involvement, performance, general appearance and intelli-
gence. As the researchers were interested in the children’s feelings and opinions
about the interaction with the robot, a five-point Likert scale (respondent shows the
amount of agreement/disagreement with a given statement) and a semantic differ-
ential scale (a scale inscribed between two bipolar words; children select the point
that most represents the direction and intensity of their feelings) were used.

Note that before conducting the data analysis, three items were removed from the
questionnaire because some of the children, while they were completing the ques-
tionnaire, showed difficulties in understanding their meaning (one was a negatively
phrased item).

To measure the level of enjoyment during the interaction with the robot, two
questions on a five-point Likert scale with a central anchor were used (‘Did you
enjoy playing with this robot?’ and ‘Did you find it interesting?’) (Cronbach’s
α = 0.78). Social attraction toward the robot was measured by a modified version of
McCroskey and McCain’s Interpersonal Attraction Scale [46]; children were asked
to indicate their level of agreement to the following statements: ‘I would like to
be friend with this robot’ and ‘I would like to spend more time with this robot’
(Cronbach’s α = 0.90). Involvement in the game was measured by the level of
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agreement to the following statements: ‘I paid attention to the robot’ and ‘I felt that
the robot involved me in the game’ (Cronbach’s α = 0.84). The robot’s perceived
intelligence was measured by participants’ levels of agreement on the statement:
‘I think this robot is intelligent’ (Cronbach’s α = 0.60). The level of agreement was
always measured using the same five-point response scales with a central anchor.
Two questions concerning the robot’s performance were asked using a five-point
semantic differential scale: lazy/energetic, and bad drummer/good drummer (Cron-
bach’s α = 0.79). Three questions concerning the general appearance of the robot
were asked using a five-point semantic differential scale: unpleasant/pleasant, not
friendly/friendly and machine like/human like (Cronbach’s α = 0.78).

Once the children had completed the items related to the third game, they were
asked to complete the last section of the questionnaire. In this part they judged the
overall experience by deciding which of the three games they liked the best and
which they liked the least, as well as writing down the reasons behind that decision.

During the study, the questionnaire administration was performed in a dedicated
area separate from playing areas 1 and 2, where one of the experimenters was on
hand to help the child complete the questionnaire if needed.

3.7.2. Behavioral Data
The experiments were recorded by two different cameras positioned at different
parts of the experimental area (one facing the child and the other facing the robot),
during each single game. The video recordings were later analyzed manually to
detect the performance of the children’s behavioral data (e.g., the number of drum
beats played by the children and number of turns taken by the children at each
game). This data was then compared with the behavioral data recorded by the robot
itself (see below). Also, video recordings are helpful as they give valuable clues
about the likes/dislikes of the children. They are also used to support the evaluation
of the questionnaires.

Behavioral data that belonged to the robot and human participants were collected
during the trials by the robot using its internal (joints) and external sensors (micro-
phones). KASPAR records its performance (e.g., the number of drum beats played
by KASPAR and number of turns taken by the robot during each game), as well
as those of the children (e.g., the duration of time between each drum beat of the
children) to imitate their performance within its physical limitations. In the next
section these recordings will be described and analyzed in detail.

The behavioral data includes several parameters related to the children’s and
to KASPAR’s drumming, i.e., the number of turns in a specific game, total, av-
erage and maximum number of drum beats performed by human participants and
KASPAR per turn, and the drumming and turn-taking errors. The drumming error
is the difference between KASPAR’s actual drumming, i.e., the number of beats
KASPAR plays in a particular turn, and the number of beats the child plays. Like-
wise, the turn-taking error is based on the difference between KASPAR’s and the
children’s turn-taking. Thus, the drumming and turn-taking errors reflect the dis-
crepancy between human and robot drumming performance in this imitation game.



H. Kose-Bagci et al. / Advanced Robotics 23 (2009) 1951–1996 1965

Although the robot’s performance is the same under all conditions, the child’s re-
sponse to the robot’s play differs. This affects the robot’s detection and imitation of
the child’s drumming and, thus, influences the robot’s performance in its response.
There are many different reasons for the robot’s erroneous detection of the child’s
performance (number of drumming beats and turns) caused by the children. For
example, they will beat the drum while the robot is drumming and not listening
(improper synchronization), so their beating will not be considered by the robot.
Likewise, they may beat very fast or very light, which will not be detected by the
robot, or they will use the bells of the drum, resulting in the robot detecting more
than one beat.

In Section 4, several ‘error’ and performance measures based on the behavioral
data are used to analyze the differences between different conditions. The error and
performance measures are either presented per game or per turn. A game comprises
the whole interaction occurring within one embodiment condition in a limited time
period (2 min as specified in the current work) including several turns. The term
non-zero turns defines the turns where at least one drum beat is played. For clarity
all the zero turns (i.e., turns where no drum beat is played/or detected) were re-
moved from the data for the following analysis. The term Diffsum (1) stands for the
difference of the total sum of beats between participant and robot per game. The
maximum number of beats per game shows the maximum number of drum beats
played in a single turn per game. As shown in (2), Errorsum is Diffsum per num-
ber of non-zero turns (maximum of human and KASPAR). The term non-perfect
turns is used for the number of non-zero turns where the number of drum beats in
both the human’s and KASPAR’s turns do not match. If the number of non-zero
turns of both do not match then the difference is also counted as a non-perfect turn.
However, due to errors in observations and differences in children’s play rhythms,
this measure can be erroneous, giving a higher error rate than the real case, so we
also take Errorsum and other performance measures into consideration. The term
Errorturn defines the number of non-perfect turns per number of non-zero turns
(maximum of human and KASPAR) (3).

Diffsum =
∑

BeatsHuman −
∑

BeatsKASPAR (1)

Errorsum = Diffsum

max(non-zero_turnsHuman, non-zero_turnsKASPAR)
(2)

Errorturn:
non-perfect_turns

max(non-zero_turnsHuman, non-zero_turnsKASPAR)
. (3)

To evaluate the success of a performance, the error rates, especially Errorsum and
Errorturn, are taken into consideration. The lower the Errorsum and Diffsum, the
better the drumming. Similarly, lower Errorturn, difference of non-zero turns or
number of non-perfect turns values indicate better turn-taking. Ideally, Errorsum
and Errorturn should be smaller than 1, and as close to 0 as much as possible.
Other criteria, e.g., number of non-zero turns, average or maximum number of beats
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played per turn and number of beats played per game, can differ according to dif-
ferent conditions in the game or different features of the participants. For example,
a higher average number of beats per turn might indicate more involvement of the
human participant in that particular game compared to the other conditions, even
though this might increase the errors in the game, due to the technical limitations
of KASPAR’s audio capture.

4. Results and Discussion

As mentioned above, the present study utilized a 3 (embodiment) × 2 (gestures)
mixed design to evaluate embodiment and gesture effects. Data of the 66 chil-
dren were analyzed using SPSS software (version 16 for Windows) and results
are reported below. Detailed information about the descriptive data related to the
questionnaires and behavioural data is listed in Appendix A.

In the following subsections the letter N stands for ‘no-gesture’ condition and
the letter G stands for ‘gesture’ condition, i.e., they indicate whether the gestures
of KASPAR were used in that particular game or not. Likewise, as explained above
for the embodiment conditions, K stands for the game where the human participant
played with the physical robot KASPAR, V is the virtual embodiment condition
where the human played with the projected image of KASPAR and D is the dis-
embodiment condition where the participant cannot see the robot, but can only hear
the sound of the hidden KASPAR.

There are two main sources of error — the differences in KASPAR’s and the
child’s drumming, and the differences in their turn-taking. The video recordings
and the data recorded by the robot itself were analyzed to obtain these error and
performance measures, which are very useful to study the behaviors of the robot
and the children, and detect some significant differences between various conditions
that are hard to detect from the questionnaire data only.

4.1. Does Embodiment Matter?

Data collected from the questionnaires were analyzed to investigate differences in
children’s opinions about their interaction with the robot in the different embodi-
ment conditions.

In our research we predicted that the children would evaluate the interaction with
an embodied robot more positively than the interaction with a disembodied one and
that the interaction with the virtual robot would be less positive than the interaction
with the physical embodied robot (as described in H1).

Hypothesis H1 is partially supported by the answers that the children gave to the
overall experience. Two questions at the end of the questionnaire focused on col-
lecting information about the game that they liked the most (Fig. 5) and the game
that they liked the least (Fig. 6). As shown in Table 3, almost all the participants
(n = 55; 83.33%) preferred to play with the embodied robot (conditions V or K),
rather than with the disembodied one. Likewise, more than half of the children pre-
ferred the game in the physical embodiment condition (n = 38; 57.57%), compared
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Figure 5. Most liked game.

Figure 6. Least liked game.

to the game in the virtual embodiment condition (25.76%). In addition, they liked
least the game played in the disembodiment condition (n = 44, 66.6%). However,
no significant mean difference in the embodiment condition related to evaluation
of enjoyment, social attraction, involvement, performance, general appearance and
intelligence was found.

It is nevertheless interesting to note the trend that the data shows (Fig. 7). The
interaction with the physically embodied robot was generally more appreciated
than the interactions in the other two conditions. Indeed, in almost all the vari-
ables (e.g., robot’s appearance, social attraction, involvement and intelligence) the
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Table 3.
Game preferences

Em-
bodi-
ment

Game liked the best Game liked the least

Frequency Frequency Frequency % Frequency Frequency Frequency %
in G in N in G in N
condition condition condition condition

K 38 20 18 57.57 6 3 3 9.09
V 17 7 10 25.76 16 7 9 24.24
D 11 6 5 16.67 44 23 21 66.67

Total 66 100 66 100

Figure 7. Effect of embodiment in children’s scores of robot appearance, social attraction, involve-
ment, intelligence, performance and enjoyment of the interaction.

children gave the physically embodied robot the highest score, the disembodied
robot the lowest score and the virtual embodied robot a score in between the two
(generally close to the one assigned to the disembodiment condition). On the con-
trary, a different result appeared for the level of enjoyment. It is interesting to notice
that the virtual embodiment condition received the lowest score — lower than the
disembodied condition. Similarly, another result that does not follow the previous
highlighted trend is the one related to the robot’s performance. The disembodiment
condition gained the highest score in robot performance, while the physically em-
bodied robot received the lowest score. A possible explanation for this unforeseen
result is that children’s attention, while interacting with the disembodied robot, is
not diverted from the primary task, so children were focused only on the drumming
game and, thus, evaluated the drumming performance differently.

However, consistent with hypothesis H1, results show that when gestures were
used, the participants tended to evaluate the physically embodied robot more pos-
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Figure 8. Combined effect of embodiment and gesture in children’s scores of the enjoyment of the
interaction.

itively than in the other two conditions. In terms of enjoyment, there was an in-
teraction effect between gesture and embodiment (F(2,126) = 4.29, P < 0.016,
η2 = 0.064). This effect is described in Fig. 8, which suggests that for the gesture
condition, participants tended to evaluate the physical condition more favorably
than other conditions — an effect which is not evident for the no-gesture condition.

Likewise, there was an interaction effect between gestures and embodiment in
terms of perceived intelligence (F(2,126) = 3.24, P < 0.042, η2 = 0.049). This
effect is described in Fig. 9, which suggests that the physical robot is rated as more
intelligent in the gesture condition while the opposite is true for the virtual em-
bodiment and the disembodied condition. It may be that the time the robot spent
in making gesture movements affected negatively the intelligence attributed to it
when it was not physically present (V and D condition), while it could have had a
positive effect for the robot in the K condition.

It is also interesting to notice that the disembodied robot (D) in the no-gesture
condition and the physically embodied robot (K) in the gesture condition received
a similar score. This result might be related to the number of drum beats played per
turn (see Section 4.2).

Moreover, a significant interaction effect between gestures and embodiment was
found in terms of robot appearance (F(2,128) = 4.92, P < 0.009, η2 = 0.071).
Note, as mentioned, children neither saw the robot’s appearance nor its gestures dur-
ing the disembodiment condition, so we refrain from discussing in more detail any
results concerning the disembodiment condition with respect to appearance evalua-
tion or effects of gestures. Figure 10 suggests that this effect caused the children to
evaluate the robot’s appearance in the virtual condition more positively when ges-
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Figure 9. Combined effect of embodiment and gesture in robot’s intelligence.

Figure 10. Combined effect of embodiment and gesture in robot appearance.

tures were used than when they were not used. Different from the previous trend,
children assigned a higher score to robot appearance when the physically embodied
robot was drumming in the no-gesture condition than in the gesture condition. It
might be the case that the gestures made by the robot were appropriate for a pro-
jected image of the robot, but not smooth enough for a robot sat in front of the
participants.
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No significant interaction effects between the gesture conditions and embodi-
ment conditions concerning social attraction, performance and involvement were
found.

4.2. Effect of Embodiment and Gestures on Behavioral Data (H2)

The drumming and turn-taking performances differ for different embodiment condi-
tions based on the analysis of behavioral data including error rates on the drumming
and turn-taking, and several other parameters, i.e., total amount of drumming per
game and maximum number of drum beats per turn, as stated in Section 3.7.2.

The game types are compared in detail in Table 4 (differences between hu-
man and KASPAR’s perspectives), Table 5 (human’s perspective) and Table 6
(KASPAR’s perspective). As shown in Fig. 11, there is a highly significant dif-
ference between the physically embodied condition K and the other conditions

Table 4.
Observed differences between child–robot drumming behaviors according to the embodiment condi-
tion

Game Difference of Difference of No. of non-perfect Error in sum Error in number
type sum of beats non-zero turns turns of beats of turns

K 12.53 ± 11.0 1.86 ± 2.00 14.65 ± 4.1 0.62 ± 0.51 0.74 ± 0.13
V 18.38 ± 13.2 2.65 ± 3.40 14.98 ± 4.1 0.94 ± 0.66 0.78 ± 0.14
D 18.20 ± 16.5 2.47 ± 2.39 15.45 ± 4.0 0.90 ± 0.80 0.78 ± 0.14

Table 5.
Observed human drumming behavior according to the embodiment condition

Game Sum of beats No. of non-zero Maximum no. Average no.
type turns of beats of beats/turn

K 60.06 ± 4.53 19.45 ± 4.02 12 3.18 ± 0.89
V 67.73 ± 17.72 18.70 ± 4.87 25 3.89 ± 1.73
D 67.61 ± 18.70 19.11 ± 4.18 13 3.64 ± 1.08

Table 6.
Observed KASPAR’s drumming behavior according to the embodiment condition

Game Sum of beats No. of non-zero Maximum no. Average no.
type turns of beats of beats/turn

K 51.86 ± 15.22 18.11 ± 3.57 14 2.93 ± 0.97
V 54.68 ± 17.81 17.59 ± 4.22 23 3.31 ± 1.73
D 53.35 ± 17.51 18.21 ± 3.52 13 2.98 ± 1.10
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Figure 11. Average errors in sum of beats according to the embodiment condition.

Figure 12. Effect of gestures on the average errors in the sum of beats according to the embodiment
condition.

in terms of the average error in the sum of beats (Errorsum) (F(2,126) = 6.653,
P < 0.002, η2 = 0.094; Bonferroni adjusted post-hoc tests indicate that the mean
difference between K and V is 0.315, P = 0.047; the mean difference between K

and D is 0.276, P = 0.001). The error rate increases with the absence of physical
embodiment, but not between disembodiment and virtual embodiment conditions.
There is a significant interaction effect between the gesture condition and em-
bodiment condition (F(2,126) = 3.379, P < 0.037, η2 = 0.050). This interaction
effect, presented in Fig. 12, suggests that the differences found between condition
K and the others is more pronounced for the gesture condition. There is no signifi-
cant main effect between embodiment conditions for turn-taking error (see Fig. 13),
but a significant interaction effect (F(2,126) = 8.214, P < 0.000, η2 = 0.114) pre-
sented in Fig. 14 suggests that gestures decrease the likelihood of such errors in
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Figure 13. Average errors in number of turns according to the embodiment condition.

Figure 14. Effect of gestures on the average errors in number of turns according to the embodiment
condition.

the physically embodied condition, while having the opposite effect on the virtual
and disembodied condition. These results support hypothesis H2 and suggest that
the physically embodied robot helps the child to understand the game and the robot
better, and improve the drumming and turn-taking performances.

The difference in the sum of drum beats is also significantly higher in the V

and D conditions than in condition K (main effect: F(2,126) = 6.096, P < 0.003,
η2 = 0.087; Bonferroni adjusted post-hoc tests indicate a mean difference between
K and V of 8.939, P = 0.0.001; the mean difference between K and D is 7.591,
P = 0.0001), while there are no significant differences between the V and D condi-
tions (Fig. 15). An interaction effect between gesture and embodiment conditions,
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Figure 15. Difference of total number of drum beats of children and KASPAR according to the em-
bodiment condition.

Figure 16. Effect of gestures on the difference of total number of drum beats of children and KASPAR
according to the embodiment condition.

presented in Fig. 16, suggests that this effect is more strongly pronounced for the
gesture condition (F(2,126) = 4.031, P < 0.020, η2 = 0.059) (Fig. 16).

The maximum number of drum beats (F(2,126) = 14.095, P < 0.000, η2 =
0.180; Bonferroni adjusted post-hoc tests indicate that the mean difference between
K and V is 2.015, p = 0.0001; the mean difference between K and D is 1.076, P =
0.001) (Fig. 17), and the average number of drum beats (F(2,126) = 13.442, P <

0.000, η2 = 0.174; Bonferroni adjusted post-hoc tests indicate that mean difference
between K and V is 0.802, P = 0.0001; the mean difference between K and D is
0.495, P = 0.0001) (Fig. 18) of children and KASPAR per game is significantly
lower in condition K than it is in conditions V and D. There is also an interaction
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Figure 17. Maximum number of drum beats of children according to the embodiment condition.

Figure 18. Average number of drum beats of KASPAR according to the embodiment.

effect that suggests that these differences are more pronounced in the presence of
gestures, described in Fig. 19 (F(2,126) = 5.145, P < 0.007, η2 = 0.074).

4.3. Effect of the Play Time on the Games and Gestures (H3)

The analysis of the behavioral data showed significant effects for the play time in
terms of the drumming and turn-taking performances. In general, it was observed
that the participants initially either tried very long and fast patterns or they did
not beat the drum loud enough to be detected reliably when they started to play
(KASPAR uses a high-level noise filter to filter out high inner noise coming from
its joints, so it can only sense loud beats).

The effect of the play time is described in detail in Table 7 (differences between
human and KASPAR’s perspectives), Table 8 (human’s perspective) and Table 9
(KASPAR’s perspective). Interestingly, without any external encouragement, as the
children played more, it appeared that they got used to the game and were progres-
sively able to synchronize themselves to the robot better. Thus, the error rate (Er-
rorsum) decreased significantly over time (Fig. 20) (F(2,126) = 7.563, P < 0.001,
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Figure 19. Effect of gestures on the average number of drum beats of humans according to the em-
bodiment condition.

Table 7.
Observed differences between KASPAR-human drumming behaviors according to game order

Order Difference of Difference of No. of non-perfect Error in sum Error in number
sum of beats non-zero turns turns of beats of turns

1 20.15 ± 16.6 2.53 ± 2.3 15.58 ± 3.8 1.00 ± 0.79 0.79 ± 0.11
2 16.71 ± 13.2 2.64 ± 3.3 15.38 ± 3.7 0.82 ± 0.63 0.77 ± 0.14
3 12.24 ± 10.4 1.82 ± 2.2 14.14 ± 4.6 0.64 ± 0.55 0.74 ± 0.16

Table 8.
Observed human drumming behavior according to game order

Order Sum of beats No. of non-zero Maximum no. Average no.
turns of beats of beats/turn

1 64.15 ± 19.2 19.15 ± 4.57 12 3.44 ± 0.99
2 64.92 ± 16.2 19.56 ± 4.20 13 3.44 ± 1.08
3 66.32 ± 16.8 18.55 ± 4.32 25 3.83 ± 1.71

Table 9.
Observed KASPAR’s drumming behavior according to game order

Order Sum of beats No. of non-zero Maximum no. Average no.
turns of beats of beats/turn

1 47.52 ± 15.9 17.86 ± 3.53 14 2.70 ± 0.98
2 52.33 ± 16.5 18.02 ± 3.77 13 2.96 ± 1.07
3 60.05 ± 15.9 18.03 ± 4.06 23 3.56 ± 1.66
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Figure 20. Average errors in sum of beats according to order.

Figure 21. Effect of gestures on the average errors in sum of beats according to order.

η2 = 0.106; Bonferroni adjusted post-hoc tests indicate that the mean difference
between the first game and the third game is 0.365, P = 0.003), implying a signifi-
cant interaction effect between order and gestures, suggesting that this effect is more
pronounced in the gesture condition. (F(2,126) = 2.952, P < 0.056, η2 = 0.044),
as shown in Fig. 21. Similarly, the difference between KASPAR’s and human’s
total drumming decreases as the children play more games (F(2,126) = 7.067;
P < 0.001, η2 = 0.099; Bonferroni adjusted post-hoc tests indicate that the mean
difference between the first game and the third game is 7.242, P = 0.005; the mean
difference between the second and the third game is 5.106, P = 0.008). There is
also an significant decrease of the error rate in the turn-taking (Errorturn) between
the first and third games (F(2,126) = 5.520, P < 0.022, η2 = 0.079) (Fig. 22) that
supports hypothesis H3.

As shown in the Fig. 23, the maximum number of beats per game increased
significantly between the first and third game (F(2,126) = 7.455, P < 0.001, η2 =
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Figure 22. Average errors in number of turns according to game order.

Figure 23. Maximum number of drum beats of children per turn according to order.

0.079; Bonferroni adjusted post-hoc tests indicate that the mean difference between
the first game and the third game is 1.33, P = 0.013). Also, the average drumming
per turn increases significantly in the third game (F(2,126) = 4.732, P < 0.010,
η2 = 0.069; Bonferroni adjusted post-hoc tests indicate that the mean difference
between the first and the third game approaches significance, the mean difference is
0.428, P = 0.06) (Fig. 24), which may suggest that participants played more beats,
possibly due to a stronger involvement in the game, as they played more games.

The number of non-zero turns differs significantly for the children according to
order as shown in Fig. 25 (F(2,126) = 3.800, P < 0.025, η2 = 0.056; Bonferroni
adjusted post-hoc tests indicate that the mean difference between the second and
the third game is 1.182, P = 0.011). Children (and consequently KASPAR) played
in less turns with a higher number of beats per turn and with longer durations when
the second and last games were compared.
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Figure 24. Average number of drum beats of children according to order.

Figure 25. Number of the non-zero turns of children per game according to order.

4.4. Effect of Gender

A significant effect was found for gender in the evaluation of the robot’s social
attraction. This effect is described in Fig. 26 and suggests that male children found
the robot more socially attractive in the physical embodiment condition than in the
two other embodiment conditions, while a similar effect is not evident for females
(F(2,126) = 3,06, P < 0.051, η2 = 0.046) (Fig. 26).

In terms of behavioral data, gender showed significant differences. When differ-
ent embodiment conditions were compared, there was a significant interaction effect
between embodiment and gender in terms of the maximum number of beats played
per turn (F(2,126) = 8.497, P < 0.000, η2 = 0.117). The effect, shown in Fig. 27,
suggest that when the children play with the physical robot, their performance is
similar, but in the absence of the physical robot male children play more beats than
the female children. This effect is most pronounced in the virtual embodiment con-
dition. There could possibly be a link between the males tending to play computer
games and these results. They may view the game with the two-dimensional pro-



1980 H. Kose-Bagci et al. / Advanced Robotics 23 (2009) 1951–1996

Figure 26. Gender differences in the robot’s social attraction in the different embodiment conditions.

Figure 27. Effect of gender on the maximum number of drum beats of children according to the
embodiment condition.

jected image of the robot (V condition) like a computer game and this might affect
their performances. Further analysis is needed to investigate this issue.

In terms of the play time effect, the gender differences are significant in the num-
ber of drum beats played. There is a significant main effect for gender (F(1,63) =
7.042, P = 0.01, η2 = 0.099; due to there only being two levels for gender, a Bon-
ferroni test was not conducted), for game order (F(2,126) = 7.455, P = 0.001,
η2 = 0.104; Bonferroni adjusted post-hoc test found the following significant mean
differences: first and third game, mean difference = 1.493, P = 0.004; second and
third, mean difference 1.060, P = 0.028), as well as a significant interaction be-
tween gender and game order (F(2,126) = 4.639, P < 0.011, η2 = 0.068). This
interaction effect is described in Fig. 28 and suggests that the male participants
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Figure 28. Effect of gender on the maximum number of drum beats of children according to the
sequential order.

Figure 29. Effect of gender on the average number of drum beats of humans according to the sequen-
tial order.

have a more pronounced difference between the third game and the other games
than the females.

For average number of beats, a significant main effect was found for gender
(F(1,63) = 5.212, P = 0.026, η2 = 0.075; Bonferroni test not conducted due to
gender only having two levels) and game order (F(2,126) = 4.732, P = 0.012,
η2 = 0.069; Bonferroni adjusted post-hoc tests found a significant mean difference
between the first and the the third game, mean difference = 0.481, P = 0.035);
there was also an interaction effect between gender and game order approaching
significance (F(2,126) = 2.922, P < 0.057, η2 = 0.044). This interaction effect is
described in Fig. 29, and suggests that the difference between the first and the third
game is more pronounced for the male participants.
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Figure 30. Effect of gender on the number of non-zero turns of humans according to game order.

For the number of turns played, a significant main effect was found for game
order (F(2,126) = 3.800, P = 0.025, η2 = 0.056; Bonferroni adjust post-hoc test
found a significant mean difference between the the second and the third game,
mean difference = 1.359, P = 0.002). However, an interaction effect was found for
gender and game order (F(2,126) = 3.263, P < 0.041, η2 = 0.049); this effect is
described in Fig. 30 and suggests that this difference is primarily due to the behavior
of the male participants.

5. Conclusions

In this research, we studied the effect of embodiment and gestures on a human–
humanoid drumming game. We tested different levels of embodiment of the hu-
manoid robot which autonomously played games with child participants. Half of
the children interacted with a robot that made simple head gestures while imitating
the child’s drumming, while the rest of them played with a robot that did not make
any gestures, but simply played its drum.

The analysis of results from video recordings, questionnaire data and the robot’s
recordings of the behavioral data gave either partial or full support for our orig-
inal hypotheses as formulated in Section 2. The physical embodied robot (K) in
the gesture condition has been evaluated by the children as the interaction that they
enjoyed the most. The drumming performance of the child–robot pair is the highest
in the physical robot condition, and decreases in the virtual and disembodied ro-
bot conditions. Similarly, best turn-taking was achieved when they played with the
physical robot; their coordination got worse in the virtual and disembodied robot
conditions.

Results of questionnaire data analysis and behavioral data support the expec-
tation that embodiment can play an important role in social interaction tasks. In
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particular, our child participants found the presence of a physical robot most enjoy-
able and believed it to be more pleasant to play with than a hidden robot or a virtual
robot.

Overall, the questionnaire results show that children’s opinions are not effected
by the embodiment conditions, nor by the presence or absence of robot gestures.
Nevertheless, it is interesting to note that the data indicates a trend in which the
children generally appreciated more the interaction with the physically embodied
robot than the other two conditions. Despite of that small result, significant inter-
action effects of embodiment and gesture conditions have been found in terms of
enjoyment, intelligence and appearance.

In terms of enjoyment, there is a significant difference between the embodiment
conditions when the robot made gestures during its drumming, where participants
in the gesture condition enjoyed interacting with the embodied robot more than with
the two other embodiment conditions. The result concerning intelligence (in which
the perceived intelligence of the robot was less for the video and disembodied con-
dition than for the embodied condition if gestures were used, while the opposite was
true when no-gestures were performed) is also quite interesting, possibly highlight-
ing the importance of physical embodiment for effective use of and the processing
of non-verbal cues in social interactions. The result regarding appearance might
suggest that the gestures used by the robot might be appropriate for the projected
image, but not smooth enough for a robot sat in front of a child.

Moreover, the behavioral data of the children and the robot support that there
is a significant difference between the embodiment conditions as we hypothesized.
The presence of the physically embodied robot motivated the children positively,
and helped to improve the turn-taking and drumming between the robot and the
children significantly. When the robot made gestures whilst drumming, the differ-
ences between the drumming and turn-taking performances belonging to different
embodiment conditions increased significantly. Gestures played a positive role, es-
pecially when the child played with the physically embodied robot in terms of
turn-taking.

Also, there is a significant difference in the error rates of drumming and turn-
taking between the first and the third games. Thus, as hypothesized, the children
enjoyed the game more, and both the drumming and the turn-taking performance of
the robot and the children improved as they played more. When the gestures were
introduced, especially in the first game, there was a significant difference in the
turn-taking errors — as the children played more, they got used to the robot and the
gestures, and this difference decreased.

Note that we are aware of the limitations of our study. For example, the variances
within the sample were quite large in comparison to the effect sizes. This is to be ex-
pected — the novelty of HRI scenarios, and considering that the sample consisted of
children, would lead one to expect that idiosyncracies of the individual participant
would impact both interactions and evaluations of these. Owing to this, a sample
size such as the one presented in the paper (which is quite large compared to similar
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studies) is a reasonable and accepted way of controlling for such idiosyncracies in
order to avoid a type II error (‘Failing to reject a false null hypothesis’) [47].

Several directions for future work can be envisaged. Considering that play is
often a ‘group activity’, one may study teams of children playing together with the
robot in order to investigate how they interact with each other as well as with the
robot. Such ‘social facilitation effects’ in HRI have been found, for example, in our
previous studies involving children playing games with a non-humanoid mobile
robot [48]. Also, the experience of the human–humanoid drumming game could
be compared with a human–human drumming game. Furthermore, adding visual
feedback with the use of the robot’s internal cameras may be helpful in enhancing
the robot’s interaction with the children. In that way the robot could adapt itself to
the behavioral changes in the children to achieve a higher level of social interaction
with them. Finally, different robot appearances (e.g., humanoid versus mechanical-
looking or zoomorphic) and different robot behaviors could be varied systematically
in studies comparing virtual and physical embodiment conditions.

On a general note, recently more emphasis has been given to the use of virtual
social agents (e.g., virtual characters) in the context of interaction with humans
[49–52]. Graphical characters in virtual environments (cf ; computer games) can
create scenarios far more complex than typical HRI scenarios, which explains their
popularity in entertainment and educational applications, for example. However,
interaction with virtual characters typically requires the use of dedicated interfaces,
e.g., keyboard, mouse, Wii, etc., while interactions with robots, as described in
this paper, do not necessarily require specialized input devices. As the results in
this paper indicate, there is a clear benefit of using physical embodied characters,
compared to virtual characters, as far as children’s responses are concerned. Thus,
despite limitations concerning the complexity of autonomous intelligent behavior
and interactive capabilities of state-of-the-art robots, our research supports the need
for physically embodied interaction in suitable scenarios. Note that in therapy ap-
plications the physical dimension of interaction can provide an additional strong
incentive and therapeutic objective, and not unsurprisingly, more and more embod-
ied robots have been used in special education, engaging children with special needs
in meaningful interactions [53–55].

This large-scale study with an autonomous humanoid robot and children is one
of the first studies in this domain of comparing physical and virtual robot embod-
iments. The achievements and findings here suggest implications for research in
application areas involving robots and children. Our results indicate that the em-
bodiment of the robot (virtual or physical) has a significant impact on the objective
performance and children’s subjective evaluation of the interaction.
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Appendix A

Descriptive Data Related to Questionnaire Data

Table A.1.
Descriptive data of the embodiment effect

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Enjoyment K 4.457 0.090 4.278 4.637
V 4.262 0.125 4.013 4.511
D 4.376 0.097 4.182 4.570

Performance K 3.667 0.139 3.389 3.944
V 3.735 0.158 3.418 4.051
D 3.735 0.142 3.451 4.019

Appearance K 4.212 0.099 4.014 4.410
V 4.020 0.118 3.784 4.256
D 3.985 0.105 3.775 4.195

Social attraction K 4.111 0.113 3.884 4.338
V 4.009 0.139 3.730 4.287
D 4.008 0.133 3.742 4.273

Intelligence K 4.325 0.105 4.114 4.535
V 4.275 0.115 4.045 4.505
D 4.274 0.123 4.028 4.520

Involvement K 4.455 0.087 4.280 4.629
V 4.340 0.104 4.132 4.547
D 4.330 0.107 4.117 4.543
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Table A.2.
Descriptive data of the gesture effect

Gesture
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Enjoyment gesture 4.422 0.120 4.181 4.662
no-gesture 4.308 0.118 4.071 4.545

Performance gesture 3.581 0.164 3.253 3.908
no-gesture 3.843 0.164 3.516 4.171

Appearance gesture 4.040 0.118 3.804 4.276
no-gesture 4.104 0.118 3.868 4.340

Social attraction gesture 4.135 0.162 3.811 4.460
no-gesture 3.949 0.160 3.630 4.269

Intelligence gesture 4.219 0.123 3.973 4.464
no-gesture 4.364 0.121 4.122 4.605

Involvement gesture 4.401 0.120 4.161 4.641
no-gesture 4.348 0.118 4.112 4.585

Table A.3.
Descriptive data of the gender effect

Gender Mean SE 95% Confidence interval

Lower bound Upper bound

Enjoyment male 4.359 0.134 4.091 4.627
female 4.368 0.109 4.149 4.586

Performance male 3.519 0.180 3.158 3.879
female 3.846 0.150 3.546 4.146

Appearance male 4.000 0.130 3.740 4.260
female 4.123 0.108 3.906 4.339

Social attraction male 3.968 0.181 3.607 4.329
female 4.090 0.147 3.795 4.384

Intelligence male 4.314 0.133 4.048 4.580
female 4.415 0.109 4.197 4.632

Involvement male 4 269 0.137 3995 4 543
female 4.308 0.112 4.084 4.531
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Table A.4.
Descriptive data of the interaction between embodiment and gesture

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Enjoymenta

gesture K 4.688 0.128 4.432 4.943
V 4.281 0.178 3.927 4.636
D 4.297 0.138 4.020 4.573

no-gesture K 4.227 0.126 3.976 4.479
V 4.242 0.175 3.893 4.592
D 4.455 0.136 4.182 4.727

Performance
gesture K 3.621 0.196 3.229 4.014

V 3.682 0.224 3.234 4.129
D 3.439 0.201 3.038 3.841

no-gesture K 3.712 0.196 3.320 4.105
V 3.788 0.224 3.340 4.235
D 4.030 0.201 3.629 4.432

Appearancea

gesture K 4.162 0.140 3.881 4.442
V 4.182 0.167 3.848 4.515
D 3.778 0.149 3.480 4.075

no-gesture K 4.263 0.140 3.982 4.543
V 3.859 0.167 3.525 4.192
D 4.192 0.149 3.894 4.489

Social attraction
gesture K 4.328 0.162 4.005 4.651

V 4.078 0.198 3.681 4.475
D 4.000 0.189 3.622 4.378

no-gesture K 3.894 0.159 3.576 4.212
V 3.939 0.195 3.549 4.330
D 4.015 0.186 3.643 4.388

Involvement
gesture K 4.500 0.124 4.251 4.749

V 4.422 0.148 4.126 4.717
D 4.281 0.152 3.978 4.585

no-gesture K 4.409 0.123 4.164 4.654
V 4.258 0.146 3.966 4.549
D 4.379 0.150 4.080 4.678

Intelligencea

gesture K 4.438 0.150 4.138 4.737
V 4.156 0.164 3.829 4.484
D 4.063 0.176 3.712 4.413

no-gesture K 4.212 0.148 3.917 4.507
V 4.394 0.161 4.072 4.716
D 4.485 0.173 4.139 4.830

a Significant interaction effect.
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Table A.5.
Descriptive data of the interaction between embodiment and gender

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Enjoyment
male K 4.442 0.149 4.145 4.740

V 4.269 0.197 3.876 4.663
D 4.365 0.154 4.057 4.674

female K 4.462 0.122 4.218 4.705
V 4.256 0.161 3.935 4.578
D 4.385 0.126 4.133 4.636

Performance
male K 3.352 0.211 2.930 3.774

V 3.556 0.246 3.064 4.047
D 3.648 0.229 3.190 4.106

female K 3.885 0.176 3.533 4.236
V 3.859 0.205 3.450 4.268
D 3.795 0.191 3.414 4.176

Appearance
male K 4.198 0.155 3.887 4.508

V 3.889 0.186 3.517 4.261
D 3.914 0.169 3.576 4.251

female K 4.222 0.129 3.964 4.480
V 4.111 0.155 3.802 4.420
D 4.034 0.141 3.753 4.315

Social attractiona

male K 4.212 0.184 3.844 4.579
V 3.808 0.218 3.372 4.244
D 3.885 0.209 3.467 4.302

female K 4.038 0.150 3.739 4.338
V 4.141 0.178 3.785 4.497
D 4.090 0.171 3.749 4.431

Involvement
male K 4.462 0.138 4.185 4.738

V 4.250 0.164 3.922 4.578
D 4.231 0.168 3.895 4.566

female K 4.449 0.113 4.223 4.674
V 4.397 0.134 4.129 4.666
D 4.397 0.137 4.123 4.671

Intelligence
male K 4.462 0.166 4.129 4.794

V 4.231 0.183 3.865 4.597
D 4.115 0.197 3.721 4.510

female K 4.231 0.136 3.959 4.502
V 4.308 0.150 4.009 4.606
D 4.385 0.161 4.062 4.707

a Significant interaction effect.
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Descriptive Data Related to Behavioral Data

Table A.6.
Descriptive data of the embodiment effect

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Errorsuma K 0.623 0.063 0.497 0.750
V 0.938 0.082 0.774 1.102
D 0.899 0.095 0.710 1.088

Errorturn K 0.741 0.016 0.709 0.772
V 0.778 0.017 0.744 0.812
D 0.780 0.017 0.746 0.814

Diffsuma K 12.530 1.356 9.822 15.239
V 18.379 1.622 15.139 21.619
D 18.197 2.011 14.180 22.214

Maxofbeatsa K 5.500 0.261 4.978 6.022
V 7.515 0.571 6.375 8.655
D 6.576 0.367 5.843 7.308

Avgofbeatsa K 3.129 0.101 2.927 3.332
V 3.932 0.219 3.494 4.369
D 3.624 0.130 3.365 3.883

a Significant interaction effect.

Table A.7.
Descriptive data of the interaction between embodiment and gender

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Maxofbeatsa

male K 5.630 0.408 4.814 6.445
V 9.407 0.841 7.727 11.088
D 7.815 0.542 6.732 8.898

female K 5.410 0.340 4.732 6.089
V 6.205 0.700 4.807 7.603
D 5.718 0.451 4.817 6.619

a Significant interaction effect.
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Table A.8.
Descriptive data of the interaction between embodiment and gesture

Embodiment
condition

Mean SE 95% Confidence interval

Lower bound Upper bound

Errorsuma

gesture K 0.642 0.090 0.463 0.822
V 0.977 0.116 0.745 1.208
D 1.139 0.134 0.872 1.406

no-gesture K 0.604 0.090 0.425 0.784
V 0.899 0.116 0.667 1.130
D 0.659 0.134 0.392 0.926

Errorturna

gesture K 0.705 0.023 0.659 0.750
V 0.820 0.024 0.772 0.868
D 0.820 0.024 0.773 0.868

no-gesture K 0.777 0.023 0.732 0.822
V 0.735 0.024 0.687 0.783
D 0.740 0.024 0.692 0.788

Diffsuma

gesture K 11.636 1.917 7.806 15.467
V 16.606 2.294 12.024 21.188
D 21.485 2.843 15.805 27.165

no-gesture K 13.424 1.917 9.594 17.254
V 20.152 2.294 15.569 24.734
D 14.909 2.843 9.229 20.589

Avgofbeatsa

gesture K 3.211 0.143 2.925 3.497
V 4.510 0.310 3.891 5.129
D 3.897 0.183 3.531 4.264

no-gesture K 3.048 0.143 2.761 3.334
V 3.353 0.310 2.734 3.972
D 3.351 0.183 2.985 3.717

a Significant interaction effect.
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Table A.9.
Descriptive data of the game order effect

Game
order

Mean SE 95% Confidence interval

Lower bound Upper bound

Errorsuma 1 1.002 0.094 0.815 1.190
2 0.821 0.079 0.663 0.978
3 0.638 0.068 0.502 0.773

Errorturna 1 0.790 0.014 0.761 0.818
2 0.770 0.017 0.736 0.803
3 0.738 0.020 0.698 0.778

Diffsuma 1 19.940 2.095 15.755 24.125
2 17.745 1.774 14.201 21.289
3 12.826 1.338 10.153 15.499

Maxofbeatsa 1 6.056 0.295 5.466 6.645
2 6.489 0.395 5.700 7.277
3 7.548 0.525 6.499 8.598

Avgofbeatsa 1 3.439 0.116 3.208 3.670
2 3.491 0.163 3.165 3.817
3 3.920 0.206 3.509 4.331

Non-zeroturnsa 1 18.899 0.577 17.747 20.051
2 19.644 0.524 18.597 20.690
3 18.285 0.567 17.152 19.417

a Significant interaction effect.

Table A.10.
Descriptive data of the interaction between game order and gesture

Game
order

Mean SE 95% Confidence interval

Lower bound Upper bound

Errorsuma

gesture 1 1.233 0.133 0.968 1.498
2 0.851 0.111 0.629 1.073
3 0.675 0.096 0.483 0.867

no-gesture 1 0.771 0.133 0.506 1.036
2 0.790 0.111 0.568 1.013
3 0.600 0.096 0.408 0.793

a Significant interaction effect.
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Table A.11.
Descriptive data of the interaction between game order and gender

Game
order

Mean SE 95% Confidence interval

Lower bound Upper bound

Maxofbeatsa

male 1 6.778 0.453 5.872 7.684
2 6.926 0.607 5.714 8.138
3 9.148 0.808 7.535 10.762

female 1 5.333 0.377 4.580 6.087
2 6.051 0.505 5.043 7.060
3 5.949 0.672 4.606 7.291

Avgofbeatsa

male 1 3.681 0.178 3.326 4.036
2 3.624 0.251 3.122 4.125
3 4.454 0.316 3.823 5.086

female 1 3.197 0.148 2.901 3.492
2 3.358 0.209 2.941 3.776
3 3.386 0.263 2.861 3.912

Non-zeroturnsa

male 1 17.926 0.887 16.155 19.697
2 19.852 0.805 18.243 21.461
3 17.519 0.872 15.777 19.260

female 1 19.872 0.738 18.398 21.345
2 19.436 0.670 18.097 20.775
3 19.051 0.725 17.603 20.500

a Significant interaction effect.
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Abstract— Investigating how people respond to and relate to 
robots is a multifaceted scientific challenge. This paper reports 
on an experimental investigation concerning movement 
interference effects between a human and a robot. We compare 
results with that obtained by Oztop et al. [1], however, in our 
study we used a small child-sized robot (KASPAR) with an 
overall human-like appearance.  The experiment was conducted 
with both child and adult participants who interacted with a 
small humanoid robot using arm waving behaviours. The 
experimental setup was designed to be less constrained than in 
[1] with an emphasis on playful interaction. The experimental 
results did not show evidence for  interference effects. This might 
be due to a more game-like and less constrained experimental 
environment or to the specific features of the robot or both. In 
addition to measurements of the variance of the movements, we 
investigated a measure for behavioural synchrony between 
human and robot movements based on the concept of 
information distance.  The results of information distance 
analysis indicated that most of the human participants were 
affected by the robot’s behavioural rhythms. While our 
experiments did not show a movement interference effect, we 
found behavioural adaptation of participants’ movement timing 
to the robot’s movements. Thus, the measure of behavioural 
synchrony that we introduced appears useful for complementing 
other measures (such as variance) previously used in the 
literature. 

I. INTRODUCTION 

s robots move ever closer to our daily lives 
Human-Robot Interaction (HRI) has become an 
increasingly important field of research [2]. Modelling 

human-human interaction is an important approach to HRI, 
and may provide inspiration to how the communicative and 
interaction dynamics as well as mechanisms can be realized in 
human-robot interactions. Human beings commonly interact 
with each other via actions and language. It is important for 
humans to understand the underlying meaning when people 
observe actions and hear speech from others. Many 
researchers suggest that mirror neurons play a critical role in 
action and language understanding [3, 4, 5, 6, 7].  

Following the discovery of mirror neurons in the premotor 
cortex of macaque monkeys [8, 9], which  discharge  when the 
subject performs an action and when the subject observes a 
similar action made by another agent, a great deal of research 

 
* This work was conducted within the EU Integrated Project RobotCub 

("Robotic Open-architecture Technology for Cognition, Understanding, and 
Behaviours"), funded by the EC through the E5 Unit (Cognition) of FP6-IST 
under Contract FP6-004370. 

concerning the nature of the mirror neuron system has been 
carried out [10]. One finding was that a similar mirror neuron 
system also exists in human brains [1, 10]. It has been 
suggested that the mirror neurons facilitate the imitation of 
observed actions, which demonstrates a matching between the 
perceived action and its execution [11, 12]. There have also 
been studies of ‘interference effects’ which are thought to 
occur as a result of the co-activation of conflicting populations 
of mirror neurons and are exhibited when a subject is 
observing and performing incongruent behaviours (illustrated 
in table 1). These effects have been found in human-human 
interactions, however, it is thought that they may also occur in 
human-robot interaction when the robot is more human-like 
[1, 13, 14, 15]. Recent research also found that interference 
effects were present when participants were told that a moving 
dot which they observed was generated by a human and absent 
when the phenomenon was described as computer generated 
[16]. Therefore, we may hypothesize that if the interference 
effects exist in interactions between humans and humanoid 
robots, it might suggest that humans may perceive such robots 
as possessing some “human-like” qualities instead of 
regarding them as simple mechanical machines. Such research 
may also provide hints at what type of robots may be 
acceptable as social interaction partners.  

 
TABLE I 

INTERFERENCE EFFECT ILLUSTRATION 

 
 

In Oztop et al.’s work [1] they describe a human-robot and 
human-human interaction experiment in which they 
successfully found an interference effect in human-robot 
interaction using the mechanically looking, but humanoid 
robot called DB. Earlier work by Kilner et al. [13] did not find 
interference effects in human-robot interaction when a robotic 
arm was used. Thus, it appears from the previous literature 
that the appearance (and associated movements) of robots 
may have an impact on the interference effect.  
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A starting point for our research was to expand this line of 
research further and conduct the experiments with a ‘social 
robot1’ with not only a humanoid shape but a human (child) 
-like overall appearance. 

The main motivations underlying the research presented in 
this paper were to replicate the interference experiments with 
a social robot having a human-like appearance in a less 
constrained and more playful interaction scenario, to 
investigate whether children and adults would respond 
differently in such conditions, and finally, to study whether 
synchronisation of human and robot movements could be 
observed. The detailed research questions of this experiment 
are described in section II below.   

II.  EXPERIMENTAL SETUP 

In July 2008 an experiment similar to that described by 
Oztop et al. [1] was carried out, but using a less constrained 
experimental framework. It has been previously found that an 
interference effect exists in human-human interaction [1, 13], 
therefore in our experiment we only concentrated on 
human-robot interaction. In addition, this experiment 
introduced new variable factors such as the effect of music and 
a comparison of two different age groups of participants.   

A. Research Questions 

In this experiment, we investigated the following four 
research questions: 

1. Can an interference effect be found in a playful 
human-robot interaction experiment using a ‘social 
robot’?  

2. Will the use of music affect the participants’ behaviour in 
the interaction experiment?  

3. Can we find significant differences between children and 
adults in terms of their behaviour in the interaction 
games?  

4. Will the rhythm of human behaviour be affected by the 
rhythm of the robot’s behaviour? 

The word ‘rhythm’ in this paper means “a strong, regular 
repeated pattern of movement or sound” [17]. 

Our expectations were as follows: As explained in section I 
the literature suggests an effect of robot appearance on the 
interference effect. We thus expected that a robot with even 
more human-like appearance features (compared to DB used 
in [1]), would elicit a strong interference effect. However, the 
more playful and less constrained setup of the interaction 
experiment may influence the outcome. The playfulness of the 
interaction with the robot was introduced due to their 
appropriateness for child participants. We expected that music, 
which emphasizes the robot’s movement rhythm would 
strengthen the interference effect. Since different levels of 
engagement of children versus adults interacting with a robot 
could be expected, we hypothesized to find different results 
 

1 The term ‘social robot’ in the context of this paper refers to the 
humanoid robot KASPAR2 which has been designed by our research group 
with a number of human-like features and expressions (face, arms etc.) in 
order to facilitate human-robot interactions in ‘social’ contexts such as 
interaction games (as in this paper) or human-robot teaching. URL: 
http://KASPAR.feis.herts.ac.uk/ 

for children and adults. Finally, we expected to find that 
participants would adapt the rhythm of their movements to the 
robot since previous research with a different version of the 
same robot has shown that children adapt the timing of their 
movements to the robot’s movements [18]. Our measure of 
synchrony for human and robot movements in interaction used 
a previously introduced and experimentally verified method 
[22]. 

B. Synchrony Measurement 

The method we used for identifying these similar and 
synchronous actions employed the idea of similarity using 
information distance, previously described by Crutchfield 
[19] and based on information theory [20]. Information 
distance was used here to capture the spatial and temporal 
relationships between events.  

 

 
 

Fig. 1 The Similarity Method General Approach Flow Chart 

 
The similarity identification method calculated the 

information distance between human and robot body part 
trajectories to yield an indication of their similarity. The 
numeric size of the information distance value gave an 
indication of similarity, the more similar the behaviors, the 
lower the value. Similarly, a higher value for information 
distance indicated less similar behaviors.   

According to the general approach of this method (shown in 
Fig. 1), as a first step, the collected 3-D trajectory data of the 
participants and the robot movements was allocated into 
different data bins according to its value and the binning 
strategy. The binning strategy component was then used to 
extract data distribution features. These features were the 
critical source of information to conduct the information 
distance calculation. The calculation of information distance 
between two data columns, usually a pair of corresponding 
behavior components from the human and robot behavior 
respectively (for example, the x co-ordinates of the human 
forearm position and the x co-ordinates of the robot forearm 
position), is based on the information metric described by 
Crutchfield [19]. The information distance between two data 
columns X and Y is defined as the sum of two conditional 
entropies of these two columns [21]. It can be calculated using 
the following formula:  

))()((),(*2),( YHXHYXHYXd +−=  [21] 

This similarity identification model was verified using 



 
 

 

random data, artificial data, sine curve data and real 
human-robot interaction data. The validation results showed 
that the method was able to correctly identify similarity and 
synchronous behavior between a human and a robot, see more 
details in [22].  

C. Experiment Design 

The experiment described was conducted with both child 
and adult participants who interacted with a small humanoid 
robot. In total 14 children and 14 adults participated in the 
trials.  However, following later video investigation, it was 
found that 4 child participants did not correctly follow the 
experimental instructions, which affected the data that was 
collected (e.g. one child tried to find out how fast the robot 
could move, rather than engaging in an interaction game). 
Therefore, the experimental data of these 4 children were 
excluded from the final data analysis. Note, all participants2 
were naive about the experiment. 

The robot used in this experiment is called KASPAR2, 
developed by the Adaptive Systems Research Group at 
University of Hertfordshire. KASPAR2 is a child-sized 
humanoid robot with 18 DOF (degrees of freedom). It has 5 
DOF in each arm, which enables it to perform some basic 
human-like waving behaviours. In this experiment, 
KASPAR2 only used its right arm (consistent with 
experiments in Oztop et al. [1]). 

1) Waving Behaviours: Two basic waving behaviours were 
used in the experiment: vertical waving and horizontal 
waving. For both waving behaviours, the upper arm of a 
subject remained still and the subject used only the forearm, 
waving vertically or horizontally respectively. Therefore, the 
hand trajectory of the subject was curvilinear instead of linear, 
which was more natural and easy for both human and 
KASPAR2 to produce (note that in the Oztop et al.’s 
experiment [1] the trajectories were restricted to linear 
movements). 

KASPAR2’s waving behaviours were synchronized with a 
music track, which was the nursery rhyme: “Baa Baa Black 
Sheep”. We chose a nursery rhyme because we expected that 
people may be more familiar with nursery rhymes and 
therefore find it easier to get involved in the music rhythm. In 
addition, many nursery rhymes have a slow and constant 
rhythm, which may allow better synchronization with 
KASPAR2’s movements. The specified nursery music track 
had a duration of 30 seconds with a constant rhythm. The time 
interval between each beat in the music was 1.03 seconds and 
it took the robot 2.06 seconds to complete one single wave 
movement. That is, every single wave movement (for 
example, from left to right) of KASPAR2 took two beats and 
every complete back and forth wave movement (left to right 
then to left again) took four beats. During the whole 
experiment, KASPAR2 was waving at a constant speed. The 
transition between the with/without music conditions was 
conducted by simply switching on or off the computer 
 

2 The 10 children were all male and between 11 and 12 years old. The 14 
adult participants (4 female, 10 male) were aged 18-52 (10 participants were 
between 23-26 years old). Thirteen adult participants were university 
students, one worked for a company. 

speakers. With the music factor introduced, the participants 
were expected to synchronize more with the robot’s behaviour 
when the music was on and to synchronize less when the 
music was off. Besides, music may make human-robot 
interaction more fun and more enjoyable.  

2) Tracking System: A Polhemus Liberty magnetic motion 
tracking system was used to track the hand trajectories of both 
the human participant and of KASPAR2. Two magnetic 
sensors were attached on the waving hands of both human 
participants and KASPAR2 to collect data. The Liberty 
system returns the Cartesian coordinates of the sensors with 
respect to a fixed point (a large magnetic source).  

 
TABLE II 

EXPERIMENTAL SETUP COMPARISON 

 
 
 3) Participant Instructions: During the experiment, the 
participants were asked to follow a few instructions. In order 
to create playful interaction, human participants were not 
specially trained to perform certain movements and many 
instructions given were very general instead of specifying 
every single detail:  

1. Each participant was asked to stand facing KASPAR2 
within a given distance (around one metre).  

2. Each participant was shown the two basic waving 
movements described above and given a demo by the 
experimenter before starting the experiment.  

3. Each participant was asked to only use their right arm in 
the experiment. However, the amplitude, speed and 
rhythm when the participant waved his or her arm was 
not restricted (from Oztop et al.’s [1] where the 
participants were explicitly instructed to be in phase with 
the other agent’s movements). 

4. Each participant was asked to concentrate on 
KASPAR2’s waving arm when waving his or her arm.  

5. Each participant was asked to interact with KASPAR2 
for 8 trials.  

These trials represented different experimental conditions 
according to 3 variables (2x2x2 within participant design, 
randomized order of the experimental conditions):  

• arm waving direction (vertical/horizontal),  



 
 

 

• human-robot behaviour congruency (congruent/ 
incongruent) and  

• music effect (with/without).  
Each trial lasted around 30 seconds. Participants were 

informed when to start before each trial and when to stop after 
each trial. 

The major differences in experimental setup between the 
experiment described in Oztop et al.’s work [1] and the 
current experiment are summarised in table 2.  

 

 
(a) 
 

 
(b) 

 
Fig. 2 (a) illustrates an example of human participant hand trajectory in 3-D 
space; (b) illustrates the mapping of the trajectory in figure a and the PCA of 
the mapping. The PCA is orthogonal to one of the axes.   

III.  ANALYSIS OF RESULTS 

A. Measurement Definition 

The possible interference effects of human-robot 
interaction were measured by the variances in the waving 
movement, as in previous work e.g. by Oztop et al. [1]. In this 
experiment, the movement variances were defined as the 
variance orthogonal to a subject’s main motion plane. For 
example, when a subject was waving horizontally, only the 
variances in the vertical direction (z-axis) were considered.  

However, when a subject was waving vertically, it was 
more complex to locate the variances. This was because, in the 
experiment setup, the magnetic source was placed diagonally 
to the participants due to restrictions in the magnetic field 
generated by the Polhemus device. The range and position of 
the magnetic field also had to be limited to maintain the 
accuracy of measurement. Consequently, there was no axis (x, 
y or z) orthogonal to the subject’s main motion plane in the 
vertical waving condition. An alternate approach applied was 
to take the mapped trajectory on the horizontal plane (x-y 
plane) and perform a PCA (Principal Components Analysis) 
to extract the desired axis. Usually, the first principle 
component (marked as the new x-axis, x’) could be regarded 
as the mapping of the main motion plane on the horizontal 
plane. Therefore, the second principal component (marked as 
the new y-axis, y’), which was orthogonal to the x’ axis, was 
the axis expected (Fig. 2). Through manual inspection, 94.8% 
of the vertical waving trajectories could use PCA to locate the 
axis. The axes of the rest of the trajectories were located 
manually.  

In addition, the synchrony and similarity of the robot and 
participants’ behaviours were also measured using an 
information distance approach [22], which was described in 
section II.  

B. Interference Effect Analysis 

A repeated-measures ANOVA was performed on the mean 
of the movement variances calculated across all trials for each 
condition (Table 3). Four fixed factors were involved in the 
ANOVA test: behaviour congruency, waving direction, 
presence of music and age group. The result showed that there 
was a significant effect in waving direction (p < 0.05) and age 
group (p < 0.01) (Fig.3).  

However, there was no significant effect of congruency (p > 
0.1) found in the experiment. The interaction effect between 
congruency and movement direction was not significant but 
very close (p < 0.08), which might potentially suggest that the 
congruent and incongruent behaviours had different impacts 
on the variability of the human movements in different 
directions (Fig. 3a).  

The significant effect of waving direction was also found in 
Kilner et al.’s work [13] and Oztop et al.’s work [1], so our 
results validate their findings. Note, a possible explanation for 
the fact that we did not find support for the interference effect 
might be due to the different approaches used in locating the 
axis that the variance was calculated from. 

The significant effect of age group suggested that the 
children and the adults behaved differently while interacting 
with the robot. The mean value of the variances in the 
children’s behaviour was significantly higher than the adults’ 
behaviour (Fig.3b). A possible explanation could be that the 
children adopted a stronger game-like attitude towards the 
task which lead to less constrained movements. Note, in the 
earlier work [1,13] higher variances have been interpreted as 
an indication for interference effects involving the mirror 
system. Our results did not show an interference effect but still 
higher variances in children’s movements. Thus, future 
experiments need to investigate this finding further.  



 
 

 

There was no significant effect overall in movement 
congruency. This may be due to the less constrained and more 
playful set up of the interaction experiment. The interference 
effect that might occur within a strict experimental setup 
might be overshadowed in a more relaxed and ‘natural’ 
human-robot interaction trial:  

1. The type of the waving behaviour in our experiments was 
more natural (less linear). 

2. The participants were not specifically trained to perform 
particular movements.  

3. Only general instructions of how participants should 
wave their arms were given during the experiment. 

4. There were no restrictions imposed on frequency or 
rhythm in participants’ waving behaviours. 

Thus, any of the factors mentioned above could have 
caused the interference effect to remain obscure in our 
experiments. 
 

TABLE III 
TESTS OF BETWEEN-SUBJECTS EFFECTS IN INTERFERENCE EFFECT ANALYSIS 

 
 
Besides, we did not find any significant effects for the 

music condition, which suggests that in our experiments music 
did not affect the variability of the human movements in 
human-robot interaction. Note, a possible explanation for this 
result could be that nursery rhymes may not have been suitable 
for either age group. However, we decided to chose one and 
the same music for both age groups, due to consistency 
purposes, and had assumed that both groups of participants 
may be familiar with such rhymes (e.g. via younger siblings or 
own children). 

C. Information Distance Analysis 

An ANOVA test was performed in the information distance 
analysis which was similar to the previous ANOVA test 

except the dependent variable was changed to information 
distance (Table. 4).  

Significant effects were found in age group (p < 0.01), 
which validated the similar result in the variance interference 
effect analysis. Figure 5 shows that the mean value of 
information distance for children was much lower than the 
value for adults, suggesting the rhythm of waving in children’s 
behaviour was more synchronized with the robot’s rhythm 
than the adults’ rhythm.  

 

 
(a) 
 

 
(b) 

 
Fig. 3 figure a and b showed the effects of waving direction and age group. 
(a) The mean value of the variances that occurred in horizontal waving was 
much higher than the value of vertical waving. (b) The mean value of the 
variances that occurred in the behaviours of the children was much higher 
than the value in adults’ behaviours. The significances of the ANOVA test 
are also shown in the figure (*: p <.0.05; **: p < 0.01).  

 
A further statistical analysis of information distance values 

showed that the rhythm of waving behaviour of human 
participants was synchronized with the rhythm of the robot in 
over 81% of the trials (the information distance value of these 
trials were below 1.5, which was an empirical value indicating 
synchronization obtained in earlier research [22]). Note, that 
during the experiment, the participants were not instructed to 
wave with a particular rhythm or imitate the robot, instead, 
they were instructed to decide their behaviour rhythm by 
themselves. Therefore, the results show that the participants 
were affected by the robot’s behaviour rhythm in the 



 
 

 

human-robot interaction experiments and adapted to it, which 
confirms previous results on timing adaptation in 
human-robot interaction experiments [18]. 

 
 

 
Fig. 4 The interaction effect between congruency and direction might 
potentially suggest that the congruent and incongruent behaviours had a 
different impact on the variability of the human movements in different 
directions 
 
 

TABLE IV 
TESTS OF BETWEEN-SUBJECTS EFFECTS IN INFORMATION DISTANCE 

ANALYSIS 

 
 
Note, Oztop et al. [1] relate their finding of the movement  

interference effect to the participants’ perception of the robot 
as ‘human’. In our experiments we did not find an interference 
effect, but we found behavioural adaptation of participants’ 

movement timing to the robot. Thus, the measure of 
behavioural synchrony introduced above (section II) appears 
useful for complementing other measures (such as variance). 
This approach may offer a different route towards the 
multifaceted scientific challenge of understanding how people 
respond to and relate to robots.  

There was no significant effect involving music in the 
information distance analysis. This may be because the 
rhythm of the music was the same as the behaviour rhythm of 
the robot. Thus, the facilitation effect of music could not be 
revealed even if it did exist. 

 

 
Fig. 5 This figure showed that the mean value of information distance of 
children was much lower than the value of adults. The significance of the 
ANOVA test is also shown in the figure (*: p <.0.05; **: p < 0.01). 

IV.  DISCUSSION AND FURTHER WORK 

With respect to the research questions formulated in section 
II.A the results can be summarised as follows: 

We did not find evidence for the movement interference 
effect in our experiments. This might be due to the less 
constrained and more playful experimental environment.  

Alternatively, the specific robot used in the experiment 
could be an important factor. Recent research from 
neuro-imaging and neuro-psychological studies indicates that 
there are at least two routes of imitation: one is a goal-directed 
route and the other is a non-goal directed (the waving 
behaviours described in this paper can be regarded as 
non-goal directed behaviours as the participants were not 
informed of any particular goal during the interaction). The 
non-goal directed imitation appears to require from the 
imitatee greater reliance on effector selection (e.g. hand) and 
movement execution [7, 23]. Press et al.’s work [14, 15] may 
support this finding, which suggests that robotic stimuli have 
an impact on humans’ mirror neuron systems if the robotic 
stimuli are similar to the human stimuli in visual properties. 
This implies that the limitations in robots can contribute to the 
absence of interference effects, which gives another possible 
explanation as to why there was no interference effect found in 
this experiment. There were some limitations in KASPAR2, 
which may affect the participants’ concentration or 
behaviours during interactions:  



 
 

 

1. The robot’s servos were noisy.  
2. The robot was in a sitting posture when the participants 

were standing, which caused differences in height 
between the robot and the participants. The participants 
were not instructed to sit on a seat because the seat would 
restrict the freedom of their behaviours. 

3. There were temporary limitations in the robot neck 
servos. Therefore, it could not raise its head enough to 
face the participants.  

An alternative explanation for the lack of the interference 
effect in the data is that the appearance of the robot is in the 
danger of falling into the ‘uncanny valley’ [24], which may be 
a factor in explaining whether robotic stimuli are effective or 
not. The “uncanny valley” is a theoretical idea that suggests 
that as robots become more human-like, they become less 
appealing to a real human. Only when true human-like 
features and movements appear does the “appeal” factor rise 
from the valley [24]. Although some robotic stimuli are very 
similar to human stimuli, if these stimuli fall into the uncanny 
valley and give humans a negative impression, then the mirror 
neuron system may not respond to them.  

The experimental results indicated that the waving 
direction had significant impact on the human participants’ 
behaviour, which validated similar results in Kilner et al. [13] 
and Oztop et al.’s work [1]. Our results also showed 
differences in movement variances between children and 
adults. In addition, the results of an information distance 
analysis indicated that most of the human participants were 
affected by the humanoid’s behaviour rhythm, which may 
potentially suggest that the robot was regarded as an 
interaction ‘partner’. We did not find any significant effect 
involving music. A possible explanation was that the rhythm 
of the robot’s behaviours, which was the same as the music 
rhythm, are shadowed the effect of the music. Alternative, the 
choice of the music may have influenced the result. 

Research into robot appearance suggests that an 
appropriate match between a robot’s appearance and its social 
functionality can facilitate human acceptance and cooperation 
in interactions [25]. In this experiment, the servo noise and 
occasional shaky movements of KASPAR2 may have 
impaired its social functionality.  

Moreover, some researchers found that children prefer 
interaction with a more machine-like robot over a more 
human-like robot [26, 27]. After the experiment, some 
participants, including children, reported that the rubber face 
of KASPAR2 looked scary. All of the feedback mentioned 
above indicated that KASPAR2 had very likely fallen into the 
uncanny valley, which may explain why KASPAR2 could not 
achieve responses from human participants’ mirror neuron 
systems, although it looked more human-like (i.e. possessed 
more human-like appearance features) than e.g. the robot used 
in Oztop et al.’s work. 

One may argue that the behavior rhythm could be affected 
by other simple rhythmic movements, e.g. caused by a 
pendulum or a moving dot on a screen instead of physical 
robots. That is, although the participants’ behaviour rhythm 
was affected by the robot this may not necessarily mean that 
the participants treated the robot as a potential interaction 

partner. Our future work will try to validate this point by 
replicating the experiment using other visual stimuli instead of 
a robot.  Further work may also change the rhythm of the 
music to further validate the impact of the music. 

ACKNOWLEDGEMENTS 

We would like to thank all the participants and especially 
the children of St. Matthew Academy, Blackheath, London for 
participating in the above study. We would like to thank Josh 
Wainer for assistance in the user study with the children. 

REFERENCES 

[1] E. Oztop, D. W. Franklin, T. Chaminade, and G. Cheng (2005). 
"Human-humanoid interaction: is a humanoid robot perceived as a 
human?" in International Journal of Humanoid Robotics 2(4): 
537-559. 

[2] J. A. Adams and M. Skubic (2005), “Introduction to the special issue 
on human–robot interaction,” in IEEE Trans. Syst., Man, Cybern. C, 
Appl. Rev., 35(4): 433-437. 

[3] G. Metta, G. Sandini, L. Natale, L. Craighero, L. Fadiga (2006), 
“Understanding mirror neurons: A bio-robotic approach,” in 
Interaction Studies 7(2): 197-232. 

[4] M. A. Arbib, (2002). "The mirror system, Imitation and the Evolution 
of Language." in Imitation in animals and artifacts, MIT Press. 

[5] E. Oztop, M. Kawato and M. Arbib. (2006). "Mirror neurons and 
imitation: A computationally guided review." in Neural Networks 
19: pp 254-271. 

[6] G. Rizzolatti, M. A. Arbib, (1998). “Language within our grasp,” in 
Trends in Neurosciences, 21(5): 188–194. 

[7] Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). 
"Neurophysiological mechanisms underlying the understanding and 
imitation of action," in Nature Reviews Neuroscience, 2: 661–670. 

[8] G. Rizzolatti, L. Fadiga, V. Gallese, L. Fogassi (1996). "Premotor 
cortex and the recognition of motor actions." In Brain Res Cogn. 
Brain Res. 3: pp 131-141. 

[9] V. Gallese, L. Fadiga, L. Fogassi and G. Rizzolatti (1996). “Action 
recognition in the premotor cortex,” in Brain 119: 593-609. 

[10] R. Hari, N. F., S. Avikainen, E. Kirveskari, S. Salenius, and G. 
Rizzolatti (1998). "Activation of human primary motor cortex during 
action observation: A neuromagnetic study," in Proc. Nat. Acad. Sci. 
USA 95: 15061-15065. 

[11] S. Vogt, R. Thomaschke, (2007), "From visuo-motor interactions to 
imitation learning: Behavioural and brain imaging studies," in 
Journal of Sports Sciences, 25: 497–517 

[12] E. Borenstein and E. Ruppin, (2005), "The evolution of imitation and 
mirror neurons in adaptive agents," in Cognitive Systems Research, 
6(3): 229-242. 

[13] J.M.Kilner, Y. Paulignan and S. J. Blakemore (2003), "An 
interference effect of observed biological movement on action," in 
Current Biol 13: 522-525. 

[14] C. Press, G. Bird, R. Flach, & C. Heyes, (2005). “Robotic movement 
elicits automatic imitation,” in Brain Research: Cognitive Brain 
Research, 25 (3): 632-640. 

[15] C. Press, H. Gillmeister, C. Heyes. (2006). “Bottom-up, not 
top-down, modulation of imitation by human and robotic models,” in 
European Journal of Neuroscience, 24(8): 2415-2419. 

[16] E. Gowen, J. Stanley & R. C. Miall, (2008) "Movement interference 
in autism spectrum disorder," in Neuropsychologia, 46: 1060-1068 

[17] www.askoxford.com (2008), “Compact Oxford English Diction- 
ary,” http://www.askoxford.com/concise_oed/rhythm?view=uk last 
accessed 28th Dec 2008 

[18] B. Robins, K. Dautenhahn, R. te Boekhorst, C. L. Nehaniv (2008), 
“Behaviour Delay and Robot Expressiveness in Child-Robot 
Interactions: A User Study on Interaction Kinesics.” In Proc. 
ACM/IEEE 3rd International Conference on Human-Robot 
Interaction (HRI 2008). 



 
 

 

[19] J. P. Crutchfield (1990), “Information and its Metric,” in Nonlinear 
Structures in Physical Systems – Pattern Formation, Chaos and 
Waves, Springer Verlag, 1990, pp 119-130 

[20] C. E. Shannon, “A mathematical theory of communication,” Bell 
Systems Technical Journal, vol. 27, pp. 379-423 and 623-656, 1948 

[21] L. Olsson, C. L. Nehaniv, D. Polani (2006), “From Unknown Sensors 
and Actuators to Actions Grounded in Sensorimotor Perceptions,” in 
Connection Science, Vol. 18, Number 2, June 2006, pp. 121-144. 

[22] Q. Shen, J. Saunders, H. Kose-Bagci, K. Dautenhahn (2008), 
“Acting and Interacting Like Me? A Method for Identifying 
Similarity and Synchronous Behavior between a Human and a 
Robot”, Poster Presentation at IEEE IROS Workshop on "From 
motor to interaction learning in robots", September 26, 2008, Nice, 
France. 

[23] E. A. Franz, S. Ford, and S. Werner, (2007), "Brain and cognitive 
processes of imitation in bimanual situations: Making inferences 
about mirror neuron systems," in Brain Research, 1145: 138–149. 

[24] M. Mori, (1970). “The Uncanny Valley,” in Energy, pp. 33-35. 
[25] J. Goetz, S. Kiesler, A. Powers, (2003), “Matching robot appearance 

and behavior to tasks to improve human-robot cooperation,” in 
Proceedings. ROMAN 2003: 55-60 

[26] B. Robins, K. Dautenhahn, R. te Boerkhorst, A. Billard (2004) 
"Robots as assistive technology - does appearance matter?" in 
Proceedings, 13th IEEE International Workshop On Robot And 
Human Interactive Communication(ROMAN 2004): 277- 282 

[27] S. Woods, K. Dautenhahn, J. Schulz, (2004), “The design space of 
robots: Investigating children's views,” in Proceedings, 13th IEEE 
International Workshop On Robot And Human Interactive 
Communication(RO-MAN 2004): 47-52. 

 



Using Real-Time Recognition of Human-Robot Interaction Styles

for Creating Adaptive Robot Behaviour in Robot-Assisted Play

Dorothée François, Kerstin Dautenhahn, Daniel Polani

Abstract— This paper presents an application of the Cas-
caded Information Bottleneck Method for real-time recognition
of Human-Robot Interaction styles in robot-assisted play. This
method, that we have developed, is implemented here for an
adaptive robot that can recognize and adapt to children’s play
styles in real time. The robot rewards well-balanced interaction
styles and encourages children to engage in the interaction. The
potential impact of such an adaptive robot in robot-assisted play
for children with autism is evaluated through a study conducted
with seven children with autism in a school. A statistical analysis
of the results shows the positive impact of such an adaptive
robot on the children’s play styles and on their engagement in
the interaction with the robot.

I. INTRODUCTION

The work presented in this paper is part of the Aurora

project, an ongoing long-term project investigating the poten-

tial use of robots to help children with autism overcome some

of their impairments in communication, social interaction

and imagination and fantasy1. Children with autism are able

to play but the nature of their play may be described as

restricted. Indeed, according to the American Psychiatric

Association, “a lack of varied, spontaneous make-believe

play is a defining feature of autism” [4]. Children with

autism often play in a repetitive way, which can be linked to

the children’s preference for predictable environments. The

advantage of enabling children with autism to interact with

a robot is that robots enable simple and safe interaction by

initially providing a relatively predictable environment for

play. Progressively the complexity of the interaction can be

increased.

Different possible obstacles have been identified that often

prevent children with autism to actualize their potential for

play. Among them are impairments in socioemotional inter-

subjectivity, impairment in joint attention and impairment in

Theory of Mind [5]. These impairments negatively influence
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1Autistic Spectrum Disorders can appear at various degrees and refer to
different skills and abilities [1; 2]. Communication, social interaction and
imagination and fantasy have been identified as the main impairments in
autism, [3].

interaction in general and, more specifically, imply a lack

of spontaneous and social reciprocity during play. Besides,

the difficulty in perceiving the coherence of categories and

concepts can be a reason why children with autism perceive

an object in its parts and not as a whole, compare the weak

central coherence theory [6; 7] for details. However, causes

for impaired play are still not very well understood. These

causes can vary for different children, depending also on the

personality of the child and her past experience of play.

Yet play is an important vehicle for learning. Children

can construct some understanding, i.e. active construction

of meaning, through play. Besides, children usually enjoy

playing (though this might not be the case in autism).

Their pleasure and motivation seem to increase when they

have the impression that they master a play situation [8].

Consequently, if we try to help children with autism master

situations of play, they may have more fun playing which

may contribute, even very modestly, to their quality of life.

Play is also an important medium for self-expression [8].

Consequently, here we focus on facilitating play between

children with autism and an autonomous robot, and particu-

larly, we investigate the potential of a robot that can detect

the children’s play styles and adapt to them accordingly (such

a robot is called an ‘adaptive robot’ in contrast to a ‘reactive

robot’ which would only respond to current sensory input).

Our goal is to encourage the children to engage in play and,

when playing, to encourage ‘well balanced’ tactile interaction

styles, i.e. neither too forceful nor too weak and within an

intermediate frequency of interaction. We therefore address

the following research questions:

• Does the adaptive robot, as described above, encourage

or discourage the children from engaging in the inter-

action with the robot? Does their engagement change

when interacting with a reactive robot?

• Does a child’s play patterns differ when the robot is

adaptive from when the robot is reactive? This question

contains two subquestions as follows: i) Are the tac-

tile strokes qualitatively different (ideally more gentle)

when the child plays with an adaptive robot? ii) Is the

frequency of the interaction differently (ideally better)

balanced when the child plays with the adaptive robot?

In order to study these research questions, a hard technical

challenge needs to be addressed, namely how to enable the

robot to recognize in real time the tactile play styles of

a child. This has been achieved by applying the Cascaded

Information Bottleneck Method, a method that we developed

and that is capable of extracting the temporal information of

978-1-4244-2763-5/09/$25.00 ©2009 IEEE 
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a signal such as a time series of sensor data. We introduced

it in a previous paper [9]. This method was developed as an

extension of the well-known Information Bottleneck Method

to the analysis of time series [10]. Section 3 briefly explains

the method and provides details on its implementation for

the recognition of human-robot interaction styles. We then

report on trials conducted in a school with seven children

with autism which evaluated the potential impact of such an

adaptive robot on the children’s play styles.

II. RELATED WORK

Related work in robot-assisted play for children with

autism has shown that when playing with a robot (in contrast

to a stuffed animal), children with autism tend to show more

behaviours that are typically impaired in autism (e.g. eye

contact) [11]. Earlier comparisons between a mobile robot

and a toy truck have shown more engaging behaviour towards

the autonomous robot [12; 13]. Moreover other studies

highlighted the potential role of the robot as a social mediator

for children with autism [14; 15; 16]. Most studies were

conducted in task oriented settings, e.g. involving imitation

[16] or chasing games [15] with reactive (remotely controlled

or autonomous) robots. Besides, the role of the experimenter

in robot-assisted play has been investigated, firstly by Robins

et al. [17] and more recently by François et al. [18].

The current paper focuses on investigating the role of an

adaptive robot in robot-assisted play. We investigate whether

an adaptive robot, i.e. a robot that could adapt to each child’s

play styles in real time would have a positive effect on the

children’s play styles and guide them progressively towards

more well balanced interaction styles.

III. THE CASCADED INFORMATION BOTTLENECK

METHOD

A. Background: The Information Bottleneck Method

The Information Bottleneck Method [10] is a clustering

method based on an information theoretic approach whose

purpose is to extract the relevant information2 in a signal

x ∈ X that is, extract features of a random variable (r.v.)

X that are relevant to the prediction of Y . This problem is

modeled by the following Bayesian network with Markov

condition: X̃ ←− X ←− Y where X̃ is the variable that

extracts information about Y through X .

This popular method provides an alternative to ‘rate

distortion theory’ techniques which constitute a standard

approach to lossy source compression. In the Information

Bottleneck method, the relevance is not addressed through an

external distortion measure but directly through a variational

principle implementing an information-theoretic formulation

of sufficient statistics. The rationale is that the best trade-off

between the compression of the signal and the preservation of

the relevant information is the one that keeps a fixed amount

of relevant information about the relevant signal Y while

2In this context, the relevant information is defined as the information
that the (accessible) signal x ∈ X provides about another (typically not
directly accessible) signal y ∈ Y .

minimizing the number of bits from the accessible signal X ,

i.e. maximizing the compression. The optimal assignment

can be found by minimizing the functional

L[p(x̃|x)] = I(X̃; X) − βI(X̃; Y ) (1)

I(X;Y ) stands for the mutual information between X and

Y. For β and the cardinality of X̃ fixed, an expression can

be given which specifies implicitly the solution and leads to

a fixed-point iteration. For the information bottleneck set-

ting, the Kullback-Leibler divergence DKL(p(y|x)||p(y|x̃))

replaces the distortion function from conventional rate-

distortion theory.

The Agglomerative Information Bottleneck algorithm [19]

makes the assumption that β tends to ∞ in the Lagrangian

equation (Eq. 1). In this specific setting, the mutual informa-

tion between X̃ and Y is maximized and a hard partition of

the data into subsets is induced, each subset corresponding to

a bottleneck state x̃: for a fixed cardinality of X̃ (i.e. a fixed

number of subsets - also called states - in the bottleneck),

each member of the input signal x ∈ X belongs to one and

only one subset x̃ ∈ X̃ and x̃ is the subset for which p(y|x̃)

has the smallest DKL(p(y|x)||p(y|x̃)). The hard partition can

be softened afterwards, with reverse annealing.

B. The Cascaded Information Bottleneck Method

1) The principle: Based on the Information Bottleneck

Method, we have developed a novel time-filtering method

particularly adapted for pattern recognition in time series.

Let x ∈ X be a time series input signal of length l, x =

[x0, ..., xl−1]. We take k and S ∈ N, with l = k ∗ S, such

that x can be divided into S disjoint sequences Xs, s =

0, ..., (S − 1), each of cardinality k, in the following way:

x0 ... xk−1 xk ... x2k−1 ... xk∗S−1

X0 X1

The Cascaded Information Bottleneck method relies on the

principle that the relevant information can be progressively

extracted from the time series with a cascade of successive

bottlenecks sharing the same cardinality of bottleneck states

but trained successively. The agglomerative information bot-

tleneck algorithm is applied to each bottleneck successively,

the first one being trained in the standard way while the

next ones depend on the previous bottleneck states, as the

following graph shows:

X̃S−1
...X̃2X̃1X̃0

XS−1...X2X1X0

Y

2) Extrapolation: The Cascaded Information Bottleneck

Method progressively extracts the relevant information from

an input sample X = [X0, ..., XS−1] by a recall on the
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successive components (X0 for the first step of the cascade,

(X̃s−1, Xs) for step s > 0). Each bottleneck (we now

discuss only s > 0, without loss of generality) is charac-

terized by a probabilistic mapping p(x̃s|(x̃s−1, xs)) which,

for the present work using the agglomerative information

bottleneck algorithm, is hard, i.e. above probability is 1 for

exactly one value x̃s of X̃s and vanishes otherwise, i.e. it

implements a hard mapping (x̃s−1, xs) 7→ x̃s (note that the

input (x̃s−1, xs) corresponds to the input x of the original

information bottleneck method).

During the information bottleneck training process, for

each step of the cascade successively (s > 0), the mapping

(x̃s−1, xs) 7→ x̃s is built. If, however, at a step s in the

cascade a pair (x̃s−1, xs) never occurs during the training

(we call this an unseen pair), the mapping (x̃s−1, xs) 7→
x̃s will not be defined for the completed cascade. Upon

processing of novel data, however, such a pair may be

observed and in this case the cascade has no way to infer

the following bottleneck state x̃s, since there is no natural

a priori correspondence of bottleneck states in successive

bottlenecks.

For such cases, we therefore introduce an identification

of successive bottleneck states which will provide us with a

“default” continuation of a bottleneck state from step s− 1

to step s in the case of unseen pairs. Let X̃s−1 and X̃s be

the set of bottleneck states x̃s−1 and x̃s, as well as p(x̃s−1)

and p(x̃s) their empirical probabilities. We consider one-to-

one mappings r from X̃s−1 to X̃s (which, for convenience,

we call permutations). Each such permutation r provides an

identification of successive bottleneck states. We define the

informational cost of a permutation as

d(s−1,s)(r) = −
∑

x̃s−1∈X̃s−1

p(x̃s−1) log p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1)

(2)

Note that p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1) is, for a given

permutation r, the probability that the next state is r(x̃s−1)

knowing that the current state is x̃s−1. The logarithm mea-

sures the unpredictability of the next state (i.e. the unpre-

dictability of X̃s given x̃s−1). If p̃(X̃s = r(x̃s−1)|X̃s−1 =

x̃s−1) = 0 then, by convention, d(s−1,s)(r) is ∞.

To define a “default” continuation we now choose a permuta-

tion R(s−1, s) that minimizes that unpredictability, weighted

by the probability that the state x̃s−1 actually occurs. Note

that per construction of the bottleneck cascade, one never has

p(x̃s−1) = 0.

R(s − 1, s) = arg min rd(s−1,s)(r) (3)

R(s−1, s) defines now a “default” path between X̃s−1 and

X̃s, and thus provides an extrapolation of the succeeding

bottleneck state in the case of an unseen pair.

3) Implementation: The Cascaded Information Bottleneck

Method has been evaluated with two different criteria of

interaction, namely the gentleness and the frequency of the

interaction in [9]. The criterion gentleness contains two

classes, namely ‘gentle’ and ‘strong’ which correspond re-

spectively to non-forceful and forceful tactile interaction. The

frequency of the interaction is categorised into four classes,

defined by their typical periodicity of interaction: i) very low

(S0): the elapsed time between two tactile interactions is

greater than 15 seconds; ii) middle inferior (S1): the elapsed

time between two tactile interactions is lower or equal to 15

seconds and greater than 5 seconds; iii) middle superior (S2):

the elapsed time between two tactile interactions is lower

or equal to 5 seconds and greater than 1 second; iv) very

high (S3): the elapsed time between two tactile interactions

is lower or equal to 1 second. S1 and S2 are considered

here as well-balanced frequencies of interaction, while S0

corresponds to a rare interaction and S3 to a very intense

interaction.

Two different cascades were built independently, one for

each criterion of interaction. The gentleness corresponds to a

short-term time scale event while the frequency corresponds

to a mid-term time scale event (see Fig. 1 which provides the

parameters for each cascade). The samples for the training

of each cascade were generated during interactions with

the Aibo ERS-7 in laboratory conditions within different

runs. Each run contained one class exclusively, i.e. for the

criterion gentleness, the samples generated within a same run

contained only gentle or only strong styles of interaction (i.e.

only gentle or only strong strokes were generated during a

same run), and for the criterion frequency of the interaction,

the samples generated within a same run contained only one

type of frequency (i.e. S0, S1, S2 or S3 exclusively).

Criteria Classes Length of the input vector 

(window size), l

Length of the 

individual 

subsequences, k

Length of the 

cascade, S

Number of 

bottleneck 

states, m

Gentleness 2 classes: 

gentle/strong 

50 
(equivalent to 1.6 seconds) 

2 25 4 

Frequency 4 classes: 
S0, S1, S2, S3

472 
(equivalent to 15.1 seconds) 

2 236 6 

Fig. 1. Parameters for each cascade of bottlenecks.

In both cases, a sliding window proceeds on the sensor

data time series. For the criterion ‘gentleness’, the algorithm

does not learn null samples (i.e. samples made of null events

only). For the frequency of interaction, the system deals only

with samples whose first component is not null.

The postprocessing relies on a ‘winner takes all’

principle: The selected (winner state) is defined by

arg maxy∈Y p(y|x̃S−1).

The method shows a sound recognition for both short-

term and mid-term time scale events and involves only a

very short delay for the recognition of short-term time scale

events (0.17 seconds on average) [9]. Besides, the training

process enables a structure to emerge over the cascade

since the conditional entropy between the bottleneck states

of two successive bottlenecks is globally decreasing over

the cascade (Fig. 2). The Cascaded Information Bottleneck

method is transparent and enables control over how much and

what new information is taken at which step of the cascade.

In particular, the extrapolation process enables to control the

degrees of freedom of the system and prevent the cascade

from over-learning.

In the next section, we present an application of the
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Fig. 2. Conditional entropy H(X̃s+1|X̃s). H(X̃s+1|X̃s) globally decreases

over the cascade, pretty quickly, which suggests that a structure is progressively and

rapidly emerging over the cascade: at the beginning of the cascade, a lot of new

information is needed to deduce the next bottleneck state and then, when progressing

in the cascade, less and less new information is needed. However, for the frequency

of interaction, H(X̃s+1|X̃s) has some small local peaks, both at the very beginning

of the cascade and at the very end which suggest that at these steps s, the input data

Xs may influence a bit more in the choice of next equivalent state X̃s+1. Note

that the ones at the end of the cascade may reflect the importance of the last steps

for distinguishing the classes S0 and S1. In the rest of the study, the algorithm will

extrapolate between step 5 and 24 (respectively 5 and 216) of the cascade for the

gentleness (respectively frequency).

Cascaded Information Bottleneck method for Robot-Assisted

Play whereby the method is used to enable a robot to

recognize in real time human-robot interaction styles and

adapt to them accordingly. In this application the criteria of

interaction detected are the gentleness and the frequency of

the interaction and the cascades are the ones described in the

previous paragraph (and detailed in [9]).

IV. APPLICATION: A REAL-TIME ADAPTIVE ROBOT FOR

ROBOT-ASSISTED PLAY

A. The adaptive robot

In the context of this paper, a robot that is ‘adaptive’

can recognize interaction styles in real time and adapt to

them appropriately. In other words, an adaptive robot reacts

differently depending both on i) which sensor(s) is (are)

activated (e.g. head sensor) and ii) the styles of interaction

recognised. In contrast, by ‘reactive’ robot, we refer to a

robot that can only react differently depending on which

sensor is activated (e.g. head sensor or back sensor front),

and which will not change its behaviour according to the

interaction styles.

1) Reward of well balanced interaction styles: The adap-

tive mode relies on a reward basis for well-balanced in-

teraction styles: the child should get a positive feedback

from the robot when he/she plays in an appropriate style of

interaction. The idea behind is that the child should always

be encouraged and rewarded for every progress he/she made.

With this approach, we hope to comfort the child in gaining

self-confidence, enjoying himself/herself, and progressively

acquiring a better understanding of the interactions he/she

is involved in. It is hoped that the rewarding process can

indirectly play the role of a trigger: the child wants to get the

reward and therefore changes his/her behaviour until he/she

actually gets it. Concretely, the robot should help regulate the

interaction: if the child plays in a well-balanced interaction

style, the robot reacts appropriately to the stimulation; on

the contrary, if the interaction is e.g. too strong, the robot

does not show any reaction. Moreover, the child should be

encouraged to engage in the interaction if he/she is not

engaged. Therefore, the robot should be both rewarding and

engaging.

The reward is a physical reaction of the robot, which

can be a gesture, a movement, a light or a sound. The

concrete instantiation of these behaviours has been designed

by immersion for each child beforehand during long-term

studies with each child, whereby the experimenter tested

different robot behaviours with each child in order to evaluate

1) whether the specific child liked it or not, 2) whether he/she

conferred a specific meaning to the reaction and, particularly,

whether the reaction had, in his/her view, a connotation of

the robot being happy or sad.

We shall now detail the notion of reward: each time the

child activates a sensor, the robot evaluates the interaction

style in terms of gentleness and in terms of frequency and

gives a reward, separately according to each criterion. If

the interaction is gentle, then the robot shows a reaction

to the child. The reaction depends on the sensor activated

(there is a deterministic mapping between the sensors and

the reactions of the robot for each child). If the stimulation

takes place in a good overall frequency of interaction, i.e. a

well-balanced frequency of interaction, then two LEDs turn

on on the robot’s face (which is sometimes interpreted by

the children as the ‘robot’s eyes’). Note that a well-balanced

frequency of interaction is a frequency not too low and not

too high, represented in this study by the classes S1 and S2.

Note, this model is generic and can be applied with different

criteria of interactions. Fig. 3 presents the reward schema for

the two criteria (gentleness and frequency) considered here.

Reward for Gentle 

 +  

Reward for well-balanced 

Frequency 

Engaging, proactive 

Reward for Gentle 

Reward for Gentle 

Reward for Gentle 

 +  

Reward for well-balanced 

Frequency 

No interaction 

No interaction 

S0 

S1 

S2 

S3 

GENTLE STRONG

No Reward 

No Reward 

No Reward 

No Reward 

Gentleness 

Frequency 

Fig. 3. Reward Schema for the two criteria of interaction.

2) Architecture for Decision-Making Based on Interaction

Styles: The real-time recognition of the interaction styles

uses the Cascaded Information Bottleneck Method. The small

delay involved in the recognition process is modeled by

a pause in the decision-making process, that is a small

latency (600ms) during which the algorithm ignores the
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current interaction style. After the pause, the decision-making

process looks at the successive classifications that are made

by the Cascaded Information Bottleneck algorithm during

a fixed short amount of time and counts the occurrences of

strong behaviours recognised. If it exceeds a fixed predefined

threshold then the final choice (i.e. the decision) is that the

child’s behaviour towards the robot is recognized as a ‘strong

interaction style’ and the child will not get a reaction from

the robot to his/her stimulation. If below threshold, then

the decision ‘gentle interaction style’ is made and the child

gets the reaction from the robot corresponding to the sensor

activated. Besides, the robot updates the criterion frequency

of interaction with a 1 second periodicity according to the

Cascaded Information Bottleneck method (different threads

for the gentleness and the frequency of interaction running

in parallel). If, when the child strokes the robot gently, the

current frequency of interaction is S1 or S2, then the child

will get the additional reward of the two lights illuminating

on the robot’s face, while the robot also shows the specific

reaction correlated to the gentle stimulation3.

As for the evaluation of the child’s disengagement, we

consider that the child should be encouraged to play with the

robot if he/she has not stroked the robot for a specific time

that we define here as just above 15 seconds (more exactly,

the length of the window size for classifying the frequency

of the interaction which is 472 × 32 ms) which is reflected

by a null input vector for the frequency of the interaction.

B. Trials

1) Participants: Seven children with autism participated

in the experiments which took place in a school for moderate

learning difficulties in UK. The children had had the chance

to play with the robot during several months beforehand

and were familiar with both the robot and the experimenter.

The study was carried out with approval of the University

of Hertfordshire Ethics Committee. The parents of all the

children who took part in this study gave written consent,

including permission to videotape the children.

2) Artifact: The robot was the Aibo ERS-7. It behaved

autonomously and operated either in adaptive or reactive

mode. In both cases the mapping between the sensors and the

robot’s reactions was the same except from the LEDs flashing

for a good frequency of interaction, which was an additional

feature for the adaptive robot, as well as wagging the tail

when no interaction was detected. The behaviour mapping

used for this specific study is detailed in Fig. 4.

3) Procedures and Measures:

Procedures: Each child participated in two sessions and

the experiments involved one child at a time. Each session

consisted of three successive steps4 (also called games or

runs), each step being defined by the mode of the robot–

3Note that this decision-making process really reflects the variety of the
interaction styles considered here, the criterion ‘gentle/strong’ corresponding
to a short-term time scale event and the criterion ‘frequency of the
interaction’ corresponding to a mid-term time scale event.

4A session resulted in three steps also called games, which are, succes-
sively, step 1 (game 1), step 2 (game 2) and step 3 (game 3).

Sensor Corresponding behaviour 

Chin sensor Emit “bark” sound while opening-closing the mouth 

Head sensor Turn head (Head tilt) 

Back front sensor - Wag the tail (used for Child E) 

- Walk forward, turn right, stand, turn left, walk backwards 

(used for the other children) 

Back middle sensor Turn head (Head pan) 

Back rear sensor Emit “drum” sound while wagging the tail  

Fig. 4. Mapping between the external tactile sensors of the robot and its
behaviours. For child E, the walking has been removed and replaced by the robot’s

wagging of the tail as part of the design by immersion.

reactive (R) or adaptive (A)– which alternated between two

successive steps.

As a result, a session was defined by its setting which was

either A-R-A or R-A-R. Each child experimented with both

settings (each during a different session, see Fig. 5).

Child Setting 1 Setting 2 

Child A A-R-A R-A-R 

Child G R-A-R A-R-A 

Child H A-R-A R-A-R 

Child C R-A-R A-R-A 

Child E R-A-R A-R-A 

Child F A-R-A R-A-R 

Child D R-A-R A-R-A 

Fig. 5. Settings for the different children. Setting 1 corresponds to session 1

and setting 2 corresponds to session 2.

The robot’s ‘mode’ was signaled to the child by a sticker

with a specific geometrical form drawn on it (a triangle for

adaptive and a circle for reactive mode); the sticker was put

on the back of the robot at the beginning of each step. At each

step, the child was told which game he/she was now playing,

i.e. game 1 for step 1, game 2 for step 2 and game 3 for step

3. The child could see the experimenter putting the sticker

on the back of the robot. The different stickers were used so

that it was not too hard for the child to understand that the

game was different (this procedure was considered to help

the children cope with different experimental conditions). But

the child had no information about the existence of adaptive

and reactive modes; he/she could only possibly observe the

difference in the reactions of the robot.

During each game, the child could freely interact with the

robot. Before the start of each game, the experimenter:

1) paused the algorithm (for game 2 and 3),

2) congratulated the child and told him/her that now he/she

would move on to game 2 (respectively 3),

3) put the corresponding sticker on,

4) sent the ‘new robot’s mode’ through a wireless connec-

tion to the robot,

5) resumed the algorithm for the detection of play styles

with the new robot’s mode.

Each game lasted several minutes (depending on the

children’s specific needs and abilities); the minimum duration

of each step was approximately 3 minutes. The experimenter

did not touch the robot during the trials, except for putting

on the sticker at the beginning of each step (sensor data were
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not collected at this stage), neither did she try to influence the

child’s behaviour in any way. The experimenter did not take

part in the child-robot interactions in order not to interfere

with the purpose of this study which had to focus on dyadic,

uninterrupted interactions between the child and the robot, in

order to test the potential of an adaptive robot to influence

children’s play styles.

Measures: The experiments were video recorded. The

sensor data and the interaction styles detected with respect

to the gentleness and the frequency of the interaction were

recorded. These data were then analysed quantitatively off-

line. For the criterion gentle/strong, we actually looked at

the overall proportion of the sensor’s activation and at the

ratio of strong interaction styles. For the criterion ‘frequency

of the interaction’, we took into account its evolution over

time, which means here that we looked at the whole set of

classifications, that is every 32 ms. We then used statistical

techniques for non-parametric statistics.

C. Results

1) Statistical analysis of the engagement in the interaction

and the gentleness of the strokes:

Box & Whisker Plot
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Fig. 6. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for the sensors’ activation on the two modes. The x-axis represents the two

modes; the y-axis represents the repartition in percentage of the sensors’s activation.
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Fig. 7. Graph showing the relative engagement of the children in adaptive
and reactive modes.

Engagement in the interaction: In order to study

whether the adaptive robot may have a positive impact on

the engagement of the children in play we do not consider

the specificity of the strokes, i.e. whether they are gentle or

strong. Instead, for each child we are interested in the total

number of sensors’ activations that we compare for adaptive

and reactive robot modes.

For each child and for each mode, we count the total

number of times the sensors were activated (each sensor5

activated counts as one activation), namely, N(Reactive),

for the reactive mode, and N(Adaptive), for the adaptive

mode; for each child, we analyse the relative ratio of each

mode6, as follows:

r(Reactive) =
N(Reactive)

N(Reactive)+N(Adaptive)

r(Adaptive) =
N(Adaptive)

N(Reactive)+N(Adaptive)

The Wilcoxon test [20] is applied to the data from

the seven children for the two following variables

(Fig 7): r(Adaptive), representing the adaptive mode, and

r(Reactive), representing the reactive mode. The test shows

that there is a significant effect of the experimental conditions

adaptive versus reactive (for T = 1.000, p < 0.028,

with N = 7, Fig. 6). Thus, we can conclude that the

children engage significantly more in the interaction during

the adaptive mode..

Gentleness of the interaction: Here, we study the nature

of the activation in terms of gentleness, i.e. whether an

activation is gentle or strong. We therefore consider the

percentage of strong strokes (also called strong activations)

among the total number of sensor activations, per run and per

child. For each child and for each mode, we take the average

of this percentage over the runs from the two sessions7

(Fig. 8).

Child 
Average percentage of strong 

activations in the adaptive mode 
Average percentage of strong 

activations in the reactive mode 

Child A 20.52 71.97

Child G 2.08 12.50

Child H 5.56 9.09

Child C 3.53 11.75

Child E 15.23 15.79

Child F 17.51 67.74

Child D 60.58 33.33

Fig. 8. Table providing the average percentage of strong strokes in each
mode for each child.

The Wilcoxon test is applied to the data from the seven

children for the two following variables (Fig 8): the average

of the percentage of strong strokes in the adaptive mode

and the average of the percentage of strong strokes in the

reactive mode. The test shows that there is no significant

effect of the experimental conditions on the gentleness of the

strokes (N = 7 and, for T = 5.00, on gets p < 0.128): there

is no significant difference in the amplitude of the average

5Here we look at the activation of any of the four continuous external
sensors, i.e. the head sensor and the three back sensors.

6Some children will naturally interact a lot with the robot, while others
may stroke the robot only a few time during a session, thus we prefer to
look at relative ratios.

7Here we consider the ratio of strong activations and investigate whether
this ratio is inferior when the robot is in the adaptive mode, compared with
when the robot is in the reactive mode.
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percentage of strong strokes between adaptive and reactive

modes. However, the proportion of cases where this average

is smaller in the adaptive mode is 6 cases out of 7. The

probability of obtaining such a deviation (6 or more cases out

of 7) from a fifty-fifty ratio is 0.016 (two-tailed probability in

the binomial test) which shows that, in the adaptive mode, the

percentage of children who react less strongly in the adaptive

mode deviates significantly from a fifty-fifty ratio.

2) Impact of the adaptive robot on the frequency of

interaction: To analyse the impact of the adaptive robot on

the frequency of interaction, we look at the four classes S0,

S1, S2, S3 and how their occurrence varies in the adaptive

and reactive modes.

We define R as the set of the three runs (steps) within

a session for a specific child and NSi
(r) as the number of

events from a class Si for a specific run r. For each class

Si, each child, and each session, we define the relative ratio

ρSi
(r) for a given run r, defined as follows:

ρSi
(r) =

NSi
(r)∑

r̃∈RNSi
(r̃)

(4)

For each child, for each mode m (adaptive or reactive) and

for each class Si, the average relative ratio over the two

sessions is called Avm(ρSi
). For each child and for each

mode m, the average relative ratio over the four classes is

called Avm(ρ).

The Wilcoxon test is firstly applied to the two following

variables: AvAdaptive(ρ) (representing the adaptive mode)

and AvReactive(ρ) (representing the reactive mode). The test

shows that there is a significant effect of the experimental

conditions (adaptive versus reactive) since for T = 0, one

has p < 0.018, with N = 7. We can conclude that, in the

adaptive mode, the interactions are significantly richer than

in the reactive mode.

Secondly, the Wilcoxon test is applied for each class

i separately, to the following variables: AvAdaptive(ρSi
)

(representing the adaptive mode) and AvReactive(ρSi
) (rep-

resenting the reactive mode). For class S0 (respectively

class S1) there is no significant difference between the two

experimental conditions (adaptive versus reactive), since, for

T = 5.000 (respectively T = 4.000), p < 0.128 (respectively

p < 0.173) with N = 7. However, the proportion of

cases where AvAdaptive(ρS0
) > AvReactive(ρS0

) (respec-

tively AvAdaptive(ρS1
) > AvReactive(ρS1

)) is 6 cases out

of 7. The probability of obtaining such a deviation (6 or

more cases out of 7) from a fifty-fifty ratio is 0.016 (two-

tailed probability in the binomial test) which shows that

the percentage of children for which there are more events

related to S0 (respectively S1) in the adaptive mode than

in the reactive mode deviates significantly from a fifty-fifty

ratio. Concerning S2 (respectively S3) there is a significant

effect of the experimental conditions Adaptive and Reactive

since for T = 1.000 (respectively T = 0.000), p < 0.028

(respectively p < 0.018) with N = 7 (Fig. 9 and Fig. 10).

Consequently, in the adaptive mode, there are significantly

more events from class S2 (respectively S3) than in the

reactive mode.

Box & Whisker Plot
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Fig. 9. Mean, Standard Error of the Mean (SE) and Confidence Intervals
for S2. The two variables are AvAdaptive(ρS2

) and AvReactive(ρS2
).

Box & Whisker Plot
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V. DISCUSSION

This study has shown that a robot that can adapt to child-

robot interaction tactile styles can influence positively the

children’s play styles. Firstly, the children engaged signifi-

cantly more in the interaction when the robot was adaptive

and significantly more children played more gently with

the robot in the adaptive mode. Besides, the interactions

were significantly richer and higher frequencies including

in particular a range of well balanced frequencies were

significantly more present in the adaptive mode. The in-

troduction of an adaptive robot in robot-assisted play for

children with autism which is able to adapt in real time to

children’s interaction styles is a novel contribution. This is

both a technical and methodological step forward in robot-

assisted play. On the one hand, the development of a new

computational method that enables robots to recognize in real

time human-robot interaction styles is a step forward towards

socially adaptive robots. On the other hand, the evaluation

of the potential of an adaptive robot in robot-assisted play

expands the role that robots could potentially play in the

context of autism therapy.
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The study conducted here involved only a few children and

was short-term. Future work should expand this study with

different children with autism. Note, in our study the children

were familiar with both the robot and the experimenter and

the robot’s behaviour mapping had been tailored according to

each child’s needs and abilities which is very important in the

context of autism. Future work should enable the same for the

new children involved. Besides, future work should consider

possible long-term effects of such an adaptive robot. In

particular, future work could expand the model of adaptation

by focusing on a larger grid of criteria for the interaction

styles: while the child progresses, the robot could increase

the range of criteria the child should meet to get a reward.

In contrast, when the child encounters some difficulties, then

the robot could simplify the range of criteria on which the

reward for the child is based, so that the child could get

a better understanding of the interactions happening. This

progressive refinement in the adaptation process of the robot

to the child’s play styles could be linked, in some sense,

to the notions of ‘discrete development’ and ‘(Alternate)

Freezing and Freeing of Degrees of Freedom’ which has

been widely used in developmental robotics [21; 22; 23].

This technique, typically applied for a system learning motor

skills, may be transposed to a social system, constituted here

by the child and the robot: this social system is freezing some

complexity in the interaction to learn more efficiently how

to deal with interaction in general.

VI. CONCLUSION

This paper has presented an application of the previously

introduced Cascaded Information Bottleneck Method for

real-time recognition of Human-Robot interaction styles in

the context of robot-assisted play for children with autism.

Such an adaptive robot, which can detect the play styles

of the children in real time and adapt to them accordingly,

has been implemented and tested in the particular context of

tactile interaction. The adaptation scheme rewards well bal-

anced interaction styles and encourages the child to engage

in the interaction if he/she is disengaged. The potential role

of such an adaptive robot (compared to a reactive robot) in

robot-assisted play has been evaluated with seven children

with autism in a school and a statistical analysis showed

that the adaptive mode influenced positively the play styles

of the children in the following manner: 1) the children

engaged significantly more in the interaction, 2) significantly

more children played more gently with the robot, 3) the

interactions were significantly richer and 4) the occurrence

of higher frequencies, including a range of well balanced

frequencies, was significantly increased. Future work should

consider a wider study with different children with autism

and investigate its long-term term impact. The Cascaded In-

formation Bottleneck Method is generic and could potentially

also be used in a variety of other applications in Robotics,

Artificial Intelligence and Artificial Life. It is hoped that

this work represents a step forward towards socially adaptive

robots as well as robot-assisted play for children with autism.
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Abstract-Automatically detecting different styles of play in
human-robot interaction is a key challenge towards adaptive
robots, i.e. robots that are able to regulate the interactions and
adapt to different interaction styles of the robot users. In this
paper we present a novel algorithm for pattern recognition in
human-robot interaction, the Cascaded Information Bottleneck
Method. We apply it to real-time autonomous recognition of
human-robot interaction styles. This method uses an information
theoretic approach and enables to progressively extract relevant
information from time series. It relies on a cascade of bottlenecks,
the bottlenecks being trained one after the other according to
the existing Agglomerative Information Bottleneck Algorithm.
We show that a structure for the bottleneck states along the
cascade emerges and we introduce a measure to extrapolate
unseen data. We apply this method to real-time recognition of
Human-Robot Interaction Styles by a robot in a detailed case
study. The algorithm has been implemented for real interactions
between humans and a real robot. We demonstrate that the
algorithm, which is designed to operate real time, is capable
of classifying interaction styles, with a good accuracy and a very
acceptable delay. Our future work will evaluate this method in
scenarios on robot-assisted therapy for children with autism.

Index Terms-Socially interactive robots, socially adaptive
robots, pattern recognition, human-robot interaction, robot
assisted play

I. INTRODUCTION

This study is part of the Aurora project [1], an ongoing
long-term project investigating the potential use of robots as a
therapeutic toy for children with autism. One main stream of
this project focuses on developing methods enabling the robot
to analyze in real time the interaction styles and adapt its own
behaviour appropriately with respect to a child's specific needs
and abilities1

•

This paper presents a novel method for time series analysis,
the Cascaded Information Bottleneck Method, which we apply
to the real-time recognition of human-robot interaction styles.
This method, which enables time-filtering, is based on the con
cept of Information as introduced by Shannon [2] and builds
upon from the "Information Bottleneck Method" developed by

1We consider the child's abilities as they are expressed through interaction
with the robot, resulting in different play styles.

978-1-4244-2822-9/08/$25.00 ©2008 IEEE

Tishby et al. in [3].
Importantly, this work goes beyond prior work that either
classified and characterized interactions off-line, i.e. after the
interactions had taken place, or relied on explicit criteria tuned
by hand (vs. automated training phase of the recognition algo
rithm). It also goes beyond previous work of the authors which
enabled real-time recognition of interaction styles with respect
to one criterion, the gentleness, using a different method,
based on self-organizing maps [4]. The Cascaded Information
Bottleneck Method is entirely generic for applications with
socially interactive robots; in particular, it can be applied to
humanoid-human interaction.

The remainder of the paper is structured as follows. Sec
tion II introduces related work. Section III summarizes some
background on the Information Bottleneck Method developed
by Tishby et al. in [3]. Section IV presents the Cascaded Infor
mation Bottleneck Method. The application to the recognition
of Human-Robot Interaction Styles is explained in the two
following sections, with details on the implementation and
description of the trials in Section V and presentation of the
results in Section VI. Section VII discusses the results and
future work. Conclusion closes the paper (Section VIII).

II. RELATED WORK

The role of tactile human-robot interaction in educational
and therapeutic applications has been well highlighted by long
term studies with the seal robot Paro which have proven that
specific everyday life situations exist in which human-robot
interaction can have a positive effect on the well-being of
human beings [5] and even playa role in a therapeutic context
of cognitive and physical rehabilitation [6]. The Huggable
robot, a teddy-bear like robot, equipped with a full body sense
of touch, has proven to be a promising support to investigate
the quantitative characterisation of the social affective content
of touch [7]. Offline characterisation of interaction styles in
general, moreover, has been investigated recently with diverse
approaches. In [8], Scassellati focused on providing quantita
tive and objective measurements to assist in the diagnosis of
autism. Measurements refer to the position in the room, vocal
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prosody and gaze pattern - whose characterisation relies on
linear discriminant analysis which is a clustering technique
used for linearly separable data. Kanda et al. conducted a
study [9] that highlighted the feasibility to link quantitative
robot's and human's data characterizing body movements with
a subjective evaluation made by the participant. Later, in [10]
Salter et al. showed the possibility, in the context of child-robot
interaction, to reflect some traits of personality of the children
with an offline clustering technique based on the empirical
probability distribution of the activation of the sensors.

Concerning real-time classification of interaction styles, in
[11], Salter et al. have presented a real-time simple recognition
algorithm for four interaction styles ('alone', 'interacting',
'carrying' and 'spinning') using the robotic platform Roball.
The algorithm is based on a decision tree whose conditions are
set up manually, by visual inspection of sensor data. In [12],
Derakhshan et al. present an interesting real-time classification
algorithm of interaction styles for children playing on an adap
tive playground that is made of tiles equipped with sensors.
The algorithm relies on a multi-agent system approach of
BDI (Belief-Desire-Intention) in combination with neural
networks using supervised learning. It shall be further noted
that in the slightly different context of gesture recognition,
Hidden Markov Models (HMMs) have been largely used for
real-time recognition [13]. An HMM is defined by its number
of hidden states and the two following probability matrices:
the transition matrix, describing the conditional probabilities,
given the state S at time step t, to be in the state Sf at
time t + 1, and the emission matrix, defining the conditional
probability of emitting a signal 0, given the state S. Those
matrices are static, i.e. for a given HMM, those values are
fixed in time. Classifying an observation with HMMs consists
in finding, among all the different HMMs2 the one which has
the highest probability of emitting this observation [14].

III. BACKGROUND: THE INFORMATION BOTTLENECK

METHOD

The Information Bottleneck Method [3] is a clustering
method based on an information theoretic approach [2] whose
purpose is to extract the relevant information3 in a signal
x E X that is, extract features of a random variable (r.v.)
X that are relevant to the prediction of Y. This problem
is modeled by the following Bayesian network with Markov
condition: X ~ X ~ Y where X is the variable that
extracts information about Y through X.

This method provides an alternative to 'rate distortion the
ory' techniques which constitute a standard analysis of lossy
source compression. In the Information Bottleneck method,
the relevance is not addressed through distortion but directly
through a new variational principle. The rationale is that the
best trade-off between the compression of the signal and the
preservation of the relevant information is the one that keeps a
fixed amount of relevant information about the relevant signal

20ne HMM per class to distinguish.
3In this context, the relevant information is defined as the information that

the signal x E X provides about another signal y E Y.
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Y while minimizing the number ofbits from the original signal
X, i.e. maximizing the compression. The optimal assignment
can be found by minimizing the functional

£[P(xlx)] = I(X;X) - (3I(X;Y) (1)

I(X;Y) stands for the mutual information4 between X and
Y. For {3 and the cardinal of X fixed, an expression can be
given which specifies implicitly the solution and leads to a
fixed point iteration. (3 can be considered as the inverse of
the temperature. This method uses a stochastic clustering top
down approach. The notion of stochastic refers to the fact that
the clustering is soft and that the input data are mapped to
the different elements of X with a particular probability. For
that information bottleneck setting, the Kullback-Leibler diver
gence DKL[P(ylx)lp(ylx)] replaces the distortion function.

The Agglomerative Information Bottleneck algorithm [1 7]
makes the assumption that f3 is 00 in the Lagrangian equation
(1). It maximizes the mutual information between X and Y
and induces a hard partition of the data : for a fixed cardinal
of X (i.e. a fixed number of subsets - also called states - in the
bottleneck), each member of the input signal x E X belongs to
one and only one subset x E X and x is the subset (the state)
for which p(ylx) has the smallest DKL [P(ylx)/Ip(ylx)]. The
hard partition can be soften afterwards, with reverse annealing.
The pseudo-code of the algorithm can be found in [17].

IV. THE CASCADED INFORMATION BOTTLENECK

METHOD

A. The principle

Based on the Information Bottleneck Method, we have
developed a novel time-filtering method particularly adapted
for pattern recognition in time series. Let x E X be the
time series input signal of length I, x = [xo, ... ,Xl-I].

We take k and SEN, with I k * S, such
that x can be divided into S disjoined parts of cardi
nality k, x s , s = 0, ... , (8 - 1) in the following way:
Xo ... Xk-l Xk ... X2k-l

The Cascaded Information Bottleneck method relies on
the principle that the relevant information can be progres
sively extracted from the time series with a cascade of
successive bottlenecks sharing the same cardinality of bot
tleneck states but trained independently. The agglomera
tive information bottleneck algorithm is applied to each
bottleneck successively, the first one being trained in the
standard way while the next ones depend on the pre
vious bottleneck states, as the following graph shows:

4for more details on the notion of mutual information, please refer to [15],
[16]
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B. Extrapolation

The Cascaded Information Bottleneck method progressively
extracts the relevant information from an input sample X ==

[X0, ... , X s -1] by a recall on the suc~essive components (X0

for the first step of the cascade, (Xs-I, X s ) for the other
steps s). Each bottlen~ck is characterized by a har~mapping
between: i) X o and X o for the first step, and ii) (Xs-I, X s )

and Xs for the other steps of the cascade. At each step s of the
cascade, the algorithm looks for the equivalent xs given the
input (xs-1, X s) according to the hard mapping at step s (the
equivalent Xs satisfies the equation p(xsl(xs-I, x s)) == 1).
It can happen that at a specific step s of the cascade, t~e

pair (xs-I, xs) for which we need to find the equivalent X s
has never been encountered during the training process of this
bottleneck. This pair is called an unseen pair. In the case of
an unseen pair (xs- I, X s) at step s, the cascade can a priori
make no inference on Xs because there is no preexisting
default continuation of the cascade, due to the fact that the
bottlenecks have been trained independently. In other words,
for each pair (xs-I, x s) which was not part of the training set
data, p(xsl(xs-I,xs)) is a priori undefined, whatever Xs we
take. For such cases, it is necessary to introduce a 'default'
way leading from Xs - 1 to Xs , i.e. we have to introduce an
artificial identification of the bottleneck states which consists
in matching out two bottleneck states (one at step s - 1
and one at step s). Therefore we apply a reorganisation of
the bottleneck states at each possible step s (i.e. a one
to-one mapping of the bottleneck states at step s - 1 and
the ones at step s which we call a permutation). For this
purpose, we introduce the following measure d(s-l,s) allowing
to directly compare the reorganised bottl~neck states from
step s with those from step s - 1. Let Xs - 1 (respectively
Xs) be the set of bottleneck states Xs-l (respectively xs)
and P(Xs-l) (respectively p(xs) the empiricC!,1 probability; for
each permutation r of the bottleneck states X s :

d(S-l s)(r)=- L x EX P(X s-1) logp(Xs=r(Xs-1)\Xs-1=Xs-1)
, s-l s-l (2)

Note that if the conditional probability p(Xs

r(xs-I)IXs- I = Xs-I) = 0 then, by convention, d(s-I,s) (r)
is 00. The logarithm measures the ~npredictability of the next
case (i.e. the unpredictability of X s given Xs-l). We want
to choose r to minimize that unpredictability and weight for
the probability that the state XS-l actually happens (because
there is no sense in penalizing a deviation if the state does not
happen.). We call this permutation R(s - 1, s).
The permutation of the bottleneck states that extracts the most
similarity between bottleneck states at step s - 1 and those at

step s is given by:

R(s - 1, s) == argminrd(s_l,s)(r) (3)

We consider R(s - 1, s) as the 'default' path between Xs - 1

and Xs , i.e. as the criteria for extrapolating an unseen event
at step s.

V. ApPLICATION TO THE RECOGNITION OF

HUMAN-ROBOT INTERACTION STYLES: EXPERIMENTS

In this section we present an application of the Cascaded
Information Bottleneck Method with real data: the automatic
recognition of tactile interaction styles in the context of
human-robot interaction. We conducted two series of trials,
the first one under laboratory conditions and the second one
in a school where several children could interact (one child
at a time) freely with the robot. In all experiments the robot
is the Sony Aibo and we focus on characterizing the tactile
interactions according to two criteria, namely the gentleness
and the frequency ofthe interaction. An interaction is classified
as 'gentle' (respectively 'strong') if the participant strokes the
robot gently, without signs of force (respectively with signs of
force). The frequency of interaction is categorized into four
classes 8 i , i == 0...3, defined by their typical periodicity of
interactionS T (in seconds): i) 80 : 'very low' (T > 15 seconds),
ii) 8 1 : 'middle inferior' (5 < T ::; 15), iii) 8 2 : 'middle superior'
(1 < T ~ 5), and iv) 8 3 : 'very high' (T ::; 1 second).

A. Implementation

1) Preprocessing: Each criterion (gentleness and frequency
of the interaction) is studied independently. In each case, the
time series studied is the quantitatively binned sum of the
normalized sensors values6 involved in the type of interaction.

2) Extra-conditions for the training: a) for the criterion
'gentleness', the algorithm does not learn null samples (i.e.
samples made of null events only), b) for the frequency
of interaction, the system deals only with samples whose
first component is not null. In both cases, a sliding window
proceeds on the sensor data time series.

3) Postprocessing: The postprocessing relies on a 'winner
takes all' principle: The selected (winner state) is defined by
argmaxyEY p(yIXS-l).

B. Features of the trained cascade

The mutual information is 0.8 bit for the criteria gen
tle/strong and 1.9 bits for th~ freq~ency of the interaction.
The conditional entropy H(Xs+1IXs) (Fig. 1) is globally
decreasing over the cascade, pretty quickly, which suggests
that a structure is progressively and rapidly eme~ging ~ver the
cascade. For the frequency of interaction, H(Xs+1IXs) has
some small local peaks though, both at the very beginning

5The typical periodicity represents the elapsed time between two successive
strokes of the robot.

6The robot's sensor data are updated every 32ms.

355

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 13, 2009 at 07:58 from IEEE Xplore.  Restrictions apply.



Gentle/Strong :

6: 1.4

~ 1.2
i:.- 1

~ ~ ~::
-::: 0.4
:.a 0.2

~ 0
U 0 20 40 60 80 100 120 140 160 180 200 220 240

position s of the bottleneck in the cascade

Fig. 1. Conditional entropy H(Xs+IIXs). There are four main param
eters for the cascade: l (length of the input vector), k (length of the
individual subsequences), S (length of the cascade ), m (number
of bottleneck states). For the frequency of interaction, l ::::: 472
(equivalent to 15.1 seconds) , k ::::: 2, S ::::: 236, and m ::::: 6. For
the criterion gentle/strong, the corresponding parameters are: l ::::: 50
(1.6 seconds), k ::::: 2, S ::::: 25 and m ::::: 4.

of the cascade and at the very end7, which suggest that at
these steps s, the input data X s may influence a bit more
in the choice of next equivalent state Xs+1. This measure is
correlated with the reorganisation measure for extrapolating
ds-1,s(R(s - 1, s)) (equation (2) and equation (3» which
presents, respectively to each criterion of interaction, profiles
similar to the conditional entropy with peaks positioned at the
same place in the cascade (the mean of ds-1,s(R(s - 1, s))
is equal to, respectively, for Gentle/Strong, 0.037 bits, and,
for the frequency of interaction 0.129 bits). In this study, the
algorithm will extrapolate between step 5 and 24 (respectively
5 and 216) of the cascade for the gentleness (respectively
frequency of interaction).

C. Experiments

The experiments aim at assessing statistically:

a) the soundness of the recognition of interaction styles by
our algorithm, i.e.:

i) for the criterion 'gentleness', whether a behaviour that
has been classified as gentle (respectively strong) by
a human is indeed going to be classified as gentle
(respectively strong) by our algorithm,

ii) for the frequency of interaction, whether a frequency
of interaction that has been tagged by a human is in
deed going to be correctly recognised by the algorithm.

b) the delay for the recognition of local events (i.e. short-term
time scale events).

Importantly, the criterion 'gentle/strong' characterizes local
events, and the algorithm should be able to recognise each
specific event 'gentle' or 'strong' within a short delay. In
contrast, the criterion 'frequency of the interaction' requires
the algorithm to classify mid-term time scale events. This

7Note that the small local peaks at the end of the cascade may reflect the
importance of the last steps for distinguishing the classes So and Sl.
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study deliberately focuses on such different criteria in order
to show the flexibility of the algorithm.

1) Experimental setup under laboratory conditions: These
trials are used as a first step in the statistical assessment of
the soundness of the recognition of the interaction styles.
They involve one participant at a time who is asked to interact
with the robot for a few minutes in a predefined wa.v which
is one of the following:

• for the 'frequency of the interaction': only 'pure styles
of interaction', i.e. one class8 exclusively.

for the criterion 'Gentle/Strong': In a first step, It IS
pure styles exclusively9. In a second step, the participant
is asked to alternate gentle and strong behaviour and,
just before generating the first event of the new class,
he/she must name the style (i.e. "gentle" or "strong"). All
the sessions are video recorded and this tagging enables
to determine very precisely the transitions for a further
measure of the delay of the recognition process.

2) Experimental setup in school: A further step in the
validation of the algorithm is the testing with data· obtained
under natural situations of Human-Robot interaction. These
experiments took place in a small classroom dedicated to the
study, one child at a time being present in the room. Each
child was invited to play freely for several minutes with the
robot (the duration of play depended on the child's needs and
abilities) in an unconstrained environment.

D. Measures

The experiments were all video-recorded and sensor data
were stored. Note that the validation of the algorithm must be
assessed offline but the recognition algorithm is designed to
operate real time.

1) Samples excluding transitions from one class to another:
The profile of the classification by the algorithm can be anal
ysed with a confusion matrix which displays the probability
distribution that events from class Si are recognised by the
algorithm as events of class S~ (i == 0 or 1 for gentle/strong,
i == 0...3 for the frequency of interaction).

2) Samples with transitionsfor the criterion gentle/strong:
These samples enable us to test the ability of the algorithm to
recognise a transition and reach, after a short transition phase,
a new equilibrium phase. One can model this process by a
temporal curve that would indicate the state of the system for
a transition happening at time to. Three typical domains can be
identified: for t < to the curve is constant, indicating a stable
state; from t == to, the curve's value alternates to indicate an
hesitation between the two possible states (thus identifying
a change in the behaviour observed); from t == to + T the
curve would keep the same value (the new state). Ideally,
the second phase should be very short (i.e. T is very small).
We will study three typical measures here: a) the number of
transitions recognised by the algorithm; b) the time elapsed to

8very low, middle inferior, middle superior, or very high.
9gentle or strong only.
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reach the new equilibrium state, c) the ratio of errors made
within this new equilibrium state. Note that a transition will
be considered broadly as either a transition from a gentle
(respectively strong) behaviour to a strong (respectively gentle)
one, or from a state where no classification occurred (i.e. no
interaction occurred during the past 1.6 seconds) to gentle or
strong.

3) Samples with hybrid behaviours for the frequency of
interaction: Because this criterion is based on a mid-term
time scale analysis, some samples generated in school can be
hybrid, i.e. contain a mix of features from different classes. In
order to encapsulate hybrid behaviours, the human classifies
the behaviours on a 'two choices' basis, i.e. he/she can select
the two styles characterising the hybridity. In this case, the
algorithm's classification is successful if it agrees with one of
the two choices made by visual inspection.

Practically, the video and graphs of the temporal global
variable are first manually tagged. In a second step, the clas
sifications Si resulting from the manual tagging are compared
with the classifications S~ made by the algorithm.

VI. ApPLICATION TO THE RECOGNITION OF

HUMAN-ROBOT INTERACTION STYLES: RESULTS

We present the results for each criterion (gentleness and fre
quency of the interaction) successively. Note that here we will
refer to the samples of data that were classified without using
the extrapolation, i.e. the samples that contained no unseen
cases at any step of the cascade, as samples classified without
extrapolation. In contrast, the samples of data that required
an extrapolation at one or more steps of the cascade, i.e. the
samples for which there were unseen cases to extrapolate (i.e.
cases that had not been encountered during the training phase
of the algorithm), will be referred to as samples class(fied lvith
extrapolation.

A. Criterion: Gentle/Strong

J) Training set of data: The 20,018 samples used for
the training were classified by the algorithm with an overall
success of 97.82% and, respectively, for gentle and strong,
96.83% and 98.81%.

2) Samples excluding transitions (cross-validation): They
constitute 1 hour 2 minutes 49 seconds of interaction. 100,111
samples have been classified with a ratio of success for correct
classification of 0.948. 97.7% of samples were classified with
out extrapolation with 95.22% of success while the samples
classified with extrapolation (3.3%) were well classified in
75.54% of cases which, considering that it results from an
extrapolation, is quite a good result. Note that the parameters
of the Cascaded Information Bottleneck Method were chosen
in such a way to have a good balance between the extrapolation
and the precision, which is reflected here in the low percentage
of cases extrapolated.

3) Samples with transitions under laboratory conditions
(cross-validation): The four runs constitute 19 minutes and
40 seconds of interaction to analyse. They contain 53,192

samples to classify and 0.01% of the samples were not classi
fied because they could not be extrapolated by the algorithm 10.

212 transitions were to be recognised, 99.1% of which were
indeed well classified by the algorithm 11 with an average delay
of 0.17 seconds. The cumulative probability distribution of the
delay is displayed in Fig. 2. The curve grows very rapidly, thus
showing that most of the delays are very small. Transitions
recognised without any delay occur particularly in the case of
a transition from no event to classify to any event to classify.
The longest delay is 2.05 seconds, which we consider very
acceptable for human-robot interaction kinesics. The average
error ratio in the equilibrium phase is 0.02 and the cumulative
probability distribution is displayed in Fig. 3. Here again, the
curve grows rapidly and shows that the probability of the
highest error ratio is very low and remains acceptable for real
human-robot interaction.

Cumulative probability distribution
of the delay to reach a new equilibrium phase
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Fig. 2. Cumulative probability distribution of the delay for recognising the
transition. We display the probability that an event is recognised within (less or equal)
n seconds for a given n. The delay corresponds to the length of the transition phase when
a transition occurs.

Cumulative probability distribution
of the error ratio in the equilibrium phase

~ 1'---:--::;;~~"""'~='::FIilIIIIIJII""~~---+-~

~ 0.8 --+---..,....~~~-~~
.ce 0.6 -+-:J~F--"""""'''''''''''''''''''''"-,,,-,'''''''''''

=
.~ 0.4 ir..,...--...-----:"-~~___;::=:=;:::::;:=:;:::::;::==:::l

~ 0.2 -l4~"'_"O------~~"'""""!'"'l

~ 0 ~___,.-~-~-~--..;..~=;:::=::r=====;:=:::::;=~
u

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
error ratio

Fig. 3. Cumulative probability distribution of the error ratio for the
equilibrium phase. The ratio measures the number of errors of classification made
during a phase of equilibrium divided by the number of samples to classify during this
phase. The figures displayed give, for a given r, the probability that the error ratio is
inferior or equal to r.

4) Samples generated by the children in the school (cross
validation): Videos from five different children were analysed,
which constitute 12 minutes and 52 seconds of interaction.
These runs contain 6,660 samples to classify: 97.49% of these
samples have been classified by the algorithm. These samples
contain 45 transitions. 91.1% of these transitions were indeed
well classified by the algorithm within an average delay of

10these samples had to be extrapolated outside thc range of stcps considered
for the extrapolation.

11 A transition is considered as wrongly classified if the transition phase is
very long compared to the new equilibrium phase.
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0.17 seconds. The cumulative probability distribution of the
delay is represented in Fig. 2. The curve grows very rapidly,
thus showing that most of the delays are very low. Transitions
recognised without any delay occur, and, at the far end, the
highest delay is 1.54 seconds, which is very acceptable for
human-robot interaction kinesics. The mean error ratio in
the equilibrium phase is 0.1 and the cumulative probability
distribution of this ratio is displayed in Fig. 3. Here again,
the curve grows rapidly. It is worthy of note that the highest
value obtained is 0.44 and the second one is much lower (0.26)
which indicates that the first highest value can be seen as an
extraordinary case. Looking at the sequential classification of
the results, it appears that this highest error ratio was obtained
while a child interacted in a very instable way that is, within
1.76 seconds three successive transitions were observed that
are 1) no event to gentle (gentle phase lasted 1.37 seconds),
2) gentle to strong (the phase with strong style lasted only
0.26 seconds), 3) strong to gentle. It is the strong phase,
after the transition from gentle to strong behaviour that was
recognised with the highest error ratio (0.44), but it lasted for
such a short time that it is not really a concern here (0.26
seconds is very low compared to the typical time for human
robot interaction which usually lasts a few seconds). Therefore,
we can consider to omit this highest value in the probability
distribution and looking at the resulting values, the results are
good and comparable to the results obtained in the laboratory.

B. Criterion: Frequency of the interaction

1) Training set of data: It constitutes 36 minutes 34 sec
onds of interaction and contains 4,865 samples to classify
(respectively, 450 for 8 0 , 1,208 for 8t, 1,484 for 8 2 and
1, 723 for 8 3). 99.98% of these samples are well classified;
the ratio of success specific to each class is displayed in Fig. 4.

S'o S'l S'2 S'3
So 1 0 0 0

Sl 0.0008 0.9992 0 0

S2 0 0 1 0

S3 0 0 0 1

Fig. 4. Confusion Matrix for the training set. The ratio is the one among events
from type Si. Si represents the real class and S~ the recognised class, 0 S; i < 4.

2) Samples generated under laboratory conditions (cross
validation): They constitute 51 minutes 44 seconds of interac
tion and contain 5,395 samples to classify (respectively 1,017
for 8 0 , 855 for 8t, 1,933 for 8 2 and 1,590 for 8 3) 91.16% of
which were classified with an overall ratio of success of 0.922.
99.4% of the samples not extrapolated were well classified,
and 76.41% of samples classified through extrapolation were
well classified. Fig. 5 displays the confusion matrices.

3) Samples generated by the children in the school (cross
validation): Three runs of interaction were used for the vali
dation of the frequency of interaction in a real situation, from
three different children. They constitute 14 minutes 41 seconds
of interaction and contain 5, 288 samples to classify. 91% were
classified (including 26.81% that had to be extrapolated) and
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No
S' S' S' S' Extrapolation S' S' S' S'Extrapolation 0 I 2 3 0 I 2 3

So 1 0 0 0 So 1 0 0 0

Sl 0 0.972 0.028 0 Sl 0.115 0.864 0.022 0

S2 0 0 0.999 0.001 S2 0.083 0.146 0.768 0.003

S3 0 0 0.006 0.994 S3 0 0 0.368 0.632

Fig. 5. Confusion Matrices for pure sets of data for, respectively, non
extrapolated and extrapolated data. Non extrapolated samples are samples which
were classified without the need to use the extrapolation, because none of the cases
were unseen cases (relatively to the training set samples). The results for those samples
are provided in the table with mention No extrapolation. On the contrary, extrapolated
samples are samples that used the extrapolation at least once in the cascade (those samples
contained at least one unseen case in the cascade, i.e. a case that had not been encountered
during the training). The results for those samples are provided in the table with the
mention Extrapolation. See Fig. 4 for more details on the notion of confusion matrix.

93% were classified correctly. Among samples classified with
no extrapolation, the ratio of success for a sound classification
was 0.96. while for samples classified with extrapolation, it
was 0.84.

VII. DISCUSSION AND FUTURE WORK

The algorithm has proven sound for the recognition of
the two criteria of interaction. Concerning the criterion gen
tle/strong, results show that the two classes are well recognised
and the delays very acceptable for human-robot interaction.
The extrapolation works well, which shows the capability of
the system to make a sound decision in case of unseen events.
These results can be compared with a previous study of ours
where we used Self-Organizing Maps to classify this criterion
of interaction [4], whereby the average delay to recognize
transitions was much higher and the postprocessing required
more effort.
Importantly, one might wish to define the styles slightly
differently to the definition given here, such as, for instance,
focusing on more details (in order to describe substyles for
instance). This can be easily done by adjusting relevant pa
rameters, mainly the number of bottleneck states, the binning
and the training sets which condition the learning.

The algorithm has also proved very capable of classifying
real data over a mid-term time scale (cf. the criterion frequency
of the interaction) which illustrates the ability of the method to
make a powerful exploitation of an existing temporal structure
not only of short-term time scales but also mid-term ones. This
ability is empowered by the use of different bottlenecks (thus
different mappings) over the cascade. In contrast, as explained
in the section on Related Work, with HMMs the mapping
would be the same all over the time series, and, by trying
to squeeze all temporal information into one flat transition
structure, it might actually prevent HMMs from an efficient
making use of an existing temporal structure of the data. This
hypothesis should be investigated in future work which will
include a comparison of our method with HMMs in these
scenarios. The problem with a cascade of bottlenecks trained
independently could be here that the system has too many
degrees of freedom and could overlearn. The extrapolation
with the measure that we have introduced is a first step in the
control of the degrees of freedom of the system. In addition,
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the overlearning can be tightly controlled by penalizing the
intake of novel information. For this, we would have to move
from the agglomerative model where f3 == 00 to a model with a
finite f3 that would control the information intake per step. This
shows how the Cascaded Information Bottleneck method is
transparent and gives fine-grained control over how much and
what new information is taken at which step in the cascade.

This method is designed for real-time use during natural
human-robot interaction and little research had been done so
far on real-time recognition of tactile interaction styles. Salter
et al. 's adaptation algorithm [11] was a first important step
towards real adaptation. Yet, this system did not learn its own
categorisation, which was completely described by a hand
tuned decision tree. In the present study, the recognition and
the decision are made algorithmically, after a real learning
phase and a capacity to extrapolate unseen events, with very
small delays. Furthermore, our method is very easy to use and
can be tuned easily to adapt to other criteria of interaction.

VIII. CONCLUSION

In this paper, we have presented a novel method for time
series analysis for detecting interaction styles in the context
of Human-Robot Interaction. This method, namely the Cas
caded Information Bottleneck Method relies on a cascade of
bottlenecks trained independently, the first one being trained
in a standard way [3] while the next ones depend on the
previous bottleneck states. This notably facilitates a powerful
exploitation of the temporal structure of the data. Besides, a
structure progressively emerges through the cascade and we
introduced a measure to extrapolate unseen cases.

We have applied our method to real-time recognition of
human-robot interaction styles, in a detailed case study, by
implementing the algorithm for real interactions with a real
robot. The testing of the method had to be done offline, i.e.
after the interactions had taken place, but the algorithm is
designed to operate real time in order to enable real-time
adaptation of robots to the interaction styles.

We have shown the soundness of the method through
extensive experiments, using successively samples of data gen
erated under laboratory conditions and samples from natural
situations of child-robot interaction in a school for children
with autism. The algorithm was able to recognize short term
events very well within and average delay of 0.17 seconds (the
highest delay being 2.07 seconds). It was also able to recognise
mid-term time scale events very well (the percentage of events
correctly classified was 92% under laboratory conditions and
93% with data from the child-robot interactions).

This study has shown the soundness of the method for pat
tern recognition and illustrated its capability of time-filtering
on real data. Besides, the method is transparent and enables a
fine-grained control over how much and what new information
is taken at which step of the cascade. Finally, this method
is entirely generic for applications with socially interactive
(humanoid and non-humanoid) robots.

Our own future work will focus on the application of the
method in autism therapy where we find a strong need for

socially adaptive robots. The ability of a robot to classify
in real time human-robot interaction styles is a first step
towards the challenging goal of enabling an autonomous
robot to influence positively children's interaction styles to
guide him/her progressively towards different therapeutically
relevant levels of interaction.
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A long-term study of children  
with autism playing with a robotic pet
Taking inspirations from non-directive play  
therapy to encourage children’s proactivity  
and initiative-taking

Dorothée François1, Stuart Powell2 & Kerstin Dautenhahn1

1Adaptive Systems Research Group, School of Computer Science, University 
of Hertfordshire/2School of Education, University of Hertfordshire

!is paper presents a novel methodological approach of how to design, conduct 
and analyse robot-assisted play. !is approach is inspired by non-directive play 
therapy. !e experimenter participates in the experiments, but the child remains 
the main leader for play. Besides, beyond inspiration from non-directive play 
therapy, this approach enables the experimenter to regulate the interaction 
under speci"c conditions in order to guide the child or ask her questions about 
reasoning or a#ect related to the robot. !is approach has been tested in a long-
term study with six children with autism in a school setting. An autonomous 
robot with zoomorphic, dog-like appearance was used in the studies. !e 
children’s progress was analyzed according to three dimensions, namely, Play, 
Reasoning and A#ect. Results from the case-study evaluations have shown the 
capability of the method to meet each child’s needs and abilities. Children who 
mainly played solitarily progressively experienced basic imitation games with the 
experimenter. Children who proactively played socially progressively experienced 
higher levels of play and constructed more reasoning related to the robot. !ey 
also expressed some interest in the robot, including, on occasion, a#ect.

Keywords: Human–Robot Interaction, Robot-Mediated !erapy, Robot-Assisted 
Play, Non-Directive Play !erapy, Assistive Technology, Autism, Children

 Introduction

!is study is part of the Aurora Project, (Aurora, 2009) an ongoing long-term proj-
ect investigating the potential use of robots to help children with autism overcome 
some of their impairments in social interactions (Dautenhahn & Werry, 2004, 2000). 
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Autistic spectrum disorders can appear in various degrees and refer to di#erent 
needs and abilities (Powell, 2000; American Psychiatric Association, 1994). Detailed 
diagnostic criteria for autistic spectrum disorders are provided in the Diagnostic and 
Statistical Manual of Mental Disorders (1994). !e main impairments highlighted by 
the National Autistic Society1 are: impairments in communication, social interaction 
and imagination. As a consequence, children with autism o$en seem to operate in a 
world of repetitive patterns and some of them tend to restrict play to solitary play. 
Besides, it can be argued that children with autism have a relative potential for play 
but o$en encounter obstacles to actualize this potential, the causes of which are still 
under investigation. Di%culties in socio-emotional inter- subjectivity, joint attention 
and theory of mind (compare e.g. Baron-Cohen et al. (1985); Hobson (1993); Baron-
Cohen (1997)) impair interactions in general and, more speci"cally, imply a lack of 
spontaneous and social reciprocity during play. !ose impairments, in addition to the 
potential de"cits in higher order representation, may explain the di%culties encoun-
tered in symbolic and pretend play (Chaillé & Silvern, 1996).2 Yet, play is a vehicle for 
learning (Chaillé & Silvern, 1996). !rough play, children can develop skills in many 
areas (e.g. logical memory and abstract thought, communication and social skills). 
Moreover, play is a medium for self expression (Boucher, 1999). From the perspective 
of this study that aims at supporting robot-assisted therapy for children with autism, 
we thus decided on an emphasis on play whereby the robot should facilitate play and 
adapt to each child’s needs and abilities.

!e use of robots for robot-assisted play and therapy is a growing area of 
research (see section on ‘Related Work’). Until now, many approaches of robot-
 mediated play and therapy for children with autism have mainly explored the use 
of speci"c games, such as imitation (Robins, Dautenhahn, Boekhorst, & Billard, 
2005) or chasing games (Werry & Dautenhahn, 1999) and only recently started 
to involve the experimenter in the play sessions, qualifying his/her role as “pas-
sive participant” (Robins, Dautenhahn, 2006). !e study presented in this paper 
shows a di#erent perspective on robot-mediated therapy, which is not primarily 
task-oriented. It draws inspiration from non-directive play therapy (Axline, 1946, 
1947; Ryan, 1999; Jose" & Ryan, 2004) and, importantly, expands and formalizes 
the role of the experimenter in robot-assisted play. In this novel approach, the 
experimenter strongly encourages the child’s proactivity and initiative-taking with 
respect to the choice of play, the rhythm of play and verbal communication. While 
a task-oriented approach might expect the child to complete a speci"c task, such 
as, for instance, performing imitative movements, our approach enables the child 
to proactively experiment with various situations of play, from simple exploration 
of the robot’s features and capabilities to more complex situations of play. !ose 
situations can, for instance, involve an understanding of the notion of causality or 
the ability to take on a speci"c role in play. Furthermore, at any moment, the child 
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can appeal to the experimenter’s participation, thus enabling the child to experi-
ence triadic play.

Besides, beyond inspiration from non-directive play therapy, the approach pre-
sented in this paper introduces a regulation process. !is process notably enables the 
experimenter to regulate the interaction in order to guide the child towards other 
play styles when needed or modify slightly the rhythm of play if she feels the child is 
“standing still”. !e study presented in this paper explores the potential of this novel 
methodological approach for robot-assisted play through a case-study evaluation of 
a long-term study with six children with autism. !is study should be regarded as a 
preliminary exploration of the feasibility of such a technique in the context of robot-
mediated therapy for children with autism. Several research questions are addressed:

a. Does such an approach of robot-mediated therapy, inspired by non-directive 
play therapy, help the child experience higher levels of play and enable him/her 
to develop new play skills?

b.  Does this approach encourage the child to play socially?
c. Might this approach be appropriate for children who play solitarily and speak 

mostly by using onomatopoeia?3 Might it help him/her experience social play? If 
not, what might be the additional requirements necessary for such experience?

 Non-directive play therapy

!is section summarizes the core ideas of non-directive play therapy as mainly 
developed in Axline (1947) and explained and illustrated by case studies in Ryan & 
Wilson (1996).

Non-directive play therapy has its roots in Rogerian client-centred therapy 
with adults (Rogers, 1976), adapted to child therapy with a focus on play as the 
principal medium of communication (in contrast to verbal exchange). Rogerian 
theory4 relies on the idea that all human beings have a drive for self-realisation; 
it means that any human being tends to develop towards maturity, independence 
and self-direction. !e individual needs to completely accept himself/herself as 
well as be accepted by others.

In non-directive play therapy, the child, rather than the therapist, chooses the type 
of play and the activity in general in the playroom. !is contrasts with other play inter-
ventions. We shall cite Axline who primarily developed the method of non- directive 
play therapy (Axline, 1947): “Non-directive play therapy is not meant to be a means 
of substituting one type of behaviour, that is considered more desirable by adult stan-
dards, for another ‘less desirable’. It is not an attempt to impose upon the child the voice 
of authority that says ‘You have a problem. I want you to correct it’. ” Few limitations in 
the behaviour of the child are set, which refer to safety and security reasons.
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A relationship is progressively built up between the child and the therapist. !is 
relationship enables the child to share his/her inner world with the therapist and, 
“by sharing, (the child) extends the horizons of both their worlds” (Axline, 1947). 
Ryan et al. state that this relationship, with the help of the therapist, progressively 
facilitates the child to choose freely the feelings he/she wishes to focus on as well as 
the way in which he/she wants to explore them (Ryan & Wilson, 1996). !ree medi-
ums may be used for communicating these feelings: action, language and play.

!e therapist participates in the therapy. She observes, listens to and answers 
the child. !e therapist is re&ecting the child’s feelings or emotionalized behav-
iours in order to help him/her build a better understanding of himself/herself. !e 
therapist’s role has been characterized by eight basic principles set out by Axline 
(Axline, 1947), see Fig. 1.

Note that in the study presented in this paper the experimenter was not trying to 
engage in therapy; the study only drew inspiration from non-directive play therapy, 
thus the context may be a therapeutic one, but the experimenter, a human–robot 
interaction researcher, was not behaving exactly like a therapist. !e experimenter 
was not applying strictly the eight principles set out by Axline (Axline, 1947), see 
Fig. 1. She very much drew inspiration from Axline’s principles 1, 2, 3, 5 and 8, but 
she was not dealing with the fourth one; and, concerning principles 6 and 7, she 
was considering these principles with more &exibility. It is worthy of note here that 
this study is a "rst step towards a proof-of-concept and required signi"cant robotics 
expertise; however, in future, play therapists may use this approach.

 Related work

 Non-directive play therapy for children with autism

Non-directive play therapy has been largely used for children and adolescents 
with a wide variety of emotional and behavioural problems (Ryan, 1999; Ryan &  
Needham, 2001). Only recently have researchers started to investigate the feasi-
bility of such techniques with children with autism. A pioneering case study was 
presented in 2004 in Jose" & Ryan (2004) involving a 6-year-old-boy with severe 
autism. !e child attended 16 non-directive play therapy sessions of an hour a 
5-month period in the child’s special school. !e room was empty except for spe-
ci"c materials selected for their “expressive, imaginative, relaxing and interactive 
properties”. Results were analysed both qualitatively and quantitatively. Results 
showed an increase in the child’s autonomy and initiative-taking and the child 
developed an attachment to the therapist. According to Jose" et al. (Jose" & Ryan, 
2004), it was shown that non-directive play therapy itself may provide children 
with autism with the basis5 for therapeutic progress as stated in play literature 
(Axline, 1947). Also, the child’s concentration increased and his repertoire of play 
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expanded over the sessions. !e games involved progressively more joint atten-
tion and direct social interaction and verbal communication with the therapist 
increased; symbolic play emerged more and more verbally with the therapist.6 

However, repetitive and obsessive behaviours were not considerably reduced. As a 
conclusion, Jose" et al. (2004) stated that non-directive play therapy with children  
with autism may be complementary to behaviour therapy, non-directive play therapy  
is likely to be more e%cient in the child’s gaining autonomy, taking initiative, 
showing joint attention and developing social and symbolic play, while behaviour 
therapy could be more e%cient in reducing ritualistic and obsessive behaviours.

 Robot-mediated therapy and education

Robot-mediated therapy is an area of research in assistive and rehabilitation robotics 
that aims at using robots in the therapy of patients in a variety of domains, e.g. in 
stroke rehabilitation (Loureiro et al., 2003). Robot-mediated therapy, and in par-
ticular the use of robot-assisted play in therapy or education, is a growing research 
"eld. It has been shown that robots, compared to simple toys, elicit a range of 
behaviours in children with autism that are more desirable in the light of encour-
aging and/or teaching children with autism social behaviour and communication. 
Werry and Dautenhahn (Werry, Dautenhahn, & Harwin, 2001; Dautenhahn & 
Werry, 2004) showed that children with autism exhibited more eye gaze and more 
attention directed towards an autonomously operating mobile robot compared to 
a non-robotic toy. Later, Stanton et al. ’s studies compared interactions of children  

1. ''!e therapist must develop a warm, friendly relationship with the child, in
 which good rapport is established as soon as possible.''
2. ''!e therapist accepts the child exactly as he is.''
3. ''!e therapist establishes a feeling of permissiveness in the relationship so that
 the child feels free to express his feelings completely.''
4. ''!e therapist is alert to recognize the feelings the child is expressing and re"ects
 those feelings back to him in such a manner that he gains insight into his behavior.''
5. ''!e therapist maintains a deep respect for the child's ability to solve his own
 problems if given an opportunity to do so. !e responsibility to make choices and
 to institute change is the child's.''
6. ''!e therapist does not attempt to direct the child's actions or conversation in any
 manner. !e child leads the way; the therapist follows.'' 
7. ''!e therapist does not attempt to hurry the therapy along. It is a gradual process
 and is  recognized as such by the therapist.'' 
8. ''!e therapist establishes only those limitations that are necessary to anchor the
 therapy  to the world of reality and to make the child aware of his responsibility in
 the relationship.'' 

Figure 1. Eight basic principles set out by Axline for practice of non-directive play 
therapy: quotations from Axline (1947)
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with autism with an Aibo robot (Sony) and a simple mechanical toy (Stanton et al., 
2008). !eir results show that the children spoke more words to the robot and 
more o$en showed certain behaviours towards the Aibo including verbal engage-
ment, reciprocal interaction, and authentic interaction. Such comparative studies 
provide the main motivation of our approach to use robots (and not other non-
robotic toys) to investigate their potential in the therapy and education of children 
with autism.

A fully comprehensive review of the literature would go beyond the scope of 
this paper, and we therefore focus below on selected research that is particularly 
relevant to the present work.

Long-term studies with the seal robot Paro have shown that speci"c everyday 
life situations exist in which human–robot interaction can have a positive e#ect on 
the well-being of human beings (Shibata et al.,2005); they may even be a signi"-
cant factor of performance in therapy7 (Marti et al., 2005).

Outside the therapeutic context, in the broad "eld of child–robot interac-
tion, Tanaka et al. led a long-term study in a school in order to identify principles 
for realizing long-term interaction (Tanaka et al., 2005, 2006). !is study notably 
showed that the children’s views of the robot evolved: they progressively considered 
the robot (in this case, the humanoid robot QRIO) as a peer rather than as a toy.

Within the Aurora Project, Robins et al. carried out long-term studies ana-
lyzing, on the one hand, the role of the robot as a mediator (Robins, Dautenhahn, & 
Dubowski, 2005) and, on the other hand, the role of the experimenter (Robins & 
Dautenhahn, 2006) which they described as that of a “passive participant” who 
responds to the children if they initiate interaction with him/her. !ere was no 
autonomous reaction from the robot to the child’s interactions in their study. 
Moreover, child–robot interaction situations taking place during these trials were 
mainly concerned with encouraging imitation of gestures (position or move-
ment of arms and legs). In Robins et al. ’s experiments, children interacted with a 
remotely controlled robotic doll by imitation of gestures.8

In di#erent studies, Werry et al. encouraged free-play with a mobile rectangu-
lar autonomous robotic platform, Labo-1, equipped with infrared sensors (Werry & 
Dautenhahn, 1999; Werry, Dautenhahn, Ogden, & Harwin, 2001). !e play situa-
tions were approach and avoidance games whereby turn-taking emerged from the 
child–robot interactions (Dautenhahn, 2007). !e experimenters did not take part 
in the games; they only responded to the child when the child initiated communi-
cation or interaction with them (Dautenhahn & Werry, 2002).

Outside the Aurora Project, Kozima et al. used a small dancing creature-like 
robot, Keepon, in a long-term study with children with autism, in relatively uncon-
strained conditions (Kozima et al., 2005). Keepon was manually controlled by the 
experimenter who was not part of the trials. Children and carers were involved 
in the trials which highlighted the role of Keepon as a pivot in triadic interaction  
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by facilitating the emergence of joint attention. Another study conducted by 
Duquette et al. (2007) showed the potential of the robot Tito to elicit shared focused 
attention9 (visual contact, physical proximity) in a large range of imitation games. 
!is study also pointed out the impact of the robot in imitation games and showed 
its potential to foster imitation of facial expression but also, in this speci"c con-
text, its limits for encouraging e.g. imitation of gestures.

!ese results reinforce the idea that child–robot interaction may be valuable 
for children with autism with respect to being a medium towards possible social 
interactions. It also shows the relevance of investigating new approaches in how to 
design and conduct robot-assisted play for children with autism.

 Method

 Participants

All the children taking part in the experiments have a diagnosis of autism and are 
from the same school based in the UK. !is school welcomes children between 4 
and 11 years old with moderate learning di%culties. In particular, an Autism Base 
provides extra care and a speci"c education program for children with autism to 
start within the school. When the child gets older or when he/she has made suf-
"cient progress (especially if he/she has improved in social skills) he/she can be 
integrated in a more general class for children with speci"c needs and abilities 
including children with autism. Six children were selected by the teachers to take 
part in the current study. For purposes of clarity and simplicity, a consistent nam-
ing of the children will be used in the whole paper, starting with A and then, 
alphabetically, in order of appearance in the text.

Two boys from the Autism Base, Child A (seven years old) and Child B (eight 
years old) were invited to take part in the experiments. Both of them "nd it hard to 
express themselves verbally and their behaviour o$en includes using onomatopeia 
and repetitive gestures. According to the teachers, Child A o$en shows apprehen-
sion towards dogs and doors and Child B has a fascination for computers. Child C 
took part in the experiments who is a seven-year old girl. During the experiments, 
she was part of the Autism Base but in the process of being integrated into another 
class with children with moderate learning di%culties including children with 
autism. She therefore started to follow part-time the education program of this 
class and the rest of the time stayed in the Autism Base. She masters verbal com-
munication pretty well and teachers describe her behaviour as proactively social, 
as far as play at playtime is concerned.

!ree older children took also part in the experiments. All of them are inte-
grated in classes for general moderate learning di%culties. Child D, ten years old, 
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is described by his teacher as a solitary child. In the classroom the position of his 
desk, fairly isolated from the others, gives him his ‘own’ space. Child D understands 
pretty well when one addresses him verbally but mostly speaks by using onomato-
peia. At school, he o$en uses the computer to do exercises, especially exercises 
on words and writing. Two other children, Child E, ten years old and Child F, 
nine years old, took also part in the study. !ey communicate verbally and are not 
described as solitary children.

Note, other details, such as mental age of the children, were not available. 
!e study was carried out with approval of the University of Hertfordshire Eth-
ics Committee. !e parents of all the children who took part in this study gave 
written consent, including permission to videotape the children and utilize pho-
tos in publications.

 Artifact

!e main artifact is a white robotic mobile autonomous dog, the Sony Aibo ERS-7 
(Fig. 2). It is equipped with a great variety of external sensors, and particularly, "ve 
tactile sensors: the head sensor, the chin sensor and the three back sensors. Aibo’s 
control programming was achieved using URBI (Baillie, 2005). A laptop endowed 

Figure 2. Aibo ERS-7. Aibo ERS-7 weights approximately 1.65kg and measures  
approximately 180(w) x 278(h) x 319(d) mm
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the robot with speci"c behaviour-modes through a wireless connection. Once the 
robot had been endowed with a speci"c behaviour-mode, it reacted autonomously 
to the activation of its sensors.

 Procedures and measures

 Procedures
Experimental setup. !e experiments took place once a week in the school. 
Each child participated in a maximum of ten sessions. Not every child could take 
part in 10 sessions because some of them may have been away for a day. Note that 
an exception was made for one child who showed some apprehension towards the 
robot: for him, experiments were stopped a$er 5 sessions and only restarted in the 
last session when he proactively came to the trial.

!e rooms used for the experiments changed several times due to circum-
stances at the school (Fig. 3). In each case, the child could have encountered pos-
sible distractive objects, like toys or mirrors (Fig. 4). !us, these experiments took 
place in a context of possible distraction. 

Each trial involved one child with autism, the experimenter10 and sometimes 
another researcher from the Aurora project with whom the children were familiar. !e 
latter helped the experimenter "lm the trials and occasionally took part in a verbal 
communication process by answering a child’s question directly addressed to her.

!e duration of the sessions was variable. !e child was free to play as long 
as he/she wanted with the following restrictions: (i) the upper limit of time was 
40 minutes (so that the child did not miss too much of his/her courses at the 
school); (ii) if the child had an obligation due to his/her schedule, then the ses-
sion was shortened.

!e Aibo robot was programmed in order to show simple behaviours, tai-
lored progressively by immersion according to each child’s needs and abilities. 
Note that ‘tailored by immersion’ means here that the repertoire of appropriate 
robot behaviours with respect to each child’s speci"c needs, abilities, dislikes and 
preferences was progressively re"ned as the experiments progressed. !e mapping 
between the sensors and the reactions of the robot (also called behaviour-mode) 
could therefore vary from one session to the other and also during a session in 
order to meet as closely as possible the needs, abilities and demands of the child 
at a given moment (Fig. 5 includes examples of the robot’s behaviours). !e robot 
reacted autonomously to the activation of its sensors, with respect to the speci"c 
behaviour-mode it had been endowed with. !e switch between various behaviour-
modes was done manually by the experimenter through a wireless connection with 
a laptop. !e laptop was located in the same room as the children, and thus consti-
tuted an additional source of distraction for the children.
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Room Description Dimensions Furniture in the room Objects in the room

R 1 -small longitudinal window
on the very top (children
can’t see through it),
-cupboard,
-low rectangular table,
-2 children’s chairs,
-decoration on the wall
(a clown’s head drawn on
a paper board).

Regular objects:
- game with individual
letters to form words,
re!ective blue metallic
support,
- coloured cubes
(25mm*25mm)
- rectangular paperboard
3D decoration,
1m*30cm*20cm ,
vertically in a corner.
On occasion: man’s like
face drawn on a
paperboard that children
could hold in front of
their face.

Small room Approx.
10feet *
8feet

R 2 -big window on a wall,
-second internal window
(semi-transparent,
semi-re!ective) with view
on another classroom;
 -vertical mirror, children
can see their whole body
by re!ection 
-shelves on the very top,
children
can’t access
-table & small chairs
(session8 only)

- games in open boxes on
the shelves (e.g. a doll);
children can see them but
can’t access them. 

Small room in
the Autism Base 

Approx.
10feet * 12feet

R 3 -Large windows on two
walls
-2 sofas made of joint
comfortable chairs
-4 comfortable additional
chairs
-rectangular dinner table,
6 chairs
-2 low  co"ee tables
-shelves (at the entrance)
-kitchen corner

-magazines on the co"ee
table
-on the shelves, objects
such as cloth samples in
open boxes
-small calculator
-small alarm clock 

Large meeting
Room: library,
kitchen and
living room
corners.
Experiments
took place in the
living room
corner.

-room: Approx.
35feet * 40feet;
 -living room
corner, approx.
10feet * 12feet

R 4 Classroom;
experiments took
place in the
library corner

-room: Approx.
30feet * 30feet;
-library corner:
approx.
10feet *  7feet

Library corner:
-2 shelves separating the
library corner from the rest
of the classroom
-small children’s bench

Library corner:
-books

Figure 3. Description of the school’s rooms used for the experiments
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Session S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Room R1 R1 R1 R1 R1 R3 - Child C : R3

- Other children : R4
- Child C: R3
- Other Children: R2

R2 R2

Figure 4. List of the school’s room(s) used for each session

Behaviour
Mode

Sensor

1 2 3 4 5 6

Chin
sensor

Emit “bark”
sound while
open-closing
the mouth

Wag the tail Open-close
the mouth 

Emit “bark”
sound while
open-closing
the mouth

Head
sensor

Move the
head (head
tilt
oscillations)

Open-close
the mouth

Wag the tail Move the
head (head
tilt
oscillations)

Back
front
sensor

Wag the tail Walk
forward,
turn right,
stand, turn
le!, walk
backwards

Walk
forward,
turn right,
stand, turn
le!, walk
backwards

Walk forward,
turn right,
stand, turn
le!, walk
backwards

Back
middle
sensor 

Turn head
(head pan
oscillations) 

Turn head
(head pan
oscillations)

Turn head
(head pan
oscillations)

Turn head
(head pan
oscillations)

Back rear
sensor 

Wag the tail

Open-close
the mouth

Wag the tail

Turn head
(head pan
oscillations) 

Move the
neck
(oscillations)

Emit “drum”
sound while
wagging the
tail

Emit “bark”
sound and
move the
neck
(oscillations) 

Emit
“drum”
sound while
wagging
the tail

Emit “drum”
sound while
wagging the
tail 

Wag the tail

Open-close
the mouth

Wag the tail

Turn head
(head pan
oscillations) 

Emit “bark”
sound

Figure 5. Examples of Behaviour-Modes for the robot. Mapping between the external 
tactile sensors of the robot and its behaviours

Methodology of the approach. During the session, the child was invited to play 
with the Sony robotic pet Aibo. !e experimenter took part in the experiment. !e 
child was the major leader for play: the child was free to choose the game to focus 
on, the pace of play and he/she could engage in free-play (unconstrained play) 
with the robot and/or the experimenter; he/she was also free to engage in com-
munication with the experimenter whenever he/she wanted. If the child appealed  
to the experimenter’s participation, then the experimenter did take part in the game. 
If the child initiated verbal or non-verbal communication (e.g. smile, eye gaze)  
with the experimenter then the experimenter answered ‘appropriately’, e.g. (i) if the 
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child smiled to the experimenter, then the experimenter smiled back at the child, 
(ii) if the child looked at the experimenter the experimenter looked at the child 
(eye contact) and (iii) if the child initiated verbal communication, the experi-
menter answered appropriately, using words the child could understand, to facili-
ate social interaction. With respect to verbal communication, the experimenter 
tried to answer every question of the child and rewarded him/her verbally when-
ever appropriate (e.g. at the end of each play session, the experimenter told the 
child he/she played very well with Aibo and congratulated him/her.). Note that 
this approach is mainly child-centred, relies strongly on the child’s capabilities of 
designing his/her own trajectory of progression and on total respect and consider-
ation towards the child from the experimenter. In this sense, this approach draws 
inspiration from non-directive play therapy.

Beyond inspiration from non-directive play therapy, this approach adds a reg-
ulation process under speci"c circumstances which are detailed below:

a. to prevent or discourage a repetitive behaviour: If the child was starting or about 
to start a repetitive behaviour, the experimenter intervened and tried to help 
the child play a di#erent game;11

b. to help the child engage in play: if the child did not engage in interaction with 
the robot, then the experimenter encouraged him/her to play with the robot, 
verbally and/or non-verbally (e.g. by stroking the robot and encouraging ver-
bally imitation);

c. to give a better pace to the game if already experienced by the child: If the game 
was “standing still” but the child had already experienced it and had shown 
that he/she was capable of playing this speci"c game, then the experimenter 
could intervene straight away to confer a better pace to the game;

d.  to bootstrap a higher level of play: if the child was about to reach a higher level 
of play but still needed some bootstrapping (some light guidance), the experi-
menter could provide it; note that the di#erent levels of play are described in 
a Play Grid that is presented in the next subsection;

e. to proactively ask questions related to a!ect or reasoning: the experimenter could 
proactively ask the child simple questions related to a#ect or reasoning such as: 
“Do you think Aibo is happy today?” or “Do you like playing with Aibo?”.

Note that (e) enables (i) testing the ability of the child to answer and/or (ii) showing 
the child a speci"c point for reasoning. We shall give several examples of levels 
of reasoning:

1. technical issue: show the child how to change the battery of the robot so that 
he/she can do it next time in a context of cooperative task;

2. ask the child if he/she thinks Aibo is happy;
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3. help the child reason on causal e#ect: stimulation of a sensor implies a speci"c 
reaction of the robotic dog;

4. show the child that a reaction can be interpreted: e.g. if I press this speci"c 
button, then Aibo wags the tail; and wagging the tail can mean that Aibo is 
happy; thus if you press this button, you can show that Aibo is happy.

 Measures
Each session was "lmed unless the child explicitly asked not to be "lmed which 
rarely happened. First, the experimenter viewed the video recordings and wrote 
down notes on the events constituting each session. !ese notes described the 
events in detail and contained as few interpretations as possible. As a second step, 
the experimenter analysed the data in terms of more abstract criteria that would 
enable her to identify, for each child, both the pro"le according to the three dimen-
sions (Play, Reasoning and A#ect) and the progress made over the 10 sessions. !is 
methodology allows the researcher to "rst gather as much information as possible 
before deciding on the speci"c criteria; it has the advantage of not restricting the 
analysis to prede"ned criteria which might a posteriori turn out to be less optimal. 
!is is especially relevant in the case of an exploratory study. !is procedure fol-
lows the one described by Schatzman & Strauss (1973), stating that: “the researcher 
requires recording tactics that will provide him with an ongoing developmental 
dialogue” (p. 94). Schatzman & Strauss (1973) underline the importance of record-
ing observations from the very beginning of research. !ey also suggest taking 
notes separately, categorizing notes into three di#erent packages: (a) observational 
notes based on events, without interpretation; (b) theoretical notes representing 
an attempt to confer or denote the meaning from an observational note; (c) meth-
odological notes dedicated to methodological comments.

Results of the experiments were analyzed according to three (intertwined) 
dimensions, respectively Play, Reasoning and A#ect.

Play !is study aims at testing the feasibility of this approach to encourage the 
child to learn new play skills and enable him/her to experience more and more 
complex play situations with respect to the following main criteria:

a. social aspect of play,
b. proportion of symbolic and/or pretend play,
c. understanding/use of causality,
d. ability to handle the pace of a speci"c play and possibly the chronology or the 

transitions between two logical segments of play.

!at is why, concerning the dimension of play, what particularly matters is (1) to 
extract information qualitatively about play situations that the child has experienced 
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in each session, and (2) to see if the child really experienced a large repertoire of 
play and more complex levels of play gradually over the sessions.

For this purpose, a Play Grid was built (a$er the play sessions) based on the 
children’s play observed during the experiments. !is grid is exhaustive with 
respect to the variety of play situations which took place at least once during the 
experiments for at least one of the children. Besides, the di#erent play situations 
were classi"ed into 6 sets, each set denoting a speci"c level of complexity of play 
(Level 1 being the lowest and then gradually incrementing the level of complexity 
until Level 6). !e level of complexity is de"ned according to four criteria:

a. social play,
b. proportion of pretend and/or symbolic play,
c. exploration of the use of causality/reaction,
d. chronology and/or number of di#erent phases in the play, e.g. a simple reac-

tion to a sensor is constituted of two phases while a search and rescue game 
involves many phases to handle chronologically: (i) initial situation, (ii) search 
phase, (iii) rescue phase, (iv) "nal situation.

!e level of complexity is then deduced from an average evaluation over the four 
components which explains that the same level may contain play situations with 
a predominant component of ‘(d)’ and others with a predominant component of 
‘(b)’.12 Consequently, within the same level of complexity, the di#erent play situa-
tions are not ordered since they may be very di#erent in nature. Ideally, the child 
would experience higher levels of play over time and, within the same level of 
complexity, play situations that are di#erent in nature.

!e systematic analysis with the grid for each child and each session shows the 
trajectory of each child (i.e. the pro"le of the child). Each cell in the grid is "lled 
in if and only if it corresponds to a play situation experienced by the child at least 
once during that speci"c session; and the content depends on the play situation 
being acted proactively (i.e. child’s own initiative) or reactively (i.e. the child was 
gently guided towards this play situation by the experimenter).

However, this grid is very enlightening with regard to children who manage 
to play socially and manage to diversify their play. For those who do not interact 
much with the robot and, when playing, tend to experience mainly solitary play 
through the exploration of the robot’s features and behaviours, an additional tool 
to evaluate their progress was used. !at evaluation was quantitative and relied on 
measuring for the whole duration of each session:

1. the total time spent in interaction with the robot,
2. the duration for each single uninterrupted phase (period) of pure interaction 

(note that the total duration is the sum of the duration of each single uninter-
rupted phase of play),



!"#$%&''()

  Dorothée François, Stuart Powell & Kerstin Dautenhahn

3. the amount of gestures imitated by the child and the number of gestures 
explicitly asked by the experimenter to be imitated.

Reasoning !rough play, children can notably construct some understanding 
of social situations and gain experience of some situations they encountered while 
playing. If a child can reason about abstract concepts, infer mental states and make 
a sense of social rapport, it will be easier for him/her to play symbolically. Con-
versely, while the child experiences symbolic play, he/she manipulates abstract 
concepts such as inferring an emotion or handling social rapport. Both play styles 
and reasoning are therefore intertwined and both viewpoints should therefore be 
used to analyse the results of the experiments carried out for this study. Note that 
with respect to “Reasoning”, what is particularly relevant is that both questions 
and answers emerg from play situations. !e context of play enables the use of 
imagination, whereby Aibo may be assigned a speci"c role by the child, and it 
allows the child to attribute speci"c capacities to the robot such has having men-
tal states (e.g. it enables him/her to imagine that Aibo is taking on a speci"c role 
and to make further assumptions on its mental state or its social status). !us, the 
context of play enables the robotic pet to be attributed with mental states as well 
as a social role, and possibly moral standing. In this way, it is possible to explore 
the reasoning part of the coding manual developed by Kahn et al. (2003) for the 
analysis of children’s conception of the Aibo robot, by exploring the four following 
categories used in Kahn et al. (2003): “Essence”, “Mental States”, “Social Rapport” 
and “Moral Standing”. According to Kahn et al. (2003), those categories “re&ect a 
‘quadrology’ of children’s conceptions of Aibo and Shanti”.13 For each of those four 
categories a list of related questions can be formulated (Kahn et al., 2003) that is 
provided in Fig 6.

Essence Does the child consider Aibo as an artifact or a biological entity?

Mental States Does the child attribute mental states to Aibo? Does the child consider
that the robot develops in terms of age for instance? Does the child
consider Aibo has a personality? Does the child consider Aibo could
live autonomously? 

Social rapport How does the child position Aibo relatively to himself/herself?

Moral standing Can Aibo be physically or morally hurt? Can Aibo be held responsible
for something? Can Aibo be punished when necessary? Could Aibo be
praised?

Entity Questions related

Figure 6. Four categories proposed in Kahn et al. (2003) for the analysis of children’s concep-
tions of Aibo. !is table presents questions related to the four entities
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Note that Kahn et al.’s coding manual has been developed in a di#erent con-
text: they targetted typically developing preschool children who only encountered 
Aibo once and a$erwards immediately answered speci"c questions about “reason-
ing” (Kahn et al., 2003, 2006) – while answering questions, children could however 
carry on interacting with the robot. !e context used in our study is di#erent since 
the succession of sessions enabled the child to progressively build some reasoning 
and understanding, along with the progressive building of a shared space of expres-
sions and routine activities between the child and the experimenter. !erefore, the 
reasoning related to the robot can be enriched. Besides, “reasoning” here is part 
of play in itself. In the study presented in this article, the context of play is actually 
used to enable the child to explore issues such as mental states or social rapport, 
and the robot in itself is a support for embodying such issues through the imagi-
nary context that comes with play. Moreover, since the experimenter takes part in 
the experiments, not only social rapport between the child and the robot should 
be considered, but also the child’s view on the notion of social rapport between the 
robot and the experimenter and between himself/herself and the experimenter. 
Consequently, here, the dimension of “Reasoning” is analysed as follows:

1. !e main features of the four categories (“Essence”, “Mental States”, “Social 
Rapport” and “Moral Standing”) are extracted from Kahn et al. ’s coding man-
ual (Kahn et al., 2003);

2. !e issue of whether and how the child addresses those features is investigated 
for each child, in a perspective of questioning through play rather than giving 
"rm answers.

Note that since the experimenter is not a therapist, and since the behaviour of 
children with autism might sometimes be interpreted di#erently from typically 
developing children, in the analysis we only consider events which are as much as 
possible objectively and reliably identi"able. Verbal events are particularly reliable 
events; they can be statements or questions arising from the child (major events) or 
answer to the experimenter’s question (minor events). Below are some examples: 
(a) Essence: “He’s a robot, he is a robot dog”, “He has short teeth, he doesn’t bite. 
Robot dogs don’t bite, do some do?”; (b) Mental states: “Aibo is happy”, “How old 
is Aibo”, “Aibo, answer me, do you like toys?”; (c) Social Rapport: “It is your robot”;  
(d) Moral standing: the child accidently kicks the robot and apologizes verbally to 
the robot directly. Besides, in many cases, as already explained, reasoning and play 
are intertwined; for instance, when the child and the robot’s relative social position 
in an enacted situation of pretend play is well-de"ned by the child (e.g. a competition  
with two participants, the child and Aibo), then the notion of social rapport is 
certainly addressed. Another example is a play situation of asking the robot about 
its mental states and answering with the activation of a sensor.
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As a further step in reasoning, the child may tackle a more general issue related 
to his/her mental states for instance, or to social rapport, concerning himself/herself 
or even the experimenter. !is is a relevant point for this study: it would show 
the potential reuse in another context of skills the child may develop or practise 
through reasoning about the robot during play.

Affect !e ‘A#ect’ dimension represents any expression indicating whether the 
child likes the robot or not, or if the child makes an assumption about the robot 
liking him/her. Here, only obvious signs (verbal expressions) of likes/dislikes are 
considered, (see Fig. 7 which provides the table of criteria for the coding of events 
related to a#ect). !is is made in order to ensure that events considered as related 
to a#ect are clearly identi"able. For instance, a gentle stroke is not classi"ed as an 

1. Proactive (major) event related to a!ect:
 Child’s statement or question referring directly to himself/herself liking the
 robot or the robot liking him/her. No hug or kiss from the child to the robot.
 Examples: ''I like Aibo'', ''Aibo likes me''.
 Child’s verbal compliment to/concerning the robot. No hug or kiss from the
 child to the robot. Examples: ''good doggy'', ''nice dog'', “he is a nice dog”.
 Child’s hug to the robot, clearly identi!able, accompanied by a kind word
 from the child to/concerning the robot or verbal statement qualifying the
 hug.  Example: the child hugs the dog and asks the experimenter to hug the
 dog: ''Put your hands and hug, hug, hug!''
 Child’s kiss to the robot, clearly identi!able, accompanied by a kind word
 from the child to/concerning the robot.
 Example: the child gives a kiss to Aibo a"er saying ''Goodbye Aibo, have
 a good sleep''

(i)

(ii)

(i)

(ii)

(iii)

(iv)

2. Reactive (minor) event related to a!ect:
 Child’s answer to a question about himself/herself liking the robot or the
 robot liking the child.
 Example: the experimenter asks the child: ''Is it a nice robot?'' and the
 child answers ''Yes''.
 Child’s answer to a question about himself/herself being happy to play
 with the robot.  Example: the experimenter asks the child: ''Are you
 happy playing with the robot?'' and the child answers ''Yes''.

Note, reactive events related to a#ect are considered very cautiously in this study;
they are not considered as su$cient to make !rm deductions about the child
addressing the notion of ''A#ect''.

Figure 7. Criteria for coding events related to A#ect. An event is related to ‘A#ect’ if 
it corresponds to one of the items provided in the table; in some of the following "gures, 
events related to a#ect are quali"ed by a corresponding code: the code of an event related 
to a#ect is given by its corresponding item’s index, e.g. “I like Aibo” is [1i]
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event related to a#ect in this study, neither a gesture such as a kiss or a hug, if it is 
not accompanied by an appropriate child’s statement.

 Coding and reliability

Inter-rater reliability testing was carried out for each of the three dimensions: play, 
reasoning and a#ect. A second coder who was not familiar with the aims of the 
study re-coded part14 of the data. Good reliability was shown: (a) on play, 80.75% 
agreement (13min50s of videos coded divided among two children, Child E and 
Child C); (b) on reasoning, 80.35% agreement (18min24s of videos coded divided 
among two children, Child E and Child F); (c) on a#ect, 93.35% agreement (22min 
of Child C’s videos coded).

 Results

In the following we provide case study evaluations for each child.

Child A Child A showed some apprehension towards the robot and did not 
interact at all during the "ve "rst sessions. !e experimenter therefore decided 
not to require the child to come for the following sessions and let the child pro-
actively decide whether he wanted to take part in the further trials or not. In the 
last session (Session 10), Child A proactively came for the trial. In that session 
he engaged in an interaction with the robot with the help of the experimenter: 
one interaction event happened between the child and the robot, during which 
the experimenter showed the child how to stroke the robot and the child imi-
tated (Fig. 8). A$erwards, the child showed both signs of light apprehension (he 
moved his body slightly backwards) and enjoyment (he smiled).

Child B Child B took part in 9 sessions (Fig. 9). Child B naturally showed 
attempts to play with the laptop rather than with the robot. It was a big challenge 
to get the child away from the laptop and get his attention focused on something 
else. !e experimenter used a simple trick by hiding the laptop with a cloth. But 
for practicality reasons (e.g. to connect or reconnect Aibo during the session), the 
cloth had to be removed from time to time during the session thus introducing an 
important source of distraction for Child B. Progressively, the child seemed to have 
understood that he was allowed to occasionally have a look at the laptop (as part of 
his well-being) but that he should mostly engage in interactions with the robot. !e 
table provided in Fig. 10 shows the average amount of time Child B spent engaging 
in play with the robot during each session. !e tendency is clearly that the child 
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1 2 3 4 5 6 7 8 9 10
Solitary Exploration L

1
Solitary mirror play – look at oneself in the robot’s re!ecting face

L
2

“Pre-social” or basic-social exploration – stroke Aibo immediately
a"er the experimenter (possibly basic imitation of the gesture)

P 

Social exploration (social play)
Simple Bite/Save or Give/Food -  no use of the sensors
Position or locomotion game – with verbal quali#cation of the game
Cooperative technical task: change the battery, or turn on/o$ Aibo
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a$ective gestures – give/receive a kiss and/or a lip
to/from Aibo
Repeat a"er me - ask the experimenter to repeat verbal expressions 
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children
Simple play with accessory (symbolic play)
Social Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re!ecting face & express verbal comments, e.g.
“Look at my arm!”

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors

Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors
Complex turn o$ Aibo to sleep (symbolic play)
Speak directly to Aibo about Aibo’s feeling (symbolic play)
Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor
Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor
Cause-reaction play & basic pretend play, “caught on the act”

L
4

Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter 
Symbolic & pretend play Complex play with an accessory
Symbolic & pretend play Complex nap with Aibo
Symbolic & extrapolation play: “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it) 
Causal composition of plays: Bite/Save & Give Food/Drink
Causal composition of plays: Kiss & Bite/Save

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors 
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

Pretend play & social rapports: Look a"er Aibo and set up rules
Pretend & symbolic & chronological play & social rapports:
Search and rescue

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

Telling a story

“Imitation” of robot’s bark

 A long-term study of children with autism playing with a robotic pet 

played longer with the robot in the last two sessions than in the previous ones and 
almost doubled his play time between the 9th and 10th session. If we consider in 
detail the duration of single phases of play, i.e. uninterrupted periods of time when 
the child continuously played with the robot, then, again, this table shows that the 
child experienced longer uninterrupted periods of play with the robot during the 
last sessions. Typically, two uninterrupted periods of play are o$en separated by 
an attempt of the child to play with the laptop. !is shows that the child progres-
sively learnt to focus more and more on the robot and on engaging in play with the 
robot. Nevertheless, the experimenter also o$en intervened to help the child carry 
on playing and keep focusing his total attention to the robot; this intervention usu-
ally happened in two ways: (a) encouraging and rewarding the child verbally, or (b) 
showing an example, e.g. stroking the robot and asking for the child to do the same. 
In this context, ‘(b)’ is very relevant indeed since the child does not speak verbally 
and encouraging imitation is favourable for both relaunching the child’s engage-
ment in play and bootstrapping social play. It should be noted that in this speci"c 
context, imitation is very rudimentary: the experimenter either touches a speci"c 
sensor or gently strokes the robot (e.g. on the head) and explicitly asks the child 
to do the same. !e child is considered to imitate the experimenter’s gesture if he 
exhibits the same type of gesture within 10 seconds, i.e. either by touching a sensor 
or stroking, and if the gesture is applied on the same part of the robot’s body; for 
instance, (i) the experimenter touches the head sensor and, within 10 seconds, the 
child presses the same sensor (with or without activation depending on the child’s 
precision of touch) ; or (ii) the experimenter gives a gentle stroke on the back of 
the robot and, within ten seconds, the child gives a stroke on the back of the robot. 
Results show that Child B progressively experienced more situations of imitation. 
Besides, they also reveal that during the last session he imitated some gestures pro-
actively, i.e. without being explicitly asked by the experimenter to imitate.

Figure 8. Child A. Play Grid. !e "rst column describes the corresponding level of play, the 
second column details the various play situations for each level that the child experienced at 
least once; the following columns refer to the sessions, ordered chronologically. !e table is 
then completed according to the following rules: (a) if the child did not experience the 
play situation during the speci"c session, leave the corresponding cell blank; (b) if the 
child experienced the speci"c play situation at least once during the session, then write 
“P” (if the child experienced it proactively only – i.e. it was his/her own initiative). Write 
“r” if the child never experienced it proactively (only reactively: the experimenter guided 
the child towards the play situation). Write “B” if the child experienced this play situation 
several times, sometimes proactively and sometimes reactively. Note that Child A did not 
take part in the play sessions 6, 7, 8 and 9
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1 2 3 4 5 6 7 8 9 10

Solitary Exploration P B B P r B P B
“Imitation” of robot’s bark

L
1

Solitary mirror play – look at oneself in the robot’s re!ecting face
L
2

r r B

Social exploration (social play)
Simple Bite/Save or Give/Food -  no use of the sensors
Position or locomotion game – with verbal quali"cation of the game
Cooperative technical task: change the battery, or turn on/o# Aibo
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a#ective gestures – give/receive a kiss and/or a lip 
to/from Aibo
Repeat a!er me - ask the experimenter to repeat verbal expressions 
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children

Simple play with accessory (symbolic play)
Social Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re"ecting face & express verbal comments, e.g.
“Look at my arm!”

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors

Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors
Complex turn o# Aibo to sleep (symbolic play)

Speak directly to Aibo about Aibo’s feeling (symbolic play)

Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor

Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor
Cause-reaction play & basic pretend play, “caught on the act”

L
4

Telling a story
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter 
Symbolic & pretend play Complex play with an accessory
Symbolic & pretend play Complex nap with Aibo
Symbolic & extrapolation play: “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it) 
Causal composition of plays: Bite/Save & Give Food/Drink
Causal composition of plays: Kiss & Bite/Save

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors 
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 
Pretend play & social rapports: Look a!er Aibo and set up rules
Pretend & symbolic & chronological play & social rapports:
Search and rescue

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

“Pre-social” or basic-social exploration – stroke Aibo immediately
a!er the experimenter (possibly basic imitation of the gesture)

Figure 9. Child B. Play Grid. See Fig. 8 for a detailed caption. Note that Child B was away 
for Session 7

 A long-term study of children with autism playing with a robotic pet 

Concerning the “Reasoning” dimension, Child B did not address the issue 
verbally. !us, no "rm conclusions should be drawn. However, the detailed 
study of the child’s gestures shows that the exploration of the child became pro-
gressively richer over the sessions. !e child varied his position relative to the 

Aspects of imitation:
In each single phase of
play, numbers of
gestures: 

Total
duration
of play
(min:
sec)

Repartition of the
play time in single
phases of play
(min:sec and +
between 2
single phases) 

Imitated
by the
child

Explicitely
asked by the
experimenter
to be imitated

Verbal
expression
involving
either the
word ‘dog’
or ‘robot’

Session1 
Session2 1:30 1:00

+ 0:30 (mostly
looking attentively
at Aibo)

Session3 0:40

0:06 0:06

0:40 0 0

Session4 Almost
null

Almost null 0 0 ‘!e little
dog was
easy’

Session5 0:15 0:15
the experimenter
helps by holding
the child’s hand to
show him

0 0

Session6 0:00 0:00 0 0
Session7 away
Session8 1:05 1:05 1 2
Session9 2:21 0:40

+1:16
+0:16

0
+1
+0

0
+2
+0

Session10 5:24 0:20
+1:47
+0:18
+2:46

0
+3
+0
+3

0
+3
+0
+1

0 0

0 0

Figure 10. Child B. Dimension of play: quantitative results. For each session, the following 
indicators are reported: (a) total duration of play; (b) duration for each speci"c single  
session of play ; (c) aspects of imitation with respect to (i) the occurrence of gestures 
(touch or stroke of the robot) that the child imitated and (ii) the occurrence of gestures 
that the experimenter explicitly asked the child to imitate; (d) verbal expressions including 
the word “dog” or “robot”
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robot, from sitting to kneeling and lying, and thus looked at the robot from vari-
ous viewpoints. Moreover, he progressively varied his way of touching the robot: 
during the "rst sessions, he progressively abandoned random-like touch to 
develop more targeted touch. Note that targeted touch can be, for instance, try-
ing to touch a single sensor precisely or stroke the robot gently and then activate 
many sensors. Besides, during the last session, the child experienced proactively 
a combination of two previous sensor activations: "rst, he imitated the experi-
menter and stroked the back of the robot; then he imitated the experimenter 
again and touched the head; third, he simultaneously activated the robot’s back 
and head sensors.

Concerning the third dimension, “A#ect”, no event that was related to a#ect 
(with respect to Fig. 7) was recorded.

Child D Child D was away for Session 3 and Session 6 and therefore took part 
in 8 sessions in total. !e analysis of the Play Grid in Fig. 11 shows that Child D 
played mostly solitarily. He engaged largely in exploratory play which became  
progressively more and more enriched. Two main aspects objectively illustrate 
the phenomenon (a) a progressive change of position (from sitting orthogonal 
to the robot and not facing the experimenter to facing the robot and the experi-
menter) and (b) a more diversi"ed way of touching the sensors. Moreover, the 
child practised “solitary mirror play” frequently. It consists of looking at one’s own 
image in the robot’s re&ecting face. Child D experienced situations of looking at 
his image with other re&ecting surfaces too, such as a window partially re&ect-
ing, or a mirror perfectly re&ecting (room R2 contained a mirror). All of these 
play situations, consisting of looking at one’s own image, were o$en  fascinating 
for Child D, and sometimes prevented him from engaging in other kinds of play 
situations. Besides, Child D did not experience play involving explicitly causal 
reactions, such as showing a speci"c reaction of the robot through the sensors’ 
activation.

However, progressively, Child D experienced situations with some compo-
nents of social play. From a cooperative point of view, the child did take part, 
both reactively and proactively in cooperative technical tasks such as turning 
on the robot. Furthermore, Child D, who mostly speaks by using onomatopeia 
did develop some ways of expressing himself, by dancing in front of the mirror 
and/or the robot and even probably telling a story by not using proper words 
but onomatopeia. !e situation described below, that Child D experienced, 
may actually be interpreted, with caution, as a storytelling situation: Child D 
chronologically (a) pressed the button to “wake up” Aibo (i.e. turn Aibo on), then 
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1 2 3 4 5 6 7 8 9 10

Solitary Exploration P

P

P

P P
P P

P P P

PP

PB B

PP P P

PP
P B

P P
“Imitation” of robot’s bark

L
1

Solitary mirror play – look at oneself in the robot’s re!ecting face
L
2

Social exploration (social play)
Simple Bite/Save or Give/Food - no use of the sensors
Position or locomotion game – with verbal quali"cation of the game
Cooperative technical task: change the battery, or turn on/o# Aibo
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a!ective gestures – give/receive a kiss and/or a lip
to/from Aibo
Repeat a"er me - ask the experimenter to repeat verbal expressions 
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children

Simple play with accessory (symbolic play)
Social Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re#ecting face & express verbal comments, e.g.
“Look at my arm!”

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors

Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors
Complex turn o! Aibo to sleep (symbolic play)

Speak directly to Aibo about Aibo’s feeling (symbolic play)

Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor

Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor
Cause-reaction play & basic pretend play, “caught on the act”

L
4

Telling a story
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter 
Symbolic & pretend play Complex play with an accessory
Symbolic & pretend play Complex nap with Aibo
Symbolic & extrapolation play: “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it) 
Causal composition of plays: Bite/Save & Give Food/Drink
Causal composition of plays: Kiss & Bite/Save

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors 
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 
Pretend play & social rapports: Look a"er Aibo and set up rules
Pretend & symbolic & chronological play & social rapports:
Search and rescue

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

“Pre-social” or basic-social exploration – stroke Aibo immediately
a"er the experimenter (possibly basic imitation of the gesture )

P
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(b) stood in front of the wall mirror in the room, still watching Aibo “waking 
up”; (c) once Aibo had “woken up”, the child started dancing and using onomato-
peia in front of the mirror. At some point, the robot disconnected. During the 
whole process the experimenter told Child D many times that she thought he 
was telling a story and asked him if she was right. She got no answer. When the 
robot disconnected the child stopped dancing and the experimenter reiterated 
her question: “Was it a story that you were telling me? Yes or no?”and the child 
answered “Yes”. !en she asked: “Can you tell me another story, yes or no?” 
and the child answered “yes”. !en the child repeated the same succession of 
behaviours ‘(a)’, ‘(b)’ and ‘(c)’ and she asked: “Is the story about a boy?” And 
he answered “Yes”. It is worthy of note here that the child might have simply 
repeated the word ‘yes’ a$er each question without giving a ‘real’ answer to the 
questions. Nonetheless, that example shows how the child may have progres-
sively opened up to more communication with his surrounding social environ-
ment for play (notably the experimenter).

!is storytelling situation took place in the last sessions while the child was 
starting to answer some questions about reasoning as well as using proactively 
verbal expressions to express intention. An in depth study of the verbal answers 
the child gave shows that over the "rst sessions, the child almost only answered 
“yes” or “no”, whenever he answered. !en, progressively, the child answered some 
questions by repeating words from the question: e.g. in Session 4 the experimenter 
asked “Do you want to play with the robot or go back to the classroom?”. !e 
child answered: “play with the robot”. And in the last two sessions, the child did 
use expressions to express his own intentions; for instance, the expression “sitting 
down” means that he wants to remain sitting down on the ground to carry on play-
ing with the robot. In Session 9, the experimenter actually asked the child: “Do 

Figure 11. Child D. Play Grid. !e "rst column describes the corresponding level of play, 
the second column details the various play situations for each level that the child experi-
enced at least once; the following columns refer to the sessions, ordered chronologically.  
!e table is then completed according to the following rules: (a) if the child did not 
experience the play situation during the speci"c session, leave the corresponding cell 
blank; (b) if the child experienced the speci"c play situation at least once during the  
session, then write “P” (if the child experienced it proactively only – i.e. it was his/her 
own initiative). Write “r” if the child never experienced it proactively (only reactively: the 
experimenter guided the child towards the play situation). Write “B” if the child experi-
enced this play situation several times , sometimes proactively and sometimes reactively. 
Note that Child D was away for Session 3 and Session 6

 A long-term study of children with autism playing with a robotic pet 

you want to go back to the classroom or play with him (the robot)?” and the child 
answered “play with him”. !en later in the session, the experimenter asked the 
question “Shall we go back to the classroom now?” and the child answered: “Sit-
ting down”. During the last session, the child reused exactly the same expression 
(“sitting down”) to answer the experimenter’s question: “Would you like to go back 
to the classroom soon?”.

Regarding the analysis of the reasoning dimension, the child answered reac-
tively very basic questions about Aibo’s mental states, such as “Do you think Aibo 
is happy today?” or about his own mental state: “Do you like playing with the 
robot?” but there was no proactivity from the child with respect to mental states.

Concerning “Social rapport”, the child progressively grasped the fact that 
Aibo belonged to the experimenter. In the "rst sessions, the experimenter had to 
explain many times to the child that he could not take the robot with him back to 
the classroom. In contrast, at the end of the last session, the child hesitated a short 
time and gave the robot back to the experimenter proactively. Apart from that, 
the child did not explicitly show any reasoning on “Social rapport” or on Aibo’s  
“Moral standing”.

The dimension of Affect has been mostly addressed indirectly (Fig. 12), 
through simple questions from the experimenter: in Session 4, the child 
answered a%rmatively to the following questions: (a) “Is it a nice robot?” and  
(b) “Are you happy playing with the robot?”. Later, in Session 9, the child 
answered affirmatively to the question “Do you think Aibo likes you?” And 
in Session 10, the child answered a%rmatively to the question “You like the 
robot?”. Note that since these inputs did not emerge proactively we should be 
careful with too much interpretation. Nonetheless, it should be underlined that 
most of the time the child said he preferred playing with the robot rather than 
going back to the classroom, which shows the child was having fun playing with 
the robot. Note, the experimenter is aware that the child may just have given a 
stereotypical answer.15

Child C Child C was away for Session 7 and thus took part in 9 sessions in total 
(note that in Session 6 she had a very limited time of play, approximately 10 min-
utes, because of a class trip). !e Play Grid in Fig. 14 shows that Child C experi-
enced more and more complex levels of play during the sessions (see Fig. 13). 
She experienced play situations involving the activation of a speci"c sensor to 
generate a precise reaction only a bit. She rather proactively experienced "rstly 
play situations where “a#ect” is largely addressed (e.g. “Social Hug”). Secondly, she 
developed play situations where the robot embodied a character in a story she was 
telling. Finally, in a third and last phase, she initiated play situations where she was 
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able to tackle issues on social rapport or mental states (Session 10: “looking a$er 
Aibo and set up rules” and “search and rescue” play situations).

!e “looking a$er Aibo” game dealt with deciding that she and the experi-
menter would take care of Aibo, and Child C proactively suggested that, as a 

Events objectively related to A!ect (ordered chronologically with respect to !rst
appearance, event only mentioned once per session) 

S1  
S2 · [2i] “Do you like it?” (Experimenter); “Yes” (Child D)
S3  
S4 · [2i] “Is it a nice robot? (Experimenter); “Yes” (Child D); 

·[2ii] “You are happy playing with the robot? (Experimenter); “Yes” (Child D) 
S5  
S6  
S7  
S8  
S9 · [2i] “Do you think Aibo likes you?” (Experimenter); “Yes” (Child D) 
S10 · [2i] “You like the robot?” (Experimenter); “Yes” (Child D) 

Session

Figure 12. Child D. Events related to A#ect. Events are separated by bullet points, and 
provided with their context (normal font) in the table. Events written in bold are coded 
according to Fig. 7 (the code is provided in brackets in front of the event); please note 
that when the child answers a question, the event in itself is the child’s answer, but, in this 
table, in order to make it clear to the reader, the question that the answers refers to is also 
written in bold

Figure 13. Child C involved in social play with the experimenter. Two sequences are 
displayed, one on each line. Each sequence is organised chronologically; on the "rst line, 
picture on the right and on the second line, picture in the middle, Child C is making eye 
contact with the experimenter
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Solitary Exploration 
“Imitation” of robot’s bark

1 2 3 4 5 6 7 8 9 10

P P P
L
1

Solitary mirror play – look at oneself in the robot’s re!ecting face 
L
2

“Pre-social” or basic-social exploration – stroke Aibo immediately
a"er the experimenter (possibly basic imitation of the gesture)
Social exploration (social play)   
Simple Bite/Save or Give/Food - no use of the sensors
Position or locomotion game – with verbal quali#cation of the game
Cooperative technical task: change the battery, or turn on/o$ Aibo 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a$ective gestures – give/receive a kiss and/or a lip
to/from Aibo

P P P P P P P P P
r P 

P P P P
P P P r r P
P P P P P P
P

P P P P

Repeat a"er me - ask the experimenter to repeat verbal expressions
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play)
Express verbally the willing/intention to show Aibo to the other children
Simple play with accessory (symbolic play) 
Social  Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re!ecting face & express verbal comments, 
e.g. “Look at my arm!”

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors

P 
P

P

B B P

Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors
Complex turn o! Aibo to sleep (symbolic play)
Speak directly to Aibo about Aibo’s feeling (symbolic play)
Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 
Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor
Cause-reaction play & basic pretend play, “caught on the act”

L
4

Telling a story

P

r P r 

P P P P
Cause-reaction play and explicit Social rapport:
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter
Symbolic & pretend play Complex play with an accessory
Symbolic & pretend play Complex nap with Aibo
Symbolic & extrapolation play : “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it)
Causal composition of plays: Bite/Save & Give Food/Drink
Causal composition of plays: Kiss & Bite/Save

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry
Pretend play & social rapports: Look a"er Aibo and set up rules
Pretend & symbolic & chronological play & social rapports:
Search and rescue

P 
P 

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

Figure 14. Child C. Play Grid. See Fig. 11 for a detailed caption. Note that Child C was 
away for Session 7
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 consequence, she and the experimenter would have to de"ne rules the robot would 
have to respect; and she enumerated the rules (among them, a detailed list of what 
the robot is not allowed to eat, and the statement: “dogs must go outside and must 
walk”, followed by “I need to make him walk”). !is game also gave rise to proac-
tive inferences of state, the child even saying: “Look! He is smiling!” in the proper 
context. !e social status that she took of taking care of Aibo led her to show the 
experimenter how to do speci"c things such as to make Aibo go forward: “You see, 
you must do like this, see”.

Furthermore, this game was followed by a “search and rescue game” which 
was extremely rich in many ways:

a. !e child led the rhythm, the pace, and the three steps of the play situation 
(chronologically):

– step 1: initial situation where Aibo is lost, the goal of "nding Aibo is 
stated,

– step 2: the experimenter and the child are looking for the dog,
– step 3: "nal situation: the experimenter and the child "nd the dog.

b. !e child slightly extended step 2 over time so that she could deal with emo-
tional states, particularly sadness: “You think we’ve lost him forever” said 
Child C; “Oh, that’s sad” said the experimenter; and the child replied: “I think 
we’re sad actually” thus conferring a socio-dramatic dimension to the current 
play situation.

c. During step 3, when the robot was found, the child introduced some rea-
soning about categories: she introduced the notion that it might be a robot 
other than Aibo that she and the experimenter had found; she introduced this 
reasoning step by step and she might not have been really at ease with these 
concepts, but the point is that she practised them through experiencing them: 
Child C’s reasoning started with “Oh no, there are two Aibos here” and, a$er 
several steps in the reasoning, she drew the following conclusion: “No there 
are two dogs, only one Aibo. !e clever one!” and she threw up her hands 
accompanied by a big smile. Again, what is illustrated here is that both “rea-
soning” and “play” dimensions are highly intertwined.

Concerning the notion of “Essence” for the Reasoning dimension, Child C 
mixed the use of artifacts and biological statements such as saying within the 
same session: “He’s a robot, he’s a robot dog” and “Nice dog”, “He is a nice dog”, “I 
love dogs”, “A boy or a girl?” (Session 10).
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Except in the last session, the notion of “Mental states”, was addressed 
mostly reactively: the child answered questions asked by the experimenter such 
as “Do you think Aibo is hungry?” (which usually initiates the game “Give food/
drink”). !ere were two exceptions: (a) the child proactively said that the robot 
liked her, and (b) the child could sometimes refer to mental states when telling 
stories she adapted from well-known children’s books. During the last session, 
the child proactively referred to mental states of the robot as mentioned above 
in both “look a$er” and “search and rescue” play situations. During the “look 
a$er” play situation, she said: “We play, want to make the dog happy, make the 
dog feel pretty”.

Moreover, as already mentioned above too, she experienced “Social rapport” 
a lot e.g. either simply by saying (in Session 9) “Look at Aibo, Aibo is your dog” or 
in taking on speci"c social roles in more elaborated play situations (e.g. in Session 
10, during “look a$er” and “search and rescue” games).

Concerning “Moral standing”, no objective event related to it happened.
!e dimension of “A#ect” played an important role for the child (Fig. 16). 

In Session 1 already, she started saying “good doggy” with respect to the robot. 
!en, in Session 3 she introduced the notion of social hug (see Fig. 15), which 
consisted in asking the experimenter (or the second researcher present) to help 
her hug the dog: “Put your hands and hug, hug, hug” Child C asked. Later in 
the same session, as well as in Session 4, the child said, “!e dog really likes 
me”. Note that end of Session 3 is the "rst time she answered the question “Do 
you like it (Aibo)?” (she answered a%rmatively). From that session onwards, the 
child con"rmed several times the fact that Aibo liked her (e.g. Session 4 “!e 
dog really likes me”) and that she liked Aibo (e.g. in Session 10: “I love Aibo” 
and “Nice dog”).

Figure 15. Child C’s social hug to the robot. Photos ordered chronologically. !e child 
brings the robot to a second researcher (who helped out during this trial) while saying 
“Put your hands and hug, hug, hug” and both of them hug the dog. In the third picture 
from the le$, Child C makes eye contact with the researcher
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Session

· [1ii] “Good doggy” (Child C) while stroking the robot and looking at the
experimenter (eye contact)

· [1iii] “Help me hug the dog: put your hands and hug, hug, hug” (Child C)
while bringing the robot near the assistant and showing how to hug
· [1ii] “Good doggy” (Child C)
· [1i] “!e dog really likes me” (Child C). !e experimenter answer “yes”
· [2i] “Do you like it? (Experimenter). “Yes” (Child C)
· [1ii] “Good doggy” (Child C), while stroking the robot
· [1i] “!e dog really likes me” (Child C) and she starts mimicking
the noise that would do the dog by lapping her.
· [1ii] “Good doggy” (Child C) and she looks at the experimenter; 
“yes very good doggy” (Experimenter).

S1 

S2

S3

S4

S5 

S6
S7

S8 · [1ii] “Good doggy” (Child C) a"er the robot has “woken up”
(i.e. is connected)

S9 · [2i] Are you happy to see Aibo? (Experimenter); “Yes” (Child C)

S10 

· [1ii] “Nice dog” (Child C)
· [1i] “I love Aibo. I love Aibo” (Child C) and she strokes the robot
· [1ii] “Good boy, good boy” (Child C) and she strokes the robot
· [1i] “Do you like the walk C, please tell me? (Experimenter); “Yes, this is
all about dogs like me” (Child C)
· [2i] You like Aibo, right? (Experimenter); “Yes” (Child C)

Events objectively related to A"ect (ordered chronologically with respect to
#rst appearance, event only mentioned once per session)

Figure 16. Child C. Events related to A#ect. See caption of Fig. 12 for details

Child E. Child E took part in the 10 sessions of experiments. !e Play Grid in 
Fig. 17 shows that Child E progressively experienced more and more complex lev-
els of play over the sessions. During the "rst sessions, he attentively explored the 
reactions of the robot and in the following sessions, he experienced more and more 
simple causal reactions through the following games: (a) “ask about a feeling, answer 
with a sensor”, e.g. in Session 10 the child asked: “are you happy?” and pressed the 
head button which made the robot wave the mouth as to say “yes”. (b) “aim at a 
physical reaction, show it with sensors”: e.g. the experimenter asked “Do you think 
Tornado (the name the child gave to the robot) can wag the tail today?” and Child 
E activated the right sensor at the "rst attempt and commented: “!at’s the tail one”. 
Child E also proactively played the game of giving food or drink to the robot as well 
as a cooperative play situation of Bite/Save (see Fig. 18). Bite/Save play situation 
consisted of two chronological steps: (i) the robot bit the "nger of either the child 
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1 2 3 4 5 6 7 8 9 10
Solitary Exploration 
“Imitation” of robot’s bark

L
1

Solitary mirror play – look at oneself in the robot’s re!ecting face P
L
2

“Pre-social” or basic-social exploration – stroke Aibo immediately
a"er the experimenter (possibly basic imitation of the gesture)
Social exploration (social play)  
Simple Bite/Save or Give/Food -  no use of the sensors 
Position or locomotion game –  with verbal quali#cation of the game 
Cooperative technical task: change the battery, or turn on/o$ Aibo
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”

P P P P P P P P P P
r r

P P P P 
P P P P B P P P P P

P P
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a$ective gestures – give/receive a kiss and/or a lip
to/from Aibo
Repeat a"er me - ask the experimenter to repeat verbal expressions
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play)
Express verbally the willing/intention to show Aibo to the other children
Simple play with accessory (symbolic play)
Social Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re!ecting face & express verbal comments, 
e.g. “Look at my arm!”

P
P P P P P P

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors 
Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors

B B B B B

P B r P P P P

Complex turn o! Aibo to sleep (symbolic play)
Speak directly to Aibo about Aibo’s feeling (symbolic play) 
Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 
Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor
Cause-reaction play & basic pretend play, “caught on the act”

L
4

Telling a story
Cause-reaction play and explicit Social rapport:
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter

P
P P P P

r r P P

r B r r 

P 

P P P

Symbolic & pretend play Complex play with an accessory 
Symbolic & pretend play Complex nap with Aibo 
Symbolic & extrapolation play : “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it)
Causal composition of plays: Bite/Save & Give Food/Drink 
Causal composition of plays: Kiss & Bite/Save 

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry
Pretend play & social rapports: Look a"er Aibo and set up rules
Pretend & symbolic & chronological play & social rapports:
Search and rescue

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

P r 

P

P

Figure 17. Child E. Play Grid. See Fig. 11 for a detailed caption
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a. b.

c. d.

Figure 18. Child E playing the game ‘Bite/Save’ with the experimenter. Chronological 
order of the photos: from le$ to right and top to bottom. a) the child activates the head 
sensor of the robot which makes the robot open the mouth and enables the robot to ‘bite’ 
his "nger. b) the experimenter brings her hand close to the head of the robot in order to 
activate the head sensor. c) the experimenter activates the robot’s head sensor to make 
Aibo open the mouth in order to ‘save’ the child’s "nger; when the mouth opens, the child 
pulls of his "nger (c and d)

or the experimenter (through the use of the sensors) and (ii) the person remaining 
(child or experimenter) saved the latter by freeing her/his "nger: the freeing was 
done either by activating the sensor (“Complex Bite/Save”) or by directly taking the 
"nger out of the mouth of the robot (“Simple Bite/Save”).

Furthermore, in Session 7, the child proactively combined 2 games, “Give 
food/drink” and “Bite/save” and said: “He (the robot) is saying: give me a drink or 
I bite your "ngers”.

Another interesting play situation the child proactively experienced in Session 7 
consisted of a competition between the robot and himself: both of them had to drink 
as fast as possible their invisible drink; the robot could only drink with the help of the 
experimenter (the experimenter was asked to activate the sensor linked to the  opening 
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of the mouth as fast as possible). At the end of the competition, Child E decided that 
the robot had won. !us, in this play situation Child E experimented with:

a. dealing with rules of competition,
b. handling the temporal aspects of the game and the various chronological 

phases,
c. taking on the role of the participant (as a competitor) and the one of the orga-

nizer who announces the winner,
d. playing with abstract entities (invisible drink),
e. playing socially.

Concerning the reasoning dimension, it should be "rst noted that the child 
decided to rename the robot a$er the "rst session and call him “Tornado”. More-
over, in the "rst sessions, most of his questions addressed the issue of the robot’s 
technical capabilities and how to control the robot. In Session 2, for instance, the 
child said: “How is he doing that?” and “What’s being on the head to make him 
walk?” (because when he touched the head and activated the head sensor, the robot 
walked). And later in the same session, while looking at the laptop he said “this 
must be the controller”. Furthermore, in Session 3, the child said: “I found how 
he might open his mouth”; the experimenter asked “is he moving the mouth?” 
and the child answered: “yes, when I stroke on the head, you see”. !is example 
illustrates that the child actively developed technical and causal reasoning about 
behaviours and capabilities of the robot. !is questioning can be related to the 
category “Essence” and shows that the child considered primarily Aibo (Tornado) 
as a proper robot. It should be noted here that the child invented the concept of 
“invisible drink” as well as the way of calling it (very logically): “invisible robot 
drink”. !is illustrates the ability of the child to make links with a real dog’s life 
while adapting it correctly to the characteristics of robots.

!e category “Mental state” was addressed during later sessions (from Session 5 
onwards). In Session 5 the child actually said “he is wagging the tail”; the experi-
menter answered: “yes, that shows he is happy”; and the child replied “He likes me” 
and he stroked the robot. !e experimenter reinforced the positive feeling: “yes, 
he likes you”. !at "rst step was expanded into the game “speak directly to Aibo 
about Aibo’s feeling”. In Session 6 and onwards, the child addressed proactively 
the question of emotions but he tended to deal with a restricted repertoire of emo-
tions only, such as “being scared” or “being terri"ed” (e.g. Session 7 the child said: 
“You’re scared Tornado, in fact you’re terri"ed”).

Child E dealt with “Moral standing” in Session 5 when he accidentally kicked 
the robot and, in return, apologized to it directly (“Sorry Tornado”) and comforted 
it by stroking him.



!"#$%&''()

  Dorothée François, Stuart Powell & Kerstin Dautenhahn

Finally, Child E addressed indirectly the question of “Social rapport” through 
play. For instance, in Session 10, he conferred a speci"c role to the robot for the 
competition; the robot thus became his adversary, but on a very kind level, since 
the child decided at the end of the game that the robot had won the competition. 
Another example took place in Session 8 where the child asked directly questions 
to the robot (e.g. “Do you want to drink something Tornado?”). !en, he made 
the robot bark as an answer and the child “translated” the answer verbally for the 
experimenter: “He said yes”. In this case, the child proactively played the social role 
of an intermediary position between the experimenter and the robot.

!e dimension of a#ect (Fig. 19) appeared from Session 5 onwards where the 
child proactively said “he (the robot) likes me”. And the experimenter replied “Yes he 
likes you. You like him?” !e child then answered “Yes”. !en later, in Session 8, the 
child said “he (the robot) is very happy”. !e experimenter agreed with him and then 
Child E added “Tornado likes me” and the experimenter reinforced the positive feel-
ing: “Yes he likes you”. In Session 9, Child E commented on the robot, qualifying him as 
“friendly”: “Tornado is very friendly, isn’t it?” and the experimenter agreed verbally.

Child F. Child F was away for Session 5. !us he took part in 9 sessions. Note 
that on his explicit demand, Session 7 and Session 8 were not recorded (the experi-
menter had permission from the parents to videotape the child but she decided 
to value the child’s request); thus information from sessions 7 and 8 is missing in 
the corresponding columns in the Play Grid. !e Play Grid (Fig. 20) shows that  

Session

S1
S2
S3
S4

S5
· [1i] “Yes that shows he (the robot) is happy” (Experimenter); “He likes me”
(Child E); “Yes he likes you” (Experimenter);
· [2i] “You like him (the robot)?” (Experimenter); “Yes” (Child E) 

S6
S7

S8
· [1i] “He (the robot) is very happy” (Child E) while making the robot bark;
“Yes he is” (Experimenter), “Tornado likes me” (Child E);
“Yes he likes you” (Experimenter)
· [1ii] “Tornado is very friendly, isn’t it?” (Child E); “yes, he is”(Experimenter) S9

S10

Events objectively related to A!ect (ordered chronologically with respect to
!rst appearance, event only mentioned once per session)

Figure 19. Child E. Events related to A#ect. See caption of Fig. 12 for details
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1 2 3 4 5 6 7 8 9 10
Solitary Exploration 
“Imitation” of robot’s bark P P P P P

L
1

Solitary mirror play – look at oneself in the robot’s re!ecting face 
L
2

“Pre-social” or basic-social exploration – stroke Aibo immediately
a"er the experimenter (possibly basic imitation of the gesture)

Social exploration (social play)  
Simple Bite/Save or Give/Food -  no use of the sensors
Position or locomotion game – with verbal quali#cation of the game 
Cooperative technical task: change the battery, or turn on/o$ Aibo
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up” 

P P P P P P
P P

P P B P
r P B

P

B
r P B

P P P P B P
Basic pretend & social play – imitate Aibo’s snoring & verbal comment
Basic play on a!ective gestures – give/receive a kiss and/or a lip
to/from Aibo 
Repeat a"er me - ask the experimenter to repeat verbal expressions
Look at Aibo through the camera
(Possibly stroke Aibo & look at its reaction through the camera)
Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French 
Show Aibo to other children (social play)
Express verbally the willing/intention to show Aibo to the other children 

Simple play with accessory (symbolic play) 

P P

P 
P P P P P

r B r 
P P

P P
Social Mirror play (social play) - look at oneself (and possibly at the
experimenter) in the robot’s re#ecting face & express verbal comments,
e.g. “Look at my arm!”

L
3

Social Hug – hug Aibo & ask the experimenter or the second researcher
to hug Aibo 
Complex Give Food/Drink (cause-reaction play & symbolic play &
social play) - use of sensors
Complex Bite/Save (cause-reaction play & pretend play &
cooperative play) - use of sensors
Complex turn o! Aibo to sleep (symbolic play)
Speak directly to Aibo about Aibo’s feeling (symbolic play)
Cause-reaction play & mental states:
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor
Cause-reaction play,
Aim at a physical reaction of the robot, show it with a sensor

P P 
P
B P r B

P B B r P P

Cause-reaction play & basic pretend play, “caught on the act”

L
4

Telling a story
Cause-reaction play and explicit Social rapport:
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which
opens the mouth), translate verbally the answer for the experimenter
Symbolic & pretend play Complex play with an accessory
Symbolic & pretend play Complex nap with Aibo
Symbolic & extrapolation play : “RobotCat” - Speak about  the idea
of a robotic cat (possibly imagine how one would play with it) 
Causal composition of plays: Bite/Save & Give Food/Drink
Causal composition of plays: Kiss & Bite/Save

L
5

Pretend play & causal reaction & social rapports:
Ask verbally Aibo to act a situation,  use of sensors
Pretend play & focus on Aibo’s mental states:
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry

P P P
P

P P

P 

P 

Pretend play & social rapports: Look a"er Aibo and set up rules 
Pretend & symbolic & chronological play & social rapports:
Search and rescue

L
6

Pretend & symbolic play & social rapport & cause-reaction
play & chronological play: competition (drink fast) between the child or
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor

Figure 20. Child F. Play Grid. See Fig. 11 for a detailed caption. Note that Child F was 
away for Session 5 and, on his request, was not "lmed during Sessions 7 and 8
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Child F engaged in social play almost all the time. He used verbal language a lot and 
progressively experienced some more complex levels of play, notably pretend play 
with respect to “play with accessory”. !e "rst situations of “play with accessory” 
happened in Session 3. In this session, the child borrowed the mouse of the laptop 
and put it on the ground in front of Aibo at approximately 30 cm distance and asked 
the robot to touch the mouse with the paw. !en he activated the right sensor to 
make Aibo walk forward and approach the mouse. !e child carried the robot for 
the 5 remaining centimetres separating the robot’s paw from the mouse and "nally 
the robot touched the mouse with his paw. Later, in Session 4, the child experienced 
further situations of “play with accessory” in two successive steps. As a "rst step, 
he proactively played very simply with an accessory. For instance, Child F used the 
face of a character drawn on a piece of cardboard that he held in front of his face 
and told Aibo: “Stay here Aivo, I’ve got something to show you”. Note that the child 
slightly changed the pronunciation of the name of the robot and referred to Aibo 
as ‘Aivo’. As a second step, later in the same session, the child proactively played a 
more complex accessory game with the robot, the “ghost dog”. !at play situation 
consisted in putting a cloth on top of Aibo and pretending Aibo was a ghost dog 
(Child F told Aibo: “You can be a ghost dog Aivo”); vocally, the child used classical 
onomatopeia mimicking a ghost’s “voice and presence”. Moreover, in Session 6, the 
child decided to make the robot wear clothes and this game was expanded by:

a. a series of questions on inferring states of the robot with respect to like/
dislike,

b. a direct communication with the robot to explain to it what he was wearing 
(Child F told Aibo: “Look at you Aivo! You’ve got some paper on to be black”);

c. a version of the game “aim at a physical reaction of the robot, show it with a 
sensor” (the experimenter asked “How do you make him walk with all these 
clothes?”, the child replied “Walk?”, and the child made the robot walk).

In addition to the accessory games, the child experimented with pretend play 
with the robot in a social context, e.g. pretending to have a nap with the robot (in 
Session 4) in a detailed (and complex) way resulting in

1. using a cloth as a blanket to cover both of them,
2. deciding on the duration of sleep and asking for the clock to be watched to 

respect the time prede"ned for the nap,
3. pretending to snore,
4. both of them waking up again.

Besides, another way of tackling pretend play as well as the robot’s mental states 
happened in Session 10 when the child imitated Aibo’s crying, and then argued 
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that Aibo was not crying but pretending to cry. And this notion of pretending to 
cry for the robot was reused many times during the last Session (e.g. Child F said: 
“No, he’s not crying, he is only pretending to cry.”).

!e reasoning dimension is an important component of the pro"le of Child F. 
Child F principally addressed three of the four components: “Essence”, “Mental 
States” and “Social Rapport”, and, to a lesser degree, “Moral Statement”.

Concerning “Essence”, the child really tackled the question of artefact or bio-
logical features, processes and categories. In relation to category, he o$en asked 
about the robot dogs’ boundaries, e.g. in Session 2: “Have you seen dogs that are 
not robot dogs, yes or no?” he asked the experimenter, and later in the same ses-
sion: “He has short teeth, he doesn’t bite. Robot dogs don’t bite, do some do?”

!e part on “Mental States” component is very rich since the child addressed 
all the aspects de"ned in the coding manual of Kahn et al. (2003) except probably 
the “autonomy” one. Actually, he attributed “intentions” to the robot in  Sessions 1 
and 2. He explicitly considered the robot’s “emotional states” in sessions 2, 4, 6 and 
10. He also both tackled “emotional states” of the robot and his “personality” when  
he asked the robot questions about its likes/dislikes (e.g. Session 4: “Do you like 
toys Aivo, yes or no?”). Furthermore, he pretended the robot had some “cogni-
tive abilities” and developed play upon it: in Session 4, for instance, he disguised 
himself with an accessory in order to “show” Aibo and thus presupposed -for the 
game- that Aibo could see. Later, in Session 6, again the child presupposed for 
the game that the robot could see and told it: “Look at you Aivo. You’ve got some 
paper on to be black”. !e last aspect of “mental states” is the notion of “develop-
ment” of the robot. Child F asked about it throughout the sessions. More than 
the notion of development, the child seems to have been willing to build a biog-
raphy for the robot (i.e. the past of the robot) and therefore asked questions to 
the experimenter such as: (a) in Session 1: “Where was this robot dog from?”; 
(b) in Session 2: “Where was he born?” and “Has he travelled in a car?”; (c) in 
Session3: “Where did you get him from?”, “Where does he live?”, “How old is 
he?”, etc.

Concerning the part on “Social rapport”, the child really investigated the social 
links between the robot and the experimenter, who was considered by the child as 
being the “mum” of the robot (Child F told the experimenter “it’s your dog son”, 
meaning that Aibo is the experimenter’s dog, and that the experimenter, in a way, is 
considered as being Aibo’s ‘mum’). He also investigated the social links between the 
robot and himself, through situations of pretend play but also verbally. In Session 2  
for instance, the child presupposed that there was a social rapport between the 
robot and himself since he told the robot: “When it is lunch time Aivo I got to 
go. And don’t cry Aivo”. Later, in Session 6, the child stated that the robot was his 
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cousin: “Aivo is my cousin”. And when the experimenter asked: “Aivo, do you like 
playing with F?16 Can you tell me? Can you ask for his answer F?” then the child 
told Aibo: “Aivo do you like me? You’re my cousin. I’m your cousin, Aivo”. !e child 
also investigated beyond social rapport involving Aibo and, for instance, asked the 
experimenter a few questions about her family: (a) in Session 4, the child asked 
about the experimenter’s French accent:17 “What accent do you speak?”, which was 
further investigated in Session 6: “Why do you speak French?” and “Why were you 
born in France?”; (b) in Session 6, he asked her about her family: “What are your 
parents’ names?”; he investigated further questions on the experimenter’s family 
in Session 10.

On the “A#ect” level (Fig. 21), the child expressed himself a lot, both by ges-
tures (e.g. giving a kiss to Aibo a$er saying “Goodbye Aivo, have a good sleep” 
in Session 6) and verbal expressions (e.g. in Session 4 when he dressed up Aibo: 
“Put this on, Aivo, my dog, my friend, Aivo”). It is perhaps worthy of note here 
that it might be the case that some gestures relating to a#ect from a non-autistic 
perception (e.g. giving a kiss), do not have the same interpretation for a child with 
autism: for a child with autism, giving a kiss might, for instance, just be an imitated 
response. Concerning Child F, it might be the case that the child reproduced the 
gesture “giving a kiss” from a situation he had encountered or witnessed before; 
nonetheless it should be mentioned that his gesture was made proactively, with no 
previous reference from the experimenter to such a gesture.

Session

S1 · [1ii] “Ooh he is a nice dog” (Child F) and he strokes the robot 
S2
S3

S4 · [1ii] Child F brings a towel to put on the robot : “Put this on Aivo, my dog, my
friend, Aivo” (Child F) 

S5

S6
· [1i] “Aibo, do you like me? You’re my cousin. I’m your cousin Aivo ” (Child F)
· [1iv] Child F gives a kiss to the robot on the muzzle a!er saying “OK, Goodbye
Aivo, have a good sleep”

S7
S8
S9

S10 · [1iv] Child F has covered Aibo with a coat; he gives the robot a kiss on the
forehead and says “Goodnight Aivo”   

Events objectively related to A!ect (ordered chronologically with respect to "rst
appearance, event only mentioned once per session)  

Figure 21. Child F. Events related to A#ect. See caption of Fig. 12 for details
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 Discussion

Results from these experiments show that the children progressed di#erently, and 
that their pro"les according to the three (intertwined) dimensions Play – Reasoning – 
A!ect are unique. !is highlights how the experimental approach presented in this 
study allows many trajectories for progressing and, more speci"cally, how it can 
meet the child’s speci"c needs and abilities.

Furthermore, concerning the dimension of play, and, more precisely, con-
cerning the children’s progression with respect to solitary vs. social play, three 
groups can be highlighted. !e "rst one, group 1, consists of children who 
mostly played solitarily and possibly encountered rudimentary situations of 
imitation, but no further components of social play. !is group includes Child 
A who encountered imitation in Session 10 and Child B. Note that both of 
them "nd it very hard to communicate verbally. For the children whose current 
play with the robot is mainly dyadic, it is particularly relevant to enable the 
robot to adapt automatically to their play styles in real time so that they can 
bene"t from this dyadic play and progressively reach well balanced and poten-
tially higher levels of play. !e second group, group 2, consists of Child D who 
communicated mainly non-verbally yet progressively experienced situations of 
verbal communication and showed pre-social or basic social play during the 
last sessions. !e third group, group 3, consists of Child C, E and F. !ose chil-
dren proactively played socially (i.e. in a triad including both the robot and the 
experimenter).

For those three groups, results shows that a) Child B (group 1) experienced 
progressively longer uninterrupted periods of play and engaged in basic imitation 
during the last sessions; (b) children from group 3 tended to experience higher 
levels of play gradually over the sessions and constructed more and more rea-
soning about the robot (and sometimes engaged in speci"c reasoning about real 
life situations as well). At a more basic stage, Child D (group 2) also experienced 
higher levels of play progressively. He started to reason about technical aspects of 
the robot as well, e.g. ‘turning on/o# ’ the robot and changing the battery. In the 
last sessions di#erent elements suggested that he may also have experienced some 
reasoning about social rapport. Besides, the children’s proactivity was encouraged, 
enabling them to take initiative and express intentions (cf. the proportion of pro-
active activities vs. reactive activities in the Play Grids).

!ese results are in agreement with Jose" et al.’s "ndings (cf. Section 
‘Related Work’) who have shown that non-directive play therapy encouraged 
the child’s initiative-taking (Jose" & Ryan, 2004). Further to this, Jose" et al.’s 
study has shown that non-directive play therapy may encourage symbolic play, 
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which is an important "nding of our approach too: In our study, children from 
group 3 progressively experienced situations of symbolic or pretend play. Note 
that, as already explained, the study presented here took place in a therapeu-
tic context but the experimenter was not behaving exactly like a therapist.18 
Besides, we identi"ed several advantages in introducing a robotic pet in the 
experimental setup:

a. the use of a robot allows us to simplify the interaction and to initially create a 
relatively predictable environment for play, thus facilitating the child’s under-
standing of the interaction (e.g. by initially giving the robot a simple predict-
able behaviour) (Dautenhahn & Werry, 2004). Progressively the complexity of 
the interaction can be increased.

b. children tend to express interest in the robot, and occasionally a#ect towards 
Aibo, as our "ndings show;

c. here, one of the "ndings is that, in these experiments, with this new approach, 
through play with the robotic pet, children tend to develop reasoning, and 
make comparisons to real dogs’ lives. Note that based on our "ndings we 
cannot claim that the children’s reasoning genuinely developed as a direct 
result of our study – we observed, however, cases where reasoning skills were 
expressed increasingly during successive sessions. !us, the robotic pet can 
be considered as a good medium for developing and/or expressing reasoning 
on mental states and social rapport upon, and for learning about basic causal 
reactions.

In the context of robot-assisted play, we have shown in Section ‘Related Work’ that 
research has, until now, mainly addressed task-oriented activities, such as chas-
ing games with Labo-1 (Werry & Dautenhahn, 1999) or imitation with Robota 
(Robins et al., 2004). Nadel et al. have shown that imitation skills have a signi"cant 
impact on the acquisition of social skills for children with autism (Nadel et al., 
1999). However, focusing on imitation tasks only may not be su%cient when the 
child reaches some higher levels of play (cf. children from group 3 in the experi-
ments presented in this study); Howlin and Rutter underlined the necessity of 
incorporating developmental aspects (Howlin & Rutter, 1987).

!e study presented in this paper goes beyond these previous experiments, 
since it provides the child with a relatively highly unconstrained environment of 
play: due to the mobile and autonomous nature of the robotic pet, the child can 
engage in a larger repertoire of play situations (note that Robota was remotely 
controlled and "xed in place while Labo-1, while operating autonomously, had no 
tactile sensors) and notably experience causal reaction play and symbolic play. Imi-
tation is used to bootstrap and initiate more complex situations of  interaction or 
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to help the child re-engage in the interaction. Besides, in this approach the exper-
imenter is both a “passive participant” and, under precise conditions, becomes 
an active participant, which expands and formalizes his/her role compared with 
 Robins et al.’s study (Robins & Dautenhahn, 2006).

Moreover, in this study, we have adopted a qualitative approach for the anal-
ysis of each dimension, Play, Reasoning and A#ect. We were actually interested 
in the emergence and in the speci"cities of the play styles, questions or state-
ments related to reasoning and events that could be objectively related to a#ect, 
rather than in the occurrences or the duration of each of them. In particular, 
two similar games might actually happen to be di#erent in the way the child 
experiences them, such as for example, the &uency, the rhythm, the coherence 
etc. Consequently, unlike a quantitative analysis which o$en relies on micro-
behaviour analyses19 (e.g. Dautenhahn & Werry (2002); Tardif et al. (1995)), this 
qualitative analysis here focused on a bigger scale, i.e. an intermediary scale.20 
!is intermediary scale enabled us to consider events constituting a game as 
connected events and, in particular, to describe the structure of a speci"c play 
situation in possibly di#erent (chronological) phases or identify in this play situ-
ation, the presence of social play, the proportion of symbolic or pretend play, and 
the use of causality.

!is study is explorative in nature, and more research should be done to inves-
tigate more systematically the contribution of such an approach in the "eld of 
robot-mediated therapy for children with autism.

 Future work

Looking back at the results, the existence of group 1 shows that some children 
remained playing mainly dyadically with the robot. !e only situations of social 
play those children experienced were basic imitation. For those children, it is par-
ticularly crucial to develop basic play skills through this dyadic interaction "rst, in 
order to help them reach higher levels of play and ideally, experience later triadic 
situations of play with the experimenter and the robot.

As part of future work, the question should therefore be investigated as to 
how to further facilitate children’s play with the robot, for the children who 
remain at the level of solitary play; in this case, the robot should be able to 
adapt appropriately to the child’s needs and abilities and encourage the child to 
progress towards more complex play styles autonomously. !is issue has been 
addressed in François et al. (2007, 2008) where the robot adapts its behaviour in 
real time and autonomously to speci"c play styles of the child in order to guide 
him/her towards more balanced interaction styles. Such an ‘adaptive’ robot 
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might help the child e.g. experiment with simple cause-reaction play  situations. 
In François et al. (2009) we implemented and evaluated such an adaptive robot 
that rewards well-balanced interaction styles (e.g. not too strong, not too fre-
quent) in a study conducted with seven children with autism. A statistical anal-
ysis of the results showed the positive impact of such an adaptive robot on the 
children’s play styles and on their engagement in the interaction with the robot. 
Such initial "ndings are promising and need to be extended in future larger-
scale studies.

Ideally, at some point, the child would naturally move towards group 2 and be 
able to engage in simple situations of social play (with both the experimenter and 
the robot).

Another avenue for future research within the proposed approach is to 
include “theory of mind” (ToM) more explicitly in the experimental design. 
ToM was not speci"cally considered in the present work, but we observed chil-
dren commenting on the robot’s intentions and ‘feelings’, which may provide a 
starting point for more detailed ToM investigations. Children with autism’s dif-
"culties with “mindreading” have been reported widely (e.g. Baron-Cohen et al.  
(1985); Hobson (1993); Baron-Cohen (1997)) and its relevance to the employ-
ment of interactive robots in autism therapy has been discussed in Dautenhahn & 
Werry (2004). !us, in the context of the approach presented in this article, 
future work could speci"cally include further aspects of ToM, e.g. concerning 
the children’s abilities to read the experimenter’s intentions, goals and beliefs, 
or to take his/her perspective during play. Also, future work in this area would 
bene"t from an assessment of whether the skills – that the children developed 
and/or expressed during the play sessions according to our approach – will also 
generalize to other situations, e.g. involving other children or adults (instead of 
the experimenter), or involving other play and/or social interaction situations 
within and outside the school. Furthermore, in order to distinguish whether the 
skills expressed by the children in our sessions genuinely developed or whether 
our approach only helped them to better express them in successive sessions, an 
assessment and comparison of the children’s skills prior and a$er the play ses-
sions in di#erent contexts are important. Such directions would bene"t from a 
larger-scale research programme put together and carried out jointly by roboti-
cists, autism researchers as well as therapists, teachers and possibly also involv-
ing the children’s parents.

Generally, future work in this area could either encompass more parameters 
to test, e.g. include further speci"c aspects of ToM as discussed above, or it could 
concentrate in further depth on speci"c aspects such as the dimension of “Play” 
and e.g. investigate in great detail di#erent levels and aspects of play.
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 Conclusion

!is paper presents a more approach in the context of robot-mediated therapy 
with children with autism. !is approach draws inspiration from non-directive 
play therapy, notably encouraging the child’s proactivity and initiative-taking. 
Here, the experimenter participates in the play sessions and the child is the main 
leader for play. Beyond inspiration from non-directive play therapy, the approach 
introduces a regulation process: the experimenter can regulate the interaction 
under speci"c conditions; in brief:

a. to prevent or discourage repetitive behaviours,
b. to help the child engage in play,
c. to give a better pace to the game if it has already been experienced by the 

child,
d. to bootstrap a higher level of play,
e. to ask questions related to reasoning or a#ect.

A long-term study was carried out with six children which highlighted the capa-
bility of the method to adapt to the child’s speci"c needs and abilities through  
a unique trajectory of progression with respect to the three dimensions, Play-
Reasoning-A#ect. In particular, each child made progress in at least one of the three 
dimensions progressively over the sessions. Moreover, in terms of play, and, more 
precisely, solitary vs. social play, children could be categorized into three groups. 
!e children who managed to play socially experienced progressively higher levels 
of play and developed progressively more reasoning related to the robot; they also 
tended to express some interest towards the robot, including on occasions interest 
involving positive a#ect. !is preliminary long-term study has therefore shown 
promising results for this new approach in robot-assisted play. It is a "rst study that 
potentially may be developed towards a new method in autism therapy.
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Notes

 http://www.nas.org.uk/

 It should be further noted that children with autism o!en tend to perceive objects in their 
parts and not as a whole, which is integral to the weak central coherence theory (Fritz, 1989). 
"is frequent inability may also influence the way the child plays.

 Onomatopoeia refers to using words that imitate the sound(s) associated with objects or 
actions, e.g. “buzz”.

 We focus on Rogerian theory in this article because of its strong ties with non-directive 
play therapy which is a key source of motivation for us. Our specific approach to robot-assistive 
play as outlined in this article is however not restricted solely to his theory. Other theoretical 
approaches such as those proposed by Jerome Bruner (Bruner, 1986, 1990) and Lev S. Vygotsky 
(Vygotsky, 1978) – both are indeed fundamental to other work in our research group related to 
development, narrative and learning – could be used for an extended theoretical discussion of 
this work that would however go beyond the scope of this publication.

 “(i) emotional security and relaxation, (ii) an enhanced and attentive adult environment in 
which playing together is emphasized, and (iii) the acceptance by therapists of children’s ability 
to instigate therapeutic change for themselves under favourable conditions”. (Josefi & Ryan, 
2004:545). 

 Note, the symbolizing capacities have similarities with, and may overlap with, capacities 
to learn language during normal development; conversely, it is very likely that learning a lan-
guage requires some symbolizing capacities and processes.

 "e seal robot Paro was introduced in the Bobath protocol (http://www.bobath.org.uk/) 
in the context of a child with severe cognitive and physical delays. "e Bobath protocol is a 
method used for the rehabilitation of physical functional skills (Knox & Evans, 2002). Results 
showed that the introduction of Paro may have strengthened, for this particular child, the ef-
ficiency of the Bobath protocol.

 "ose imitations concerned the position or movement of arms and legs.

 In this study, focused shared attention refers to the child’s eye gaze directed towards the 
mediator (alternatively a human or a robot). It does not include joint visual attention, i.e. 
looking at an object that the mediator is pointing at.

 "e experimenter was the first author of this paper.

 Note, the ultimate goal of this approach is to prevent the child from exhibiting repetitive 
behaviour in the first place.

 Different classifications of play coexist in play literature. Piaget’s classification identifies four 
categories: practice play, symbolic play, games with rules and constructions (Piaget, 1945). Another 
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taxonomy, given by Boucher (1999) emphasizes the importance of social play which is one cat-
egory of the classification. Here, we take a slightly different perspective since we describe (analyse) 
each situation of play according to four criteria, which are, in this context of robot-assisted play 
for children with autism, of particular relevance to measuring progress in the expression of skills 
in social interaction, communication, reasoning related to the robot and imagination. A situation 
of play is analysed according to the four criteria. "ese criteria are not exclusive to each other. On 
the contrary, a situation of play should ideally contain several of these criteria.

 Shanti is the name of the stuffed dog that was used in Kahn et al. (2003)’s study as a basis 
for comparison.

 "e recoded segments contained only high involvement of the children in interaction. 
High involvement is characterised by the fact that (i) children do not stop interacting for a 
period longer than a few seconds, and (ii) children experience many situations of play, rea-
soning or affect related to the robot. "erefore, the density of events to identify and code is 
very high in the recoded segments which makes the evaluation highly meticulous.

 For instance, the experimenter did not ask the question: “Does the robot hate you?”, to 
which the child might have said “yes” as well.

 Child F is designated by F in the dialogue.

 Child F mastered some French vocabulary.

 "e experimenter did not have any formal training as a therapist.

 Micro-behaviour analysis is the analysis of videos based on the coding of low level be-
haviours such as eye gaze, eye contact, touch, etc.

 To make a parallel with the notion of micro-analysis used in (Tardif et al., 1995), one 
could qualify our approach here as a mesoscopic approach or a meso-analysis. "e prefix 
‘meso’ comes from the Greek word ‘mesos’, meaning middle. “Mesoscopic” is an intermediary 
scale between “microscopic” and “macroscopic”. "ose terms are commonly used in physics 
and chemistry, and can be transposed metaphorically to our context. Applied to our context 
here, a mesoscopic approach means that we look at the events constituting an uninterrupted 
game as connected events, and as a whole.
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Abstract 
We summarise the experimental design issues related to 
timing in three human-robot interaction studies 
investigating imitation and drumming experiences with 
child-sized humanoid robots and human participants. 
Our aim1 is not to have the humanoid robots just 
replicate the human’s behaviors (e.g. waving or 
drumming), but to engage in a ‘social manner’, i.e. in a 
call and response turn-taking interaction. This work is 
part of a research project on developmental robotics with 
a particular emphasis on imitation and gesture 
communication. 
 
1. Introduction 
 

Timing plays a fundamental role in the regulation of 
human-robot interaction and communication. We present 
the experimental design and analysis issues related to 
timing based on three exploratory studies investigating 
imitation based interaction games with child-sized 
humanoid robots and human participants. The primary 
goal of this work is to achieve (non-verbal) gesture 
communication and imitation between child-like 
humanoid robots and human beings, whereby interaction 
games including drumming and imitation served as a test 
bed to study key aspects of face-to-face interaction such 
as turn-taking, synchronisation and non-verbal gestures.  

The first presented study is based on drum-mate, a 
drumming game where turn-taking is deterministic and 
head gestures of the child-sized robot KASPAR[1] 
accompany its drumming to assess the impact of non-
verbal gestures on the interaction [2]. This paper will 
focus on a modified version based on emergent turn-
taking dynamics; here our aim is to have turn-taking 
which is not deterministic but emerging from the social 
interaction between the human and the humanoid [2].  

                                                 
1 Acknowledgements: This work was conducted within the EU 
Integrated Project RobotCub ("Robotic Open-architecture 
Technology for Cognition, Understanding, and Behaviours"), 
funded by the EC through the E5 Unit (Cognition) of FP6-IST 
under Contract FP6-004370. 
 

The second study focused on imitation. Unlike the first 
work, which concerns turn-taking, this work is based on 
synchronisation which introduces different issues related 
to timing.  Here the robot makes simple body moves like 
waving its hand, and the human tries to imitate the robot 
whilst the robot evaluates how successful the imitation is 
[3]. Here the joint motion of the human and the robot 
should be tracked simultaneously and compared.  

In a third study, our aim is to analyse and model the 
gaze behaviour of human-human and human-humanoid 
pairs. Therefore we need to track the gaze of the 
participants coming from different sources in real-time 
and compare them to detect joint and mutual gaze.  
Additionally, once the data is collected, a suitable 
representation for the time distribution of the periods of 
mutual gaze must be chosen. 

 
3. Issues related to timing 
A. Turn-taking issues 

We implemented the human-robot drumming game as 
an example of a call and response turn-taking interaction. 
In the deterministic case, we used  predefined fixed time 
duration heuristics for turn-taking . The human partner 
started by playing simple rhythms with a toy drum. 
KASPAR started playing if the human was silent for a 
few seconds.  However, it was not always clear when the 
robot or human partner should initiate interaction in 
taking a turn. In the second version of the study (the 
emergent case), we instead used probability-based 
computational models to control timing and turn-taking. 
Three simple models (threshold, linear, hyperbolic) were 
used to control the starting and stopping of the robot’s 
drumming beats. The temporal dynamics of turn-taking 
thus emerged from the interaction between the human and 
the humanoid. We studied how these models impacted the 
drumming performance of the human-robot pair and the 
participants’ subjective evaluation of the drumming 
experience.  

B. Synchronisation issues 
Synchronisation is another vital issue in timing which 

we encounter during human-robot interaction 
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experiments. Many interaction games, including physical 
imitation or music, are based on synchronisation. The 
second experiment we present was based on the 
synchronisation of the human and humanoid using a 
simple arm waving motion. We used magnetic motion 
trackers to detect humans’ arm motion and compared with 
the position of the robot’s arm joints, and tried to detect 
the synchronisation between them in different scenarios, 
i.e. waving hands totally in phase or out of phase [3]. We 
proposed a method based on information distance to 
detect the similarity and synchronisation between the 
motion of human and the humanoid robot KASPAR2 
[3,4]. 

 
Fig. 1 A screen shot from the experiments 

C. Issues related to measurement devices 
In the third study, we analysed the gaze habits of two 

human subjects. Human-human pairs sat at each side of a 
table looking towards each other and had simple 
dialogues while their gazes were tracked by special eye-
tracker devices to analyse their joint gaze habits. 

Timing is a big issue in using cameras, eye-trackers 
and other devices to measure body motion, which are 
essential for human-robot interaction studies. The data 
coming from these devices should be time-stamped to use 
with data from other sources. If data is collected on 
different PCs/laptops, synchronizing time-stamps is not 
trivial. A Network Time Protocol (NTP) server/client 
setup should be able to maintain clock accuracy among 
machines within tens of milliseconds, a resolution which 
should be adequate for most sensors [5]. Better 
synchronization is commonly reported, especially across 
local networks, but may not be reliably achievable 
without specialized hardware or software [6]. 

D. Issues related to adaptation: 
Adaptive behaviour is a very important part of our 

interactive studies and in the case of producing or 
detecting such behaviour, timing is very crucial. It is 
important to compare the real-time waving-motion data/ 
drumming performance/gaze direction of the robot and 
the human (or human-human pair) to get feedback which 
will be used in the adaptation. If the data from both 
participants can not be synchronized correctly this 
feedback can not be achieved.  

Additionally, creating adaptive behaviour often relies 
upon designing or learning a computational model of the 

desired behaviour. This model may be, as in the case of 
the drumming study, quite simple, but the realism and 
interpretability of the behavior produced is likely to be 
highly dependent upon its internal representation. 
Because of the importance of timing in the interactions 
we’ve explored, models of these behaviours must 
explicitly represent timing relationships in order to 
capture their fundamental characteristics. What 
characteristics of timing (e.g, duration, periodicity, 
tempo) should be represented and how best to represent 
them (as values, distributions, or functions)  is highly 
dependent on the nature of the interaction, and many have 
to be determined via trial-and-error or by examining data 
from humans performing the behaviour in question. 
3. Conclusion 
 
   We presented the experimental design and the timing 
related issues resulting from three interaction studies with 
child-sized humanoid robots and human participants. 
Timing plays an important role in human-humanoid 
interaction, appearing in several different ways such as 
turn-taking, synchronization, real-time interaction and 
adaptation. 

The methodologies and solutions to the related issues 
presented in this paper will be used for future studies 
related to social interaction between human and  
humanoid, and can possibly be extended for use in other 
robotic fields, e.g. entertainment, service, and 
educational/therapy robots. 
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Drum-mate: interaction dynamics and gestures in
human–humanoid drumming experiments
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This article investigates the role of interaction kinesics in human–robot interaction (HRI). We adopted a
bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal com-
putational models underlying the robot’s interaction dynamics. We present two empirical, exploratory
studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first
experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of
the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The
second experiment studies a computational framework that facilitates emergent turn-taking dynamics,
whereby the particular dynamics of turn-taking emerge from the social interaction between the human and
the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms
of the participants’ subjective experiences) and quantitatively (concerning the drumming performance of
the human–robot pair). The results point out a trade-off between the subjective evaluation of the drum-
ming experience from the perspective of the participants and the objective evaluation of the drumming
performance. A certain number of gestures was preferred as a motivational factor in the interaction. The
participants preferred the models underlying the robot’s turn-taking which enable the robot and human to
interact more and provide turn-taking closer to ‘natural’ human–human conversations, despite differences
in objective measures of drumming behaviour. The results are consistent with the temporal behaviour
matching hypothesis previously proposed in the literature which concerns the effect that the participants
adapt their own interaction dynamics to the robot’s.

Keywords: social robots; humanoids; robot drumming; human–robot interaction; interaction kinesics;
emergent turn-taking

1. Introduction

The development of socially intelligent and adaptive robots in human–robot interaction (HRI) is
an emerging interdisciplinary field across the boundaries of robotics, engineering and computer
science on the one hand, and psychology, ethology and social sciences on the other (Dautenhahn
2007a). The primary goal of our research is to design a ‘successful’ HRI, whereby the robot is
engaged in certain tasks and carries out these tasks in a manner that is socially appropriate, for
example, enjoyable and acceptable for its users (Dautenhahn 2007b). It remains an open research
challenge to design such ‘successful’ HRI: success is here defined in terms of both performance
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of the human–robot pair in a task-based scenario, as well as in terms of the user’s subjective
experience of the interaction. Intuitively one may assume that what matters in human–human
interaction should also matter in human–machine interaction. And indeed, research by Nass and
his colleagues (e.g. Reeves and Nass 1997; Nass and Lee 2000) has shown that people treat
interactive artefacts socially. However, robots and computers are not exactly like people and it
remains open when and to what extent models and theories of human–human interaction are
directly applicable to HRI (Dautenhahn 2007b).

In this article, we are particularly concerned with the dynamics of HRI. Specifically, we address
the question of whether details of the dynamics of interaction that have been shown to play a
fundamental role in human–human interaction are equally important in HRI. In human–human
interaction, details of timing and synchronisation of gestures, speech, turn-taking in interaction,
etc. influence the nature and meaning of interaction. But is the same also true of HRI? Imple-
menting sophisticated dialogue and interaction models between humans and machines requires
significant computational and research effort. In order to decide whether this effort is justified,
we need to demonstrate that details of HRI kinesics matter. To address this issue, we used in our
experiments simple and (algorithmically) arbitrary, minimal computational models underlying
the robot’s turn-taking dynamics, rather than trying to model faithfully complex mechanisms of
cognition and learning in humans. We argue that if our simple models show an effect, that is, if
we find that the details of simple interaction dynamics significantly influence the ‘success’ of the
interaction (both in terms of objective performance and subjective user evaluation), then these
results suggest that future research in HRI design needs to take into account the details of robot
interaction dynamics even when not strictly based on cognitively plausible models of turn-taking
and interaction.

The work discussed in this article is related to our wider research agenda where we study
the importance of timing, rhythms, turn-taking and entrainment, which are key factors in the
development of communication (cf. Robins et al. 2005; Robins, Dautenhahn, te Boekhorst, and
Nehaniv 2008). Communication is an integral part of human social interaction. Developmental
psychologists distinguish between: (a) a primary, expressive system which has semantic and
intentional content but does not take account of the communication partner,1 and (b) a pragmatic,
referential system which can predict, and infer intention in the communication partner (Nadel,
Guerini, Peze, and Rivet 1999). These two key processes are involved in supporting a transition
from primary to pragmatic communication which requires mastering interpersonal timing and the
ability to communicate about a shared topic. Research has identified the importance of contingency
in rhythm, timing and inter-subjectivity in early communicative interaction of infants with a
caregiver. Such protoconversation plays a key role in the natural developmental progression of
human infants (Trevarthen 1999). Detailed analyses of infant–caretaker interactions show that
turn-taking between adult and infant in these protoconversations are closely coordinated and
reach rapid mutual entrainment.

Even before the link has been made to infant development, researchers studying human–human
interaction had long recognised the importance of timing, turn-taking and synchronisation dynam-
ics (Condon and Ogston 1967; Kendon 1970; Hall 1983). Goldin-Meadow argues that the gestures
the people produce in their conversation are tightly intertwined in their timing and meaning, and
that non-verbal gestural components of people’s communication cannot be separated from the
content of conversation (Goldin-Meadow and Wagner 2005). According to Bernieri and Rosen-
thal, ‘[i]nterpersonal coordination is present in nearly all aspects of our social lives, helping us to
negotiate our daily face-to-face encounters… We also coordinate our non-verbal behavior with
others to communicate that we are listening to them and want to hear more’ (Bernieri and Rosen-
thal 1991, p. 401). In this context, interpersonal coordination is loosely defined as ‘…the degree
to which the behaviors in an interaction are nonrandom, patterned, or synchronised in both timing
and form’ (Bernieri and Rosenthal 1991, p. 403).
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Within the wider context of interpersonal coordination, in our work we focus on interaction
kinesics, which can be described as the study of the role and timing of non-verbal behaviour, includ-
ing body movements, in communicative and interactional dynamics. While numerous studies have
investigated how people adapt to other humans (e.g. Pickering and Garrod 2004), non-human
stimuli (e.g. Schmidt, Richardson, Arsenault, and Galantucci 2007) or computers (e.g. Suzuki
and Katagiri 2007), interaction kinesics in HRI is a relatively unexplored area of research (Robins
et al. 2005, 2008). And only few studies have focussed on experimental investigations of this
important topic. For example, Watanabe (2004) investigated the embodied entrainment between
speech and body motions such as nodding in face-to-face communication involving robotic and
virtual characters engaging with people.Yoshikawa, Shinozawa, Ishiguro, Hagita, and Miyamoto
(2006) highlighted the role of responsive gaze in human–humanoid interaction. Yamamoto and
Watanabe (2003) found the differences in people’s preferences concerning the timing of utter-
ances in human–robot greeting interactions. Robins et al. (2008) explored interaction kinesics in
child–robot interaction in a play context involving a robotic dog (Reeves and Nass 1997) and the
child-sized humanoid KASPAR.2 Yamaoka, Kanda, Ishiguro, and Hagita (2007) showed in an
experiment with the Robovie robot and student participants how the contingency of interaction
impacts participants’ perception of the autonomy of the robot, depending on the degree of com-
plexity of the interaction. The role of Robovie’s response time as well as strategies of how a robot
can cope with delays has been investigated by Shiwa, Kanda, Imai, Ishiguro, and Hagita (2008).
A recent study by Yamaoka, Kanda, Ishiguro, and Hagita (2008) with Robovie studies the effect
of the robot’s body position and orientation on people’s proxemics behaviour in joint attention
scenarios. Outside the context of interactive robots, the importance of timing and synchronisation
has also been studied in human–computer interaction (Suzuki and Katagiri 2007) and has been
applied to therapeutic walking devices (Miyake 2003), as well as in evolved artificial social turn-
taking agents (Iizuka and Ikegami 2004). The earlier-mentioned examples indicate the growing
interest of the HRI community in interaction kinesics.

The particular experimental context chosen in our work is that of human–robot drumming. We
decided to choose a joint drumming task since collaborative music performance, in general, lends
itself to the study of interaction between humans and robots involving a variety of social aspects
including imitation, gestures, turn-taking and synchronisation, occurring in an overall playful and
enjoyable context. From a robotics point of view, drumming is a very suitable means of performing
music, since it is relatively straightforward to implement and test, and can be realised technically
without special actuators like fingers or special skills or abilities specific to drumming. Thus,
the drumming scenario provides a playful and interactive context that allows to constrain and
manipulate different experimental parameters easily.

Several researchers have studied drumming in the context of human–robot music performance.
In Weinberg, Driscoll, and Parry (2005), Weinberg and Driscoll (2006) and Crick, Munz, and
Scassellati (2006), robotic percussionists play drums in collaboration with interaction partners.
In Weinberg et al. (2005), an approach based on movement generation using dynamical systems
was tested on a Hoap-2 humanoid robot using drumming as a test case. Similarly, in Kotosaka and
Schaal (2001), humanoid drumming is used as a test bed for exploring synchronisation. However,
none of the prior work has specifically studied the socially interactive aspects in general, or
interaction kinesics in particular, in the context of human–humanoid drumming, which are the
focus of this article.

In this article, we present the results from two empirical studies involving adult participants3

interacting with the humanoid robot KASPAR in an imitation-based interaction game based on
drumming. The two experiments highlight the different aspects of HRI: (a) the role of (non-verbal)
gesture communication in a joint drumming task, and (b) the dynamics of emergent turn-taking
games. In Section 1.1, we will motivate the first experiment based on gesture communication
which used non-verbal gestures as social cues. This approach is discussed in the light of related
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work on several robotic percussionists, as well as other work in the wider context of social
robotics. In Section 1.2, we motivate our work on emergent dynamics of turn-taking interaction,
in the context of literature highlighting the importance of turn-taking in conversations and inter-
action games. The actual experiments will be described in Sections 2 and 3. Note that the field
of social robotics and HRI is very active, with a variety of different robotic systems used in
interaction studies. A complete review of the literature in this field goes beyond the scope of
this experimental paper; so we will focus our discussion of related work on research specifically
relevant to our research questions. For a very recent review of the field of HRI, see Goodrich and
Schultz (2007).

1.1. Gesture communication: motivation and related work

A robot that engages with people in interaction games could benefit from behaviour that specif-
ically motivates the user and sustains the interaction while coping with a wide range of users.
One way of motivating people to interact is through the use of social cues such as gestures. In
human–human interaction, gestures play an important role in communication, coordination and
regulation of joint activities. Indeed, in the related field of virtual agents, researchers have shown
the beneficial effects of gestures and expressions used by virtual agents, both in short-term and in
long-term interactions, in maintaining user involvement with the tasks encouraged by the agent
(Bickmore and Cassell 2005; Bickmore and Picard 2005).

Applied to robotics, this suggests that a robot may require social cues and gestures to moti-
vate users to interact with it, for example, in the field of assistive robotics (Tapus and Matarić
2006). A variety of robotic systems have been using social cues and gestures to encourage HRI.
A well-known example is KISMET, where facial expressions were used to regulate the interac-Q1
tion with people inspired by interactions of infants with their caretakers (Breazeal 2002). Other
recent examples include small cartoon-like robotic ‘creatures’ such as KEEPON and ROILLO,
designed to be used in interaction with children (Kozima, Nakagawa, Yasuda, and Kosugi 2004;
Michalowski, Sabanovic, and Michel 2006). These small robots have a limited action repertoire,
but can produce selected gestures to engage in interaction with children in the playground. The
fixed gestures are either random or tele-operated by a hidden puppeteer via a Wizard of Oz tech-
nique, as a part of social interaction. ROILLO is a simple robot with a rubber coated foam head,
body and an antenna. It has three wires connected to simple servos, which move the head and
body in various directions. It is used in experiments to study the interactions between the robot
and the children (Michalowski et al. 2006). KEEPON is a minimalist expressive robot that only
has a rubber head and an oval body. It has a small CCD camera and a microphone on it. It can
move its head, turn its body and make bobbing actions to show its ‘feelings’. It has both attentive
and emotive actions. It is simple but robust enough to be used in play rooms in interaction with
children (Kozima et al. 2004; KEEPON 2007, http://univ.nict.go.jp/people/xkozima/infanoid/

robot-eng.html#keepon).Q2
Related work on human–robot drumming includes HAILE (Weinberg et al. 2005; Weinberg

and Driscoll 2006), a robot arm designed specifically to drum in dynamic and musically sophis-
ticated collaboration with creative human musicians. HAILE does not use fixed deterministic
rules, but uses autonomous methods to create variant rhythms. It perceives a variety of complex
features of the human partner’s drumming, analyses the sound patterns and produces rhythms in
response. Compared with HAILE, in Crick et al. (2006) a less musically sophisticated humanoid
robot called NICO with an upper half body torso plays a drum together with human drummers.
It has visual and audio sensing to determine an appropriate tempo adaptively using a simple
threshold mechanism to parse the human partner’s beats, and can distinguish its own performance
with audio sensing, integrating the two sources of information to predict when to perform the
next beat.
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The above motivation and background led to our first experiment, where the humanoid robot
KASPAR plays the drums autonomously with a human ‘partner’ (interactant), trying to imitate the
rhythms produced by the human while using non-verbal gestures to motivate the human. In this
experiment, KASPAR’s behaviour is deterministic in the sense of producing the same (actuator)
output given the same input from its sensors.4 KASPAR produces non-verbal (head) gestures
from a limited repertoire and eye-blinking as it drums. Our approach is tested using different
degrees of such non-verbal gesturing with adult participants in several drumming sessions, and the
experimental results are reported and analysed below (Section 2) in terms of imitation, turn-taking
and the impact of non-verbal gestures as social cues.5

1.2. Emergent turn-taking dynamics: motivation and related work

Turn-taking is an important ingredient of human–human interaction and communication, whereby
the role switch (‘leader’ and ‘follower’) is not determined by external sources but emerges from
the interaction. Human beings generally ‘know’ when to start and stop their turns in the social
interactions, based on various factors including the context and purpose of the interaction, feedback
from the social interaction partners, emotional and motivational factors, etc. They use different
criteria for these decisions. In this work, our aim is to build a framework which enables emergent
turn-taking, and role-switching between a human and a humanoid in an imitation game, and to
understand how differences in robot turn-taking strategy can influence the emergent dynamics of
HRI. We do not aim to produce psychologically plausible models of human turn-taking behaviour
in this work, but employ simple, minimal generative mechanisms to create different robotic
turn-taking responses/strategies.

Related work that studied turn-taking in games and conversations focussed on different aspects.
An example from developmental psychology is described in Hendriks-Jansen (1996), which
discusses emergent turn-taking between a mother and a baby without any explicit ‘control’ mech-
anism (e.g. the mother starts jiggling in response to her baby’s sucking to encourage her baby
to resume sucking). This results in emergent turn-taking between the jiggling and the sucking
actions. Turn-taking also has important implications in robot-assisted therapy. Indeed, one ther-
apeutically relevant issue in teaching and education of children with autism is to teach children
the concept of ‘turn-taking’. Turn-taking games have been used to engage children with autism in
social interactions (Dautenhahn and Billard 2002; Robins, Dautenhahn, te Boekhorst, and Billard
2004a).

Another example of turn-taking games is given from a cognitive robotics view in R.A. Brooks
(personal communication, August 28, 1997). In this work, a ball game between a humanoid
robot COG and the human experimenter is described. COG and the human were reaching out
and grasping a ball in alternation. Note that in this case the experimenter led the turn-taking
behaviour in reaction to the robot’s visually driven actions. Ito and Tani (2004) studied joint
attention and turn-taking in an imitation game played with the humanoid robot QRIO, where the
human participants tried to find the action patterns, which were learned by QRIO previously, by
moving synchronously with the robot.

From a linguistics point of view, some of the important features of turn-taking in human
conversation identified are as follows (Sacks, Schegloff, and Jefferson 1974):

• Speaker-change recurs, or at least occurs.
• Mostly, one party talks at a time.
• Occurrences of more than one party speaking at the same time are common but brief.
• Transitions (from one turn to the next) with no gap and no overlap are common (slight gap or

slight overlap is accepted).
• Turn order is not fixed, but varies.
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• Turn size is not fixed, but varies.
• Length of conversation is not specified in advance.
• What parties say is not specified in advance.
• Relative distribution of turns is not specified in advance.
• Number of parties can vary.
• Talk can be continuous or discontinuous.

Built on these features, Thórisson (2002) developed a turn-taking mechanism for conversations
based on his previous work on the so-called Ymir mind model for communicative creatures and
humanoids. He proposed, implemented and tested a generative, multi-modal turn-taking model for
a face-to-face dialogue. The model was based on literature in human–human dialogue. The above-
mentioned expressive humanoid robot KISMET (Breazeal 2002, 2003) which used social cues for
regulating turn-taking in non-verbal interactions with people used a sophisticated robot control
architecture modelling motivation, emotions and drives to satisfy KISMET’s internal ‘needs’.Q3
Turn-taking between KISMET and humans emerged from the robot’s internal needs and goals and
its perceptions of cues from its interaction partner. Rather than trying to model any particular turn-
taking behaviour as observed in human–human dialogue (as it has been done e.g. in Thórisson’s
(2002) work mentioned above), we pursued a synthetic, bottom-up approach by defining very
simple models of turn-taking based on basic mathematical functions. Such a bottom-up approach
is in line with other approaches in the research field of Embodied Artificial Intelligence (Steels
and Brooks 1995; Pfeifer and Scheier 1999) and is here applied to human–humanoid interaction
aiming at developing socially interactive behaviour for a humanoid robot.

Also, different from the above-mentioned work with KISMET, where the interaction was the
goal in itself, we wanted to include a certain (enjoyable) task that needs to be achieved jointly by
the human–robot pair, to provide the overall context.

Important in this context is the temporal behaviour matching hypothesis as proposed in Robins
et al. (2008), which predicts that in HRI games, people will adapt to and match the robot’s temporal
behaviour, similar to the effects that can be found in the literature of human–human interaction.
The hypothesis has been supported in experiments with children who were playing imitation
games with KASPAR (the same robot as used in our experiments; Robins et al. 2008). While
this hypothesis may at first seem trivial since people and other animals are very adaptive and
adapt to the dynamics of a variety of stimuli (see, e.g. Schmidt et al. 2007), for roboticists it is
very important to actually know whether people do indeed adapt and respond to the dynamics of
robot behaviour – if it were false then one would not need to take robot interaction dynamics and
kinesics into account – which would substantially simplify HRI design. Moreover, what types of
impact robot kinesics can have on interaction and the degree and manner in which different people
might be influenced differently are open issues. Thus, for HRI researchers, this is an important
question to study experimentally, and, as discussed in more detail above, it has only recently
attracted attention in the field of robotics and HRI (c.f. Robins et al. 2005, 2008; Crick et al. 2006;
Yoshikawa et al. 2006).

Based on the above motivation and background, we designed a second experiment where
KASPAR plays the drums autonomously with a human ‘partner’ (interactant), trying to imitate
the rhythms produced by the human (as a follower) and trying to motivate (as a leader in the
game) the human to respond. Using different simple, probabilistic models, KASPAR decides
when to start and stop its turn. It observes the human playing and uses its observations as
parameters to decide whether to listen to the human or to take the turn actively in the game.
This is different from Experiment I where we tested deterministic turn-taking. This work was
tested with adult participants and the results were studied in terms of imitation, interaction and
turn-taking.6



301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

Connection Science 7

The two experiments are described below in detail separately due to clear differences in
research questions and implementation of the interaction games. However, both experiments
share a common methodological approach.

We chose a within-participant design for both studies for two main reasons: (a) the study
of individual differences as such is an interesting challenge in HRI research (Breazeal 2004)
and (b) previous research has indeed found significant individual differences in HRI studies, for
example, concerning personality traits (Walters, Syrdal, Dautenhahn, te Boekhorst, and Koay
2008), gender and personality (Syrdal, Koay, Walters, and Dautenhahn 2007), human and robot
personality matching (Tapus, Tapus, and Mataric 2008), and user personality and robot personality
style (Wrede, Buschkaemper, and Li). Since the literature shows individual differences of how
people respond in HRI studies (e.g. based on the participants’ gender, age, individual personality
traits, etc.), a within-participant design approach thus seemed most suitable for understanding the
range and variability, and impact of robot kinesics on interactions.

In both experiments, we evaluate the objectively measured performance of the human–robot
pair as well as the subjective interaction experience as judged by the human participants.

The rest of this article is organised as follows. In Section, the first experiment on deterministic
turn-taking is presented, followed by Section 3, which describes the second experiment on emer-
gent dynamics of turn-taking. Each of these two experimental sections includes the corresponding
research questions as well as descriptions of the experimental setup, experimental results and dis-
cussions of the results. Section 4 presents the overall conclusion. The final section of this article
outlines the ideas for future work.

2. Experiment I: deterministic turn-taking

2.1. Methodology

In the first experiment, the human partner played a rhythm which KASPAR tried to replicate, in
a simple form of imitation (mirroring). KASPAR has two modes: listening and playing. In the
listening mode, it recorded and analysed the played rhythm, and in the playing mode, it played
the rhythm back by hitting the drum positioned in its lap. Then the human partner played again.
This (deterministic) turn-taking continued for the fixed duration of the game. KASPAR did not
imitate the strength of the beats but only the number of beats and duration between beats. For beat
frequencies beyond its skill, it used instead minimum values allowed by its capabilities.7 It also
needed a few seconds before playing any rhythm to get its joints into correct reference positions.

Figure 1 presents the basic model of KASPAR–human interaction. The model requires the
gestures of both human and humanoid for social interaction, as well as drumming. Human gestures
or body movements were not detected in our experimental setup and were therefore not considered
in the implementation.

One of the fundamental problems in this scenario is the timing of the interaction; as discussed
above, timing plays a fundamental role in the regulation of interaction. It is not always clear when
the robot or human partner should start interaction in taking a turn. In this experiment, the model
used some predefined fixed time duration heuristics for synchronisation. KASPAR started playing
if the human partner was silent for a few seconds, and tried to motivate the participant with simple
gestures.

2.2. Research questions and expectations

Our primary research question concerned the possible impact of robot gestures on the imitation and
turn-taking game (in terms of performance), but also on the participant’s subsequent evaluation of
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8 H. Kose-Bagci et al.

Figure 1. The model for KASPAR–human interaction.

the game. We expected that the participants would be more engaged and would evaluate the inter-
actions more positively in experimental conditions where KASPAR used non-verbal head gestures.
Moreover, we expected that too many gestures may distract people from the drumming task.

2.3. Experimental conditions

We studied three conditions with increasing amounts of robot gesturing:

(1) No-gesture: KASPAR did not use any gestures, it only imitated the human drumming beats
it detected.

(2) Gesture: Simple head gestures (e.g. moving the head to the right or left, moving the head
up or down, tilting the head slightly to different angles) and eye blinking were included in
KASPAR’s movements. KASPAR started drumming using one of a fixed set of gestures. If
the human partners did not play their turn, then KASPAR did not respond either, and then
the turn passed back to the partner. A fixed order of n gestures was used, and this order was
repeated for every n turns. It was intended that the value for n should be large enough so
that the participant would not realise that this was a fixed pattern but rather that the gestures
seem either ‘meaningful’or random (in the experiment, n was set to seven based on simulated
experiments, i.e. carried out with the experimenter as the interaction partner).

(3) Gesture+: This condition is the same as gesture, except that KASPAR displayed on its turn
in the interaction gestures even when neither the robot nor the participant played the drum.
The gestures used were the same as in the gesture condition, and the drumming part was the
same in all the three conditions.

2.4. Experiment, results and analysis

2.4.1. Robot

The experiment was carried out with the humanoid robot called KASPAR (Figure 2). KASPAR is
a humanoid robot that has been designed specifically for HRI studies. It possesses a minimal set
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Figure 2. The humanoid robot KASPAR and its toy drum that were used in the experiments.

of expressive robot features (cf. Blow, Dautenhahn, Appleby, Nehaniv, and Lee 2006) for more
information on its design rationale. KASPAR has eight degrees of freedom (DOF) in the head and
neck, and six in the arms and hands. The face is a silicon-rubber mask, which is supported on an
aluminium frame. It has 2 DOF eyes fitted with video cameras, eye lids that allow blinking and a
mouth capable of opening and smiling; see Blow et al. (2006) for a more detailed description.

2.4.2. Experimental setup

The experiment was carried out in a separate room isolated from other people and noises which
could affect the drumming interaction. KASPAR was seated on a table with the drum positioned
on its lap. The participants were seated in front of the robot using another drum that was fixed
on the table (Figure 3). The participants used a pencil to hit the drum. Although we suggested to

Figure 3. A video snap shot from the experiments.
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the participants to use one pencil and hit on the top of the drum, sometimes they used two pencils
with a single hand or with both hands, and several times they used the tambourine-style bells
around the drum’s sides.

2.4.3. Software features

The implementation of robot perception and motor control used the YARP environment (Metta,
Fitzpatrick, and Natale 2006). YARP is an open-source framework that supports distributed com-
putation that emphasises robot control and efficiency. It enables the development of software
for robots, without considering a specific hardware or software environment. Portaudio (2007;
http://www.portaudio.com/trac/wiki/) software was used to grab the audio from the audio
device, within the YARP framework. See Appendix 1 for details of the audio analysis.

2.4.4. Participants

Twenty-four participants (7 female and 17 male) took part in the study. Due to logistical reasons,
the trials were carried out in 2 sets (a few months apart) with 12 participants each. All the
participants worked in computer science or similar disciplines at the university. Only six of them
had interacted with KASPAR prior to the experiment, and most of the participants were not
familiar with robots in general. Note that we initially did not plan to study the influence of gender
in the experiment; for this reason, the sample is not gender-balanced. However, where appropriate
we mention gender differences that were observed. Four of our participants had children.

2.4.5. Interaction game setup

We used a 1 min demonstration of the robot without any drumming game play, where the partic-
ipants were shown how to interact with KASPAR. This was followed by three games reflecting
the three experimental conditions described above each lasting 3 min, without pointing out to
the participants any differences between the conditions. We presented the game conditions in
all the possible six different orders to analyse the effect of the order of the games. To account
for possible fatigue or habituation, in the sequential order section below, we analysed the games
according to their order number in the sequence experienced by the participants (independent of
the particular experimental condition), as being the first game, second or third, disregarding their
game types, for example, for one participant the first game (number 1) would be the no-gesture
game, and for another participant, no-gesture would be the third game (number 3). After each
participant finished the three games, they were asked to complete a questionnaire to assess how
they subjectively evaluated the three different games.

2.4.6. Results

2.4.6.1. Evaluation of questionnaire data. The participants were invited to evaluate their inter-
action with KASPAR using a questionnaire. There were two items inviting the participant to choose
which game was the most and least preferred overall. There were also three five-point Likert scales
which allowed the participant to rate each drumming game in terms of (1) how much they enjoyed
the game, (2) how well KASPAR drummed and (3) how sociable they perceived KASPAR to be.
Open-ended questions were included to allow participants to explain their reasoning for their
preferences. Most and least preferred games according to game types and sequential order were
statistically analysed using a χ2 test.
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Most and least preferred games according to game type: The frequencies of participants which
rated each game as most preferred and least preferred are presented in Table 1 along with residuals
based on an expected count of 7.7. The differences from the expected counts were significant
for both the most preferred game type (χ2(2) = 6.61, p = 0.037) and the least preferred game
type (χ2(2) = 9.74, p = 0.008). The majority of the participants preferred the gesture game and
disliked the no-gesture game. Their general opinion was that the game without gestures was also
poor in terms of social interaction and enjoyment, which encouraged them to play more. For the
gesture game, they said they prefer the right balance of drumming and interaction.

Most and least preferred games according to sequential order: A significant difference was
found between the first and third games in terms of sequential order (χ2(1) = 4.57, p = 0.033).
There is no significant difference overall between the three games if the second game is included
(Table 2). Open-ended responses highlighted that the majority would become more familiar with
the game as they played more, allowing them to interact more efficiently with KASPAR in terms
of the drumming tasks. Another issue raised in the open-ended responses was that the participants
would become fatigued and bored after doing the repetitive drumming task for a prolonged period
of time, which may explain the lack of a significant difference between the second and third
games.

Preferences: While the method of counterbalancing is an accepted means of protecting against
confounders due to presentation order (Miller 1984), the clear main effect of presentation order
was considered a threat to this assumption. To control for this threat, mixed model ANOVAs were
run using game type to investigate possible interaction effects of presentation order and game
type on both questionnaire responses and behavioural data. These were mainly non-significant,
supporting the notion of independence between presentation order and game-type overall in the
sample. The one exception is addressed in Section 2.4.6.2.

Sample similarities: In terms of differences between the first sample of 12 and the second
sample of 12 participants, a mixed-model ANOVA found no significant differences in terms of
preferences (F(1,22) = 0.772, p = 0.39). Thus, in the following we present the results from the
overall sample of 24 participants.

Table 1. Most and least preferred games according to game types.

Participants

Game Type Most preferred Residual Least preferred Residual

No-gesture 3 −4.7 12 5.3
Gesture 12 5.3 1 −6.7
gesture+ 7 −0.7 9 1.3
No preference 2 N/A 2 N/A

Table 2. Most and least preferred games according to sequential order.

Participants

Order Most preferred Residual Least preferred Residual

1 3 −4.3 10 −4.3
2 8 5.3 5 −0.7
3 11 −0.7 8 3.7
No preference 2 N/A 1 N/A
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Preferences according to sequential order: The preferences according to order within the sample
as a whole were assessed using a repeated measures ANOVA. There was an effect approaching
significance in how participants rated KASPAR’s drumming according to the order of the game
(F(2,46) = 3.11, p = 0.054). No significant effects on game order were found in terms of the
robot’s sociality or enjoyment ratings. Participants tended to rate the last game more favourably
across the different rating types (despite the fatigue reported by some participants during later
games), see Figure 4. The results from the ANOVA, as well as the descriptives described in
Figure 4, suggest that this trend was the most pronounced in the way the participants rated
KASPAR’s drumming.

Preferences according to game type: The repeated measures ANOVA for preferences dependent
on game type found an effect approaching significance in terms of how KASPAR’s drumming
was rated according to game type (F(2,46) = 2.71, p = 0.077) as well as for general enjoyment
of the game (F(2,46) = 2.81, p = 0.07). We found a significant effect for game type in terms of
how KASPAR’s sociality was rated (F(2,46) = 5.01, p = 0.011), see Figure 5.

Figure 5 suggests different trends for the different game types. The trend approaching signi-
ficance for KASPAR’s drumming suggests that the drumming aspect of the interaction for the
no-gesture game was rated the most favourable, followed by the gesture game, with the gesture+
game receiving the lowest rating.

In terms of the social aspect of the interaction, the opposite effect was found. The no-gesture
game was rated the lowest, with the gesture and gesture+ games rated higher. For overall enjoy-
ment, the gesture games were rated the highest, followed by gesture+. The no-gesture game was
rated the lowest.

2.4.6.2. Evaluation of behavioural data. The behavioural data required for the evaluation of
the participant’s and the robot’s performance during the games were collected based on the data on
the robot’s own drumming behaviour and video recordings of the human’s drumming behaviour
which were annotated manually and then analysed quantitatively. The behavioural data include the
number of turns in a specific game, the number of drumming bouts performed by the participants
and the robot, and the ‘drumming errors’. The errors are the differences between KASPAR’s

Figure 4. Ratings for games according to order in terms of (1) KASPAR’s drumming, (2) KASPAR’s sociality and (3)
enjoyment of the game.
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Figure 5. Ratings for games according to game type in terms of (1) KASPAR’s drumming, (2) KASPAR’s sociality and
(3) enjoyment of the game.

actual drumming (i.e. the number of beats KASPAR plays in a particular turn) and the number of
beats the participant plays. We calculated an average error per turn. Thus, ‘errors’ do not reflect
any mistakes in the system as such, but reflect the discrepancy between human’s and robot’s
drumming performance.

Behavioural data according to sequential order: We found a significant effect for sequential
order in terms of average number of errors (F(2,46) = 6.18, p = 0.004). This effect is seen in
Figure 6 and suggests that the errors were in general lower for later games.

Generally, the participants either tried very long and fast patterns or they did not beat loud
enough to be detected reliably (KASPAR uses a high-level noise filter to filter out high inner
noise coming from its joints, so it can only sense loud beats) when they started to play initially.
Interestingly, without any external encouragement, as they got used to the game, they progressively
synchronised their drumming to the robot. Details of the results are presented in Table 3. As such,

Figure 6. Average error according to sequential order.



651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

14 H. Kose-Bagci et al.

Table 3. Observed human drumming behaviour according to order.

Order Average error Maximum no. of beats Average no. of beats Average no. of turns

1 3.30 ± 3.15 41 6.67 ± 4.22 15.88 ± 5.23
2 2.80 ± 3.36 37 5.58 ± 3.57 17.63 ± 5.84
3 1.92 ± 1.86 20 4.70 ± 2.61 19.13 ± 4.64

the preference for the third game among the participants could be explained by the lower number
of errors for this game.

Behavioural data according to game type: Figure 7 shows a trend approaching statistical sig-
nificance (F(2,46) = 2.15, p = 0.13) where the gesture+ game had the highest average error,
followed by the gesture game. The no-gesture game had the smallest error rate.

The maximum number of beats decreased with the increasing amount of gestures in the game
(Table 4). There was a slight increase in the average number of beats with the increasing amount of
gestures in the game, but this was not significant. The average number of turns tended to decrease as
the amount of gestures in the game increased. This significant effect (F(2,46) = 4.41, p = 0.018)
is described in Figure 8. The only interaction effect observed in this experiment between order of
presentation and game type occurred for this variable (F(2,44) = 6.020, p = 0.005). This effect
is described in Figure 9 and suggests that for participants who were introduced to the gesture+
condition in the first or second game had a higher number of turns for the no-gesture and gesture
game than those who encountered this game type last, while the reverse was true for the no-gesture
condition.

Figure 7. Average number of errors according to game type.

Table 4. Observed human drumming behaviour according to game type.

Game type Average error Maximum no. of beats Average no. of beats Average no. of turns

No-gesture 2.22 ± 2.52 41 5.24 ± 3.54 19.00 ± 5.49
Gesture 2.62 ± 3.16 37 5.60 ± 3.67 17.83 ± 4.63
Gesture+ 3.12 ± 3.01 31 6.21 ± 3.89 15.58 ± 5.61
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Figure 8. Average number of turns according to game type.

Figure 9. Interaction between game type and presentation order for number of turns.

2.4.7. Discussion of results

Experiment I not only investigated the possible impact of using robot gestures on drumming game
(in terms of performance), but also on the participants’ subsequent evaluation of the game. We
expected that an intermediate level of gestures would benefit the interaction game.

Results show that the humans were indeed motivated by gestures and did, overall, enjoy the
drumming experience. There did, however, seem to be a saturation level for the amount of gestures
used to encourage interaction, where the amount of gestures in the gesture+ condition seemed
to interfere with the participants’ concentration. Drumming with no gestures, while considered
efficient in terms of the drumming task, was not rated as successful in terms of social interaction.
The reason for the high error rates at the start of the games is likely in part due to the partici-
pants’ high expectations from the game. According to the questionnaire results, male participants
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appeared to view the experiment not as a game, but rather as a task to complete. Participants also
may have tried to ‘test’ the robot’s limitations during the initial stages of the trials, leading to
higher error-rates, as this could involve playing rapidly in long sequences, or using different parts
of the drum to create different sounds and enriching their play. They also expected that KASPAR
could watch, understand and imitate them (most thought that the robot could detect them with its
cameras, positioned in the eyes, and that the gestures were meaningful). As the game progressed,
the understanding of the limited capabilities of the robot would increase, leading them to mod-
ify their drumming to synchronise more efficiently with the robot. This effect might have been
mitigated by participant fatigue, however, as boredom was also mentioned by some participants
when answering questions regarding the later games.

The data also suggest that the participants changed their style of play with the increasing level
of robot gestures, playing fewer, yet longer sequences of beats.

Our sample, overall, rated the gesture condition as the most enjoyable, which, interestingly, had
worse error rates in the evaluations of the objective performance than those without gesture. This
is likely due to the gesture condition incorporating gestures making the interaction enjoyable to
those participants who valued this aspect of the interaction, while having a lower error rate than
the gesture+ condition, and so is less adversely impacted by a task-based evaluation than this
condition.

This shows that the right amount of gestures would serve to attract the attention of one por-
tion of the participants, and make their experience enjoyable, although it did not actually help
their drumming (in objective terms). This draws attention to the marked distinction between the
subjective evaluations and objective performance measures.

Overall, the results from Experiment I confirmed our initial expectations (see Section
2.2), but pointed out the different effects of gesture on the dynamics of drumming perfor-
mance and participants’ subjective evaluation. These results helped in designing the next study
(Experiment II).

3. Experiment II: emergent turn-taking

3.1. Methodology

As motivated earlier, one of the fundamental problems in the human–robot drumming scenario
is the timing of the interaction, as timing plays a fundamental role in the regulation of human
interaction. It is not always clear when the robot or human should initiate interaction in taking
a turn. Therefore, in Experiment I, some predefined fixed time duration heuristics were used for
synchronisation, whereby KASPAR started playing if the participant was silent for a few seconds,
and would also try to motivate the participant with simple non-verbal gestures.

In Experiment II, we took a different approach and used a novel, probability-based mechanism
for timing and turn-taking so that the temporal dynamics of turn-taking emerge from the interaction
between the human and the humanoid. As explained earlier, the computational models were
deliberately chosen to be simple, minimal and (algorithmically) arbitrary. Thus, these models are
not meant to faithfully model turn-taking, cognition or learning in humans. Our research agenda
is to study whether even such simple and arbitrary computational models will evoke different
types of interaction and adaptation of people to the robot’s behaviour.

We selected three different simple and minimal computational models to control the starting and
stopping of the robot’s regular drumming beats. This response is based on the duration time of the
previous turn and on the number of beats played in the previous turn by the interaction partner. We
denote the models as Model 1, Model 2 and Model 3. Model 1 uses a step function, Model 2 a simple
triangular function and Model 3 a hyperbolic function that generates probabilities for starting or
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Algorithm 1 The turn-taking algorithm 
1. Human plays (turn # i=1) 
2. Kaspar plays after  waiting 2 seconds when human stops 
3. FOR i=2 to n DO
4.         ThTimei= KasparPlayingTimei-1

5. IF modelj (HumanPlayingTimei,ThTimei) = 1 
6. THEN KASPAR STARTS PLAYING 
7.                          ThBeati= # of HumanBeatsi

8.                   IF modelj (# of  KasparBeatsi,ThBeati) = 1 
9.                  THEN KASPAR STOPS PLAYING
10. END FOR (end of the game)

Figure 10. The turn-taking algorithm used in Experiment II.

stopping the robot’s drumming based on these inputs from previous interaction (Figure 10). The
output is bounded by maximum and minimum limits to ensure that KASPAR and the participant
have time to play at least once in every turn. For every turn, the robot assesses the probability of
start or stop, and takes action accordingly. For starting, the robot uses the time duration of its last
bout of playing and for stopping it takes the number of beats of the human participant from the
previous turn into account. The minimum number of beats KASPAR will play is one even if the
resulting number of the beats recommended by any of the models is below one. The participant
starts the game and KASPAR uses its turn-taking strategy when the human participant is silent
for 2 s (only for the first turn). After the first turn, the turn-taking strategy is always determined
by the robot’s probabilistic models. Depending on the previous duration and number of beats
in the interaction, according to their respective probability functions (1), (2) and (3), the return
value of the three models triggers the starting or stopping in the turn-taking algorithm (Algorithm
1 in Figure 10). The probability functions for the three computational models are presented in
Equations (1), (2) and (3), and visualised in Figure 11.

p(x) =
{

0, x < Th

1, x ≥ Th
(Step: Model 1), (1)

p(x) = x

Th
(Linear: Model 2), (2)

p(x) = 1 − 1

x
(Hyperbolic: Model 3). (3)

Here, x is measured in units of time for the case of starting, or, respectively, as the number of
beats for stopping. Similarly, Th represents the threshold parameter of time for starting and the

Figure 11. Computational models for START/STOP actions. For START actions, Th=ThTime, since the x-axis variable
is the time (t). For STOP actions, Th=ThBeat. The x-axis variable is the number of beats (b). For START, Th is the duration
of KASPAR’s previous drumming bout, and for the STOP action, Th is the number of beats in the human’s previous
drumming bout; except that the minimum value for Th is 1.5 s (experimentally determined) for START and 1 beat for
STOP actions. The only model which does not have the threshold limitations is Model 3 due to its hyperbolic nature. The
y-axis gives the probability of START/STOP as a function of time/number of beats based on previous interaction.
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number of beats for stopping, respectively. For each model, a decision function is called returning
a 0 (‘no’) or 1 (‘yes’) is called to decide whether to change the robot’s current behaviour. ThatQ4
is, the function model i (x,Th) is called to start or stop KASPAR playing using the respective
p(x) function for that model as in Algorithm 1. In Model 1, if p(x) is 1 then the model triggers
starting or stopping, and this depends only on Th and the current value of x. Models 2 and 3 have
probability functions that can take values other than just 0 and 1, so a random value r in [0,1]
is generated and if r is not less than the function output, then the model returns 1 (otherwise 0).
Thus, in effect, in all three of these simple models, a starting or stopping action, given the current
values of parameters x and Th, occurs at appropriate points with probability p(x) according to
the respective model, so that the model then triggers the start or stop of drumming, or otherwise
no change in the behaviour occurs – see the conditionals (IF-statements) of the robot control in
pseudocode of Figure 10.8 In future, other models could also easily be assessed.

Consequently, at every turn, the robot decides when to start and stop according to the perfor-
mances of both the human player and itself. Thus, the game and its dynamics are not deterministic
but emerge from the moment-to-moment status of both KASPAR and the participant.

Complementary to Experiment I, we decided not to introduce any robot gestures in Experiment
II but to focus our analysis on the turn-taking behaviour. Therefore in Experiment II, KASPAR
did not use any gestures.

3.2. Research questions and expectations

In order to investigate the effect of three different generative computational models on emergent
turn-taking dynamics in an imitation game, our primary research questions were as follows:

• How do different robot turn-taking strategies based on different minimal computational
probabilistic models impact on the drumming performance of the human–robot pair?

• How do the different robot turn-taking strategies impact on the participants’ subjective
evaluation of the drumming experience?

We expected to have ‘successful’ games in terms of turn-taking emerging from the interaction
between the human and the humanoid, and that the different computational models would show
different degrees of success in terms of engaging and sustaining interaction. Our ‘success’ criteria
were as follows: (1) the number of turns with no or slight overlaps and gaps and (2) the number
of human beats detected by the robot and the number of beats played by the robot itself that will
give us hints about the quality of the games.

3.3. Experimental conditions

We studied three models with different parameters (Figure 11) in three different experimental con-
ditions. We set up simulated experiments before the live experiments, to define the maximum and
minimum limits and thresholds for the actual experiments with humanoid and human participants.
Each model is used both for starting and stopping the robot’s play and represents an experimental
condition. For start the time duration of the previous turn is used, and for stop the number of
beats of the previous turn is used as a threshold. As described in the previous section, Model 1
was a step function, where the return value of the function is ‘1’ if the input value of the function
is not smaller than the threshold; thus, we expect this model to give more play time and a higher
number of beats than the other models. Ideally, if the human beats long sequences, this model
would reach very high values so we put a maximum time limitation (both interactants cannot play
longer than 10 s per turn). Unlike Model 1, Model 2 has a triangular shape which has the threshold
as an upper boundary. Since we have a probabilistic approach we can have values smaller than the
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threshold. In fact, we expect this model to give the least play time and lowest resulting number
of beats for the participants; so we foresee that the model would not be as popular as the other
two models. The last condition is Model 3, a hyperbolic model, which cannot be limited by the
thresholds. It reaches high values (close to one) very fast compared with Model 2. Therefore,
we predict that it would result in more play time (i.e. enable the robot to play more beats than
Model 2). Also, in our simulations, we noticed that it could enable ‘coordinated games’ (i.e. with
a very low number of overlaps and conflicts between the human’s and the robot’s drumming)
if we played short sequences, but since the model is not limited by thresholds, it ‘reacts’ to the
human but does not exactly ‘imitate’ the human’s drumming games, which we suspected that the
participants might not find acceptable.

3.4. Experiment, results and analysis

3.4.1. Robot

The experiments were carried out with the humanoid robot KASPAR that was also used in
Experiment I (see Section 2.4.1).

3.4.2. Experimental setup

The experimental setup was the same as in Experiment I (see Section 2.4.2).

3.4.3. Software features

The same software features were used as in Experiment I (see Section 2.4.3).

3.4.4. Participants

Twenty-four participants (8 female and 16 male) took part in the study. Due to logistical reasons,
the trials were carried out in 2 sets (a few months apart) with 12 participants each. All participants
worked in computer science or similar disciplines at the university. Only two of them had interacted
with KASPAR prior to the experiment, and most were not familiar with robots in general. Six of our
participants had children. (Regarding gender balance of the sample, see comment in Section 2.4.4).

3.4.5. Interaction game setup

We used a 1 min demonstration of the robot without any drumming game involved, where the par-
ticipants were shown how to interact with KASPAR. This was followed by three games reflecting
the three experimental conditions described above each lasting 3 min, without indicating to the
participants anything about the differences between the conditions. The participants were simply
instructed that they could play drumming games with KASPAR. As we did in Experiment I, we
used all six possible different presentation orders of the games to analyse the effect of the order
of the games on the humans. To account for possible fatigue, habituation or learning by the par-
ticipants, in the sequential order section below, we analysed the games according to their order
number in the sequence experienced by the participants (independent of the particular experimen-
tal condition): thus calling them the first game, second or third, disregarding their game types,
for example, for one participant the first game (order 1) would be the Model 1 game, and for
another participant, Model 1 would be the third game (order 3). After finishing the three games,
the participants completed a questionnaire.
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3.4.6. Results

3.4.6.1. Evaluation of questionnaire data. The participant evaluations were elicited in a
questionnaire in the same manner as in Experiment I (see Section 2.5.1).

Most and least preferred games according to game type: See Table 5 for the number of par-
ticipants which rated each game as most preferred and least preferred. There was a significant
deviation from the expected counts for the most preferred game type (χ2(2) = 7.76, p = 0.021)
as well as for the least preferred game type (χ2(2) = 10.89, p = 0.004). Table 5 shows that both
the Model 1 and Model 3 games were preferred by a comparable amount of participants, while
fewer participants preferred Model 2 most.

Table 5 also shows that the highest number of the participants considered the Model 2 game
as the least preferred, while the Model 1 and Model 2 games had a small number of participants
which considered them the least preferred. The Model 3 game was slightly more popular than the
Model 1 game.

Most and least preferred games according to sequential order: The number of participants
which rated each game as most preferred and least preferred according to the sequential order
can be seen in Table 6. The deviations from the expected count were approaching significance for
the most preferred game (χ2(2) = 5.25, p = 0.07). Table 6 suggests that the most popular game
type was the third game, while first and second games were less preferred. Table 6 also suggests
that all ordinal positions of occurrence in the sequence of the games had a similar number of
participants which considered them the least preferred.

As for Experiment I, in order to control for the threat against the assumptions of the counter-
balancing method, mixed model ANOVAs were run using game type to investigate the possible
interaction effects of presentation order and game type on both questionnaire responses and
behavioural data. These were non-significant, supporting the notion of independence between
presentation order and game-type overall in the sample.

Other preferences: The order of the games did not have a significant impact on the participants
in terms of evaluation of the game. There were, however, significant differences according to
the model used in terms of how participants evaluated the games. The participants did not rate
KASPAR’s drumming significantly differently across the models (F(2,46) = 1.64, p = 0.20).
There was an effect approaching significance for how they rated KASPAR in terms of sociality

Table 5. Most and least preferred games according to type.

Participants

Game Type Most preferred Residual Least preferred Residual

Model1 9 1.7 6 −4.3
Model2 2 −6.3 17 −0.7
Model3 13 4.7 4 3.7

Table 6. Most and least preferred games according to sequential order.

Participants

Order Most preferred Residual Least preferred Residual

1 4 −4.0 9 0.035
2 7 −1.0 8 −0.7
3 13 5.0 9 0.035
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Figure 12. Ratings for the three measurements: (1) KASPAR’s drumming, (2) KASPAR’s perceived sociality and (3)
participant enjoyment.9

(F(2,46) = 3.12, p = 0.054), and participants significantly differentiated between the models in
terms of enjoyment (F(2,46) = 7.59, p = 0.001). These effects are shown in Figure 12, which
suggests that for all three, there was a tendency for the participants to rate the interactive aspects
of the games lower when the linear model was used.

Sample similarities: The possibility of systematic differences between the first sample of 12 and Q5
the subsequent sample of 12 was assessed using mixed-model ANOVA. This ANOVA found no
significant systematic differences between the two groups (F(1,22) = 0.070, p = 0.79). Since
an identical experimental protocol was used for both groups of participants, this result supports
the analysis of both samples as one larger sample.

3.4.6.2. Evaluation of behavioural data. The behavioural data regarding the performance of
the human partner during the games consisted of KASPAR’s own detection of the human’s drum-
ming (denoted as ‘KASPAR’s view’), and video recordings of the human’s drumming that were
annotated and analysed manually (referred to as ‘human’s view’). The behavioural data includes
the number of zero turns (where KASPAR could not register any beat performed by the human
partner but played at least one beat, and passed the turn to the human), non-zero turns (KAS-
PAR would register at least one drum beat of the human participant), the number of drum beats
performed by human participant and KASPAR, and turn durations (referred to as ‘time’in the text).

Behavioural data according to sequential order: There was no significant difference between
the games according to the order (e.g. for number of turns, F(2,22) = 0.007, p = 0.99, with
ANOVA). Only the human’s total number of beats per game increased with the order of the games
as they got used to the scenario while they played more (Table 7, KASPAR’s perspective, and
Table 8, human’s perspective).

Behavioural data according to game type: The game types are compared in detail in Tables 9
(human’s drumming) and 10 (KASPAR’s drumming).
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Table 7. Observed behaviour of KASPAR according to order.

Average no. of Maximum/minimum Total no. Average time Maximum/minimum Total
Order beats per turn no. of beats of beats per turn time per turn time

1 1.7 ± 0.8 6/1 135 ± 33 1.08 ± 0.1 3/1 97.6 ± 41
2 1.72 ± 0.8 6/1 136 ± 30 1.07 ± 0.1 3/1 96 ± 40
3 1.76 ± 0.7 7/1 138 ± 26 1.07 ± 0.1 4/1 95.8 ± 41

The repeated measures ANOVA found significant differences between Model 2 (linear model)
and the other models, across a range of variables. In terms of the total number of beats there was a
marked difference in the number of beats by the human registered by KASPAR (F(2,46) = 58.95,
p < 0.001), as well as the total beats by KASPAR (F(2,46) = 470.63, p < 0.001), between the
models used. There was no difference, however, between the models in terms of the actual number
of beats played by the human participants (F(2,46) = 0.037, p = 0.96). Referring to Figure 13,
we can see the relationship between detected human beats, beats produced by KASPAR and the
actual beats played by the participants across the models.

The graph suggests that while the actual number of beats played by the humans remains more
or less constant across the models, the registered number of beats decreases dramatically between
the stepwise model and the other two models, while the number of beats by KASPAR increases.
Thus, in the cases of linear and hyperbolic models KASPAR appeared less responsive to the
playing of the participants. This result may account for the participants’ higher evaluation scores
for the stepwise model, compared with the linear model.

Significant differences were found between the models in terms of the ratio of turns in which
KASPAR registered the beats from the human participant to the total number of turns (F(2,46) =
77.18, p < 0.001), see Figure 14.

Figure 15 suggests that KASPAR registered more human activity in terms of turns with both
the stepwise and the hyperbolic models than with the linear model. According to Table 9, this is
also clear in terms of the actual number of non-zero turns, despite the much higher number of total
turns with the linear model. The difference in the actual number of turns was highly significant
as well (F(2,46) = 28.78, p < 0.001). The above results suggest that in terms of turn-taking,
KASPAR was more ‘aware’ (in terms of detection of beats) of the participants’ behaviour in
the stepwise and hyperbolic conditions than in the linear condition. The time spent drumming
by the participant as registered by KASPAR may also serve to differentiate between the linear
models and the two other models. There were significant differences between the three models
(F(2,46) = 1897.71, p < 0.001), see Figure 15.

Figure 15 suggests that the amount of time in which KASPAR registered the human participant
as drumming differs dramatically across the three models. The stepwise model is the most effective
in this sense, followed by the hyperbolic model with the linear model being the least efficient.

These measures do suggest that some of the participants’ preferences for the stepwise and
hyperbolic model can be explained by objective measures of KASPAR’s responsiveness to the
actual drumming of the human participants. They do not, however, explain why the participants
equated the stepwise and hyperbolic models in terms of enjoyment.

3.5. Discussion of results

Overall, the results confirm our initial expectations, namely that different computational models
will lead to different human–humanoid drumming interactions (as evaluated subjectively and
objectively).
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Figure 13. Total number of beats for (1) detected human beats (2) KASPAR’s beats and (3) actual human beats.

Figure 14. Ratio of turns with registered human beats to total number of turns according to the model.

As stated in the previous section, Model 2 gave the least play time to the human and KASPAR.
The impression that the participants may have got is one where KASPAR did not seem to imitate
the human participants’ game at all, but rather ‘played on its own’ (KASPAR would play at
least one beat even when it did not detect a response from the human participant; Figure 16).
As a consequence, KASPAR acted as a leader in the game most of the time. There were also
many overlaps between KASPAR’s play turns and the human participants’ play turns in Model 2.
This could be because either KASPAR or the human participants interrupted each other. More
importantly, this would also cause the loss of detection of humans’ beats (as described above,
KASPAR would not ‘listen’ when it was playing). Replies to the open-ended questions in the
post-game questionnaires related to this game described KASPAR’s behaviour using the terms
like ‘annoying’ or ‘rude’. Thus, both the behavioural data as well as the questionnaire results
describe an interaction in which the interaction’s rules for turn-taking was not apparent to the
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Figure 15. Total time registered for drumming according to the models.

Figure 16. Representation of two beats in an example sound wave.

human participant leading to repeated breakdowns in the social interaction, which in a human–
human interaction would be described as impolite and a source of stress. Together, these measures
provide an explanation as to why the participants disliked the Model 2 game.

As stated in the previous sections, since Model 1 uses the previous play time as a threshold, it

Q6

ensures that the current play time is at least as long as the previous play time for the human player.
This longer play time (compared with other games) led to both players playing longer turns which
may have created the impression that the tempo of the game was slower than in the other games.
This could explain the preferences for Model 3 since the tempo of this game would be experienced
as faster, having more exchanges and being perceived as more interactive. While the observed
play time for the human participants was shorter than for Model 1, it was still long enough to
allow for a coordinated game. This, coupled with the emergent nature of KASPAR’s drumming
in Model 3, led it to being viewed as more ‘natural’ by participants. In this game, both the human
and the KASPAR played 3–4 beats in every turn (the model’s probability distribution favours
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Figure 17. A single drumming bout is presented in detail. It is not a single peak but consists of many local
minima/maxima.

high values), with fewer gaps in-between the participants’ drumming compared with Model 1,
and far fewer overlaps compared with Model 2 between two turns. But Model 3 was not bound by
thresholds by nature, so it seemingly exhibited a degree of independence in regards to the human
participants’ performance, which some of the participants reported as being annoying. Some
participants, however, did express a liking for this, though, for example, one participant described
this phenomenon like ‘teaching her son to play a drum’. Similarly, another participant asked if
she should consider KASPAR as a professional drummer or a child while she commented on the
games, since it ‘looks like a child drumming rather than a professional’ (Figure 17). Statements

Q6

like this support the notion, suggested by the quantitative data, that the emergent turn-taking of
Model 3 was perceived to have more in common with a human–human interaction than that of
the other models.

In Model 1 the human participant was given more play time than KASPAR, but KASPAR played
more beats than the human participants. However in Model 3, KASPAR and the participant were
given almost equal durations and opportunities to play. So in the case of Model 3, KASPAR could
act equally as a follower as well as a leader and thus had more impact on the play and played
longer rhythms.

One should also note that there is a considerable amount of zero turns in all the three models.
However, only in the case of Model 2 was this amount high enough to affect the overall game.
When these turns were distributed among normal turns as in Model 1 and Model 3, they did not
dominate the behaviour but were compensated for by the non-zero turns. But for Model 2, zero
turns seemed to dominate the whole game and were described by the participants as a source of
dislike for the model/game type.

Although there were gaps between the humans’ and the robot’s turns in Model 1, while in
Model 3 KASPAR did not seem to imitate the human participants in every turn, both models were
successful in terms of emergent turn-taking. As a consequence, according to the participants’
questionnaire feedback, they preferred Model 1 and Model 3 to Model 2.

As seen in the previous study, the participants actively explored the limits of KASPAR’s drum-
ming as well as the rules of the game, and adapted themselves to the games over time, which
resulted in better games in terms of turn-taking and synchronisation in the later games. Thus, we
observed longer sequences of playing without any overlaps or gaps between the turns. This sug-
gests that the human participants were not passive participants in this game, but actively adapted
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themselves to the capabilities of the robot on their own initiative. This finding is consistent with
the notion of recipient design, a concept from ethnomethodology, where we find that natural
speech is always designed for its recipient (i.e. the interaction partner) and interpreted as having
been so designed. Here, the speaker creates his or her turn ‘with recipients in mind, and listeners
are motivated to “hear” a turn that is for them and all participants closely and constantly track
the trajectory of the talk to hear “their” turn’ (Boden 1994, p. 71). According to conversation
analysis, this turn-taking is integral to the formation of any interpersonal exchange (Boden 1994,
p. 66). While in our study the robot’s behaviour was controlled and based on simple computational
models, we found that the participants used their recipient design skills in the interaction. The
issue of recipient design will be explored further in our future research.

4. Conclusions

This article presented basic research into the regulation of interaction dynamics during
social/playful HRI. We introduced an experimental setup based on human–humanoid drumming
games as a suitable scenario for HRI research on non-verbal cues, synchronisation, timing and
turn-taking using drumming games. Generally, the results showed that believable and enjoy-
able human–humanoid interaction dynamics can be created with minimal models underlying the
robot’s turn-taking behaviour.

Specifically, the results from this experiment suggest that there was active adaptation on the
part of the participants, throughout the games. However, the efficiency of such adaptation may be
countered by the participant fatigue/boredom reported in the later games, which highlights the
essential role of research into how to maintain a user’s interest in the interaction with a robot. One
should note, however, that the results also indicate a trade-off between the subjective evaluation of
the drumming experience from the perspective of the participants and the objective evaluation of
the drumming performance, as well as individual differences in how the participants approached
the game. The participants as a whole preferred a certain amount of robot gestures as a motivating
factor in the drumming games that provided an experience of social interaction. However, the
sample was divided in terms of what degrees of gestures were appropriate. The results highlight
the need to ascertain to what degree the strategies used by a robot to encourage and maintain interest
in such interactions, interfere with the task the interaction is centred around, as well as consider the
role of individual differences in the appropriateness of these strategies. Experiment II showed that
the different minimal, probabilistic models that controlled the robot’s interaction dynamics led
to different subjective evaluations by the participants and different dynamics in the performances
of the games. The results from the questionnaires and behavioural data analysis suggest that the
participants preferred the models which enable the robot and human to interact more and provide
turn-taking closer to ‘natural’ human–human conversations, despite the differences in objective
measures of drumming behaviour.

Overall, the results from our studies are consistent with the temporal behaviour matching
hypothesis (Robins et al. 2008) which concerns the effect that the participants adapt their own
interaction dynamics to the robot’s. Note that our child-sized robot KASPAR, despite some human-
like features such as a face, arms and few facial expressions, is still mechanical in nature (e.g. the
movements are not following the biological models of movement generation, the facial expres-
sions are minimal and not based on the models of human facial expressions, and in terms of its
appearance the robot has a slightly cartoon-like appearance where we deliberately did not cover
up metals and wires, e.g. protruding from the neck and wrists). But participants still adapted to
the dynamics of this robot which highlights the importance of considering interaction kinesics in
HRI design in general, not only in research attempting to exactly copy human-like appearance
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and behaviour.10 A systematic study of the impact of robot appearance on participants’ behaviour
in human–humanoid drumming experiments is an interesting area of research but goes beyond
the scope of the current article.

There are several noteworthy limitations of this work including methodological as well as
technological limitations. Ideally, in order to generalise the results towards a wider user group
the study could be repeated with participants of different age ranges, personality traits, cultural
background, gender, etc. Such studies would help to explain group differences (e.g. concerning
why the subjective evaluation of the participants in our study differed). Different subjective rating
scales could be used. Qualitative analysis of the human–robot behavioural data (e.g. by using
conversation analysis)11 could flesh out further details of the interaction. The timing algorithms
used in Experiment II could be refined in future work alongside a systematic variation of different
types of robot gestures in order to find out which of these gestures have the most impact on the
interaction. It may also be interesting to replicate the experiment with a different robot that had a
broader spectrum of possible drumming behaviours, as this may not only enrich the interaction but
also provide additional data for the performance evaluation. Last but not the least, an electronic
drum could be used in order to ease the detection of the beats.

5. Future work

The HRI experiments presented in this article were based on a drumming scenario and we found
that this is a very suitable task for the study of HRI and adaptive behaviour. However, our long-
term research aims to go beyond a simple drumming synchronisation task and to develop richer
social interaction between the robot and the human partner, which would not simply focus on
synchronisation to produce the same tempo, but could provide a successful (in terms of the task)
as well as enjoyable social experience to people, while allowing us to gain insight into the role of
non-verbal interaction kinesics in sustaining and regulating HRI.

Based on these results, future work will investigate further issues related to interaction kinesics
in general, and recipient design in particular. As mentioned above, several factors regarding
robot non-verbal gestures as well as computational models underlying the robot’s turn-taking
behaviour seem to influence the objective performance and subjective evaluation of the interaction
experience. Future work needs to investigate these further, including other factors such as the con-
sideration of individual participants’preferences, personality profiles, as well as long-term effects.

In light of our promising results from using gestures, we foresee a system wherein KASPAR’s
behaviour may be motivated and rewarded by the human partner, through the partner’s gestures
and other expressive actions, and respond to these by playing novel acoustic rhythms and using its
own repertoire of expressions and gestures to provide feedback to the human interaction partner,
and, importantly, to become a ‘partner’ in the interaction that is not only responding but also taking
the initiative proactively. If our results can be extrapolated, then such a system will be capable of
motivating and sustaining interaction.

One interesting direction for future work concerns eye gaze, which plays an important role in
regulating human–human interaction and communication (e.g. Kendon 1967; Farroni, Johnson,
and Csibra 2004), and possibly also HRI kinesics (Mutlu, Shiwa, Kanda, Ishiguro, and Hagita
2009). While the study of gaze cues goes beyond the scope of the article, in our future work we
aim to study the role of eye gaze (mutual gaze, eye gaze direction, etc.) in HRI games.

Research on interaction kinesics, as exemplified in this work, can potentially contribute to a
wide range of application areas of social robots, in particular those that require long-term and
repeated interaction (e.g. robots as assistive companions in the home, or robots as therapeutic
or educational playmates for children). In such situations, the social acceptance of the robot,
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including the users’ enjoyment of the interaction as well as the performance of the system in
collaborative tasks, is crucial to the success of a particular application.
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Notes

1. In this article, we use the terms ‘interactant’ and ‘interaction partner’ (or ‘partner’ in short) synonymously. Thus,
the term ‘partner’ does not imply a long-term relationship or affective bonding between human and robot.

2. KASPAR stands for kinesics and synchronisation in personal assistant robotics. The robot has been developed by
our research group.

3. Note: KASPAR has previously been used successfully in studies involving children (Robins et al. 2008), includ-
ing children with special needs (e.g. Robins, Dautenhahn, and Dickerson 2009) as well as adults (Kose-Bagci,
Dautenhahn, Syrdal, and Nehaniv 2007; Kose-Bagci, Dautenhahn, and Nehaniv 2008). The work presented in this
article is focussed on adult participants.

4. In this article, the terms ‘deterministic’ and ‘probabilistic’ turn-taking refer to the robot’s control algorithm, that is,
whether the robot behaves according to a deterministic or probabilistic algorithm that determines how it responds in
a given moment given its sensory input. This point deserves clarification since any interaction involving humans has
non-deterministic interaction dynamics as far as the overall human–humanoid interaction dynamics is concerned,
since one cannot predict exactly how humans will behave in the interaction.

5. Preliminary results from the first 12 participants were summarised in Kose-Bagci et al. (2007).
6. Preliminary results with only an initial analysis based on 12 of the 24 participants are presented in Kose-Bagci et al.

(2008).
7. KASPAR needed at least 0.3 s between beats to get its joints ready, so that, even if the human played faster,

KASPAR’s imitations still required minimum pauses of at least 0.3 s between the beats.
8. Note: We had also tried to start using beats and stop using time with simulated data, but the current combination

resulted in more drumming time and a higher number of beats for both human and KASPAR, so this combination
was preferred in the current implementation.

9. See footnote to Figure 6 above
10. For example, see android research (MacDorman and Ishiguro 2006) or other studies into the importance of robot

appearance in HRI experiments (e.g. Walters et al. 2008).
11. See Robins, Dickerson, Stribling, and Dautenhahn (2004b) for an example of using conversation analysis in HRI

research.
12. Similar to Kotosaka and Schaal (2000). Synchronised robot drumming by neural oscillator. International Symposium

on Adaptive Motion of Animals and Machines.
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Appendix 1. Audio analysis

The acoustic sound waves recorded by the sound grabber module are converted to digital music samples, which allows
the use of mathematical computations and sample-based techniques. To detect the patterns of a sound wave, a filter-based
method is used, based on the work of Kose and Akin (2001) originally used to detect visual patterns. This method which is
called Audio Analyser was used in the drumming experiments with KASPAR as well as a different humanoid robot (iCub)
in real time. Also, in work not reported in this article, it was integrated to Webots software (Cyberbotics) to be used in a
simulated drummer modelled after the iCub robot. The real power of the method comes from its being computationally
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efficient, simple, fast and real time. The drumming experiments are real time, and to have games which appear ‘natural’
with short durations between turns, we need to identify the bouts of drumming as soon as they are produced. Therefore,
it is not possible to record them first and perform off-line analysis, or use efficient but complex methods in terms of
computational resources and time. Also, although the human participants are expected to use either the end of a pencil or
one hand to hit the toy drum, many different strategies were observed (and people were not discouraged to use them): they
were observed to use the tambourine-style bells around the drum, use both hands or sometimes use a pen or a stick to hit
the drum. Therefore, it is not trivial to train the system with ‘normal’ drumming bouts. Also, the high inner noise of the
humanoid, besides the high noise around the drumming area (due to people present in the room), makes the environment
very challenging and require us to set up high noise filters. The noise filters should be high enough to filter out the inner
and outer noise, but low enough to pick up as many drumming bouts as possible. Since we use participants from both
genders and all age groups, we could observe very frequent or very light bouts of drumming which are even harder to
analyse. In the current implementation, we only use audio feedback to detect the drumming bouts, but in future work, we
plan to use visual feedback also. However, as we mentioned earlier, the participants were allowed to use various different
ways to produce sound during their drumming games; so even the addition of visual feedback would not bring optimal
success in bout detection.

To detect the patterns inside a sound wave, a filter-based method is used.12 In this method, a four-item mask is applied
to every sample in the sound wave, and a filter is constructed. The peaks in this filter show the edges in the sound wave.
A mask of [−1 −1 1 1] is used to detect rising edges, and another mask of [1 1 −1 −1] is used to detect falling edges.
Any part of the sound wave between a rising and a falling edge is a region which represents the beat in the sound wave.
This is because a beat is represented by a set of points and not a single point. Once the regions are detected, a threshold
is applied on the average value of the points in the region, to detect the ‘real beats’ and discard noise. This method is
computationally simple but fast and efficient.
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Abstract 
We summarize methodological and experimental design issues 
related to three human-robot interaction studies investigating a 
drumming experience with Kaspar, a humanoid child-sized robot, 
and (in total 116) human participants. Our aim1 is not to have 
Kaspar just replicate the human’s drumming but to engage in a 
‘social manner’ in a call and response turn-taking interaction. 
This requires the set up of enjoyable as well as (as much as 
possible) controlled experiments. Two Human-Robot Interaction 
(HRI) experiments with adult participants and one experiment 
with primary school children were carried out to investigate 
different aspects of such interactions. We briefly summarize 
issues concerning experimental methodology and design, as well 
as ethical, legal, safety issues in addition to many ‘practical’ 
challenges of setting up and conducting HRI experiments with an 
autonomous humanoid robot.  

Introduction 
We present methodological and experimental design issues 
related to three exploratory studies investigating a 
drumming experience (drum-mate) with Kaspar [Blow, et 
al., 2006] and human participants. This research is part of a 
project in developmental robotics with a particular 
emphasis of our work on gesture communication. The 
primary goal of this work is to achieve (non-verbal) 
gesture communication between child-like humanoid 
robots and human beings, whereby drumming served as a 
test bed to study key aspects such as turn-taking and non-
verbal gestures.  
 
In the first study turn-taking is deterministic and head  

                                                 
1 Acknowledgements: This work was conducted within the EU 
Integrated Project RobotCub ("Robotic Open-architecture 
Technology for Cognition, Understanding, and Behaviours"), 
funded by the EC through the E5 Unit (Cognition) of FP6-IST 
under Contract FP6-004370. 

gestures of the robot accompany its drumming to assess the 
impact of non-verbal gestures on the interaction [Kose-
Bagci, et al., 2007]. The second study focuses on emergent 
turn-taking dynamics; here our aim is to have turn-taking 
and role switching which is not deterministic but emerging 
from the social interaction between the human and the 
humanoid [Kose-Bagci, et al., 2008]. Each of these two 
experiments were carried by 24 adult participants (in total 
48 adult participants were involved). The third study with 
68 primary school children focuses on the effect of 
embodiment and gestures on the subjective and objective 
evaluations of the human participants (details of the study 
and results will be published in a future publication [Kose-
Bagci, et al. in preparation]). In all three studies (whose 
detailed results are reported elsewhere), participants did 
not have any prior experience with robots. All the 
experiments were carried out in real-time, and the 
humanoid robot was operating completely autonomously. 
 
The remainder of this paper is organized as follows, the 
next section overviews the drum-mate studies, their 
methodology and the research questions motivating them. 
The experiment design section describes the experimental 
setups, provides brief information about the humanoid 
robot Kaspar, and the game setup, followed by a section on 
data collection. Legal and safety issues, as well as ethical, 
experimental and other methodological issues are 
discussed in the following sections. The last section 
includes a brief conclusion on the experiments, lessons 
learnt, and presents ideas for future work.   

Drum-mate 

Methodology 
Drum-mate is an interactive drumming game played by a 
human participant and an autonomous humanoid robot. 
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The game was enriched by non-verbal gestures, or 
different computational turn-taking models according to 
the research interests of the different studies. The human 
participant starts the game by playing a simple rhythm on  
his/her toy drum. When the robot ‘understands’ that the 
human has finished playing, the robot takes its turn, trying  
to imitate the human’s drumming. Then the human takes 
his/her turn at drumming, and so on. This continues for a 
fixed amount of time, e.g. 3 minutes in the experiments 
involving adult participants. The robot uses audio feedback 
to regulate turn-taking and imitation. 

Research Questions and Expectations 
In the first experiment, we studied the effect of the robot’s 
social gestures in a game of imitation and (deterministic) 
turn-taking. We expected that participants would be more 
engaged (in terms of drumming performance) and evaluate 
the interactions (questionnaires) more positively in the 
experimental condition when Kaspar used head gestures 
while imitating the human’s drumming than when no such 
gestures were used [Kose-Bagci, et al., 2007]. 
 
The second experimental study investigated the effect of 
three different probabilistic computational models on the 
emergent turn-taking dynamics in a drumming game. The 
game was a modified version of the drum-mate game 
where Kaspar used no gestures but only drumming, and the 
game mainly focused not on imitation but on turn-taking 
dynamics emerging from the social interaction between the 
humanoid and the human participant.  Here we expected 
the different probabilistic controllers to impact the 
interaction experience significantly. As in the first 
experiment, objective measures of drumming performance, 
as well as the subjective evaluations by the participants 
were analysed [Kose-Bagci, et al., 2008].  
 
The third set of experiments mainly focused on the effect 
of different embodiments and non-verbal gesture 
conditions on the interaction between children and the 
humanoid robot. Like the first two experimental studies 
with adults, in this work, we also analyse the results in 
terms of performances of the robot and the human 
participants and subjective evaluations (questionnaires). 
Our research interests mainly focused on the differences 
between conditions where children play in real-time 
interaction with either the physical robot, the projection of 
the remotely located robot, or with the ‘disembodied’ robot 
(only the sound of the hidden robot is available to the 
children). Also we expected that these differences would 
increase in the presence of additional robot gesturing.  

Experimental Design 

 Kaspar 
The experiments were carried out with the child-like 
humanoid robot Kaspar which was designed and built by 
the members of the Adaptive Systems Research Group at 
the University of Hertfordshire to study human-robot 
interactions with a minimal set of expressive robot 
features. Kaspar has 6 degrees of freedom in the head and 
neck, 2 in the eyes that are fitted with video cameras, a 
mouth capable of opening and smiling, and 4 in the each 
arm. The face is a silicon-rubber mask, which is supported 
by an aluminium frame [Blow, et al., 2006]. It has 
immobile legs and fixed feet and hands.  

Experimental Setup 
The first two experiments (with adult participants) were 
carried out in a separate room isolated from other people 
and noise which could affect the drumming experiment. 
Kaspar was seated on a table with the drum on its lap 
(Figure 1). The human partner was seated in front of the 
robot using another drum that was placed on the table. The 
human participants were to use a pencil to hit the drum. 
[Although we suggested to the participants to use one 
pencil and hit the top of the drum, sometimes they used 
two pencils, or they used their bare hands (single hand or 
with both hands) and several times they used the 
tambourine-style bells around the drum’s sides.] 

 
The third experiment (with children) was carried out in two 
almost identical cubicles isolated from the rest of a room 
with high barriers (Figure 2). In the rest of the room other 
robotic activities took place at the same time with other 
children. In one cubicle we had Kaspar seated on a table 
with the drum on its lap, similar to the first two 
experiments. In the second cubicle instead of the table and 
the robot Kaspar, we projected a real time image of Kaspar 
on a whiteboard, in order to study the effect of the robot’s  
embodiment (physically present versus remotely located).   
For the third condition, where only the sound of the robot 
was heard (disembodied robot), we use the same setup but 
turned off the projector. (See Figure 3). All other aspects of 
the experimental setup were kept the same.  

 

 
Fig. 1 A screen shot from the experiments  
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     (a) Physically embodied robot, Kaspar and child 

 participant 
 

 
(b) Child participant is playing the game in the 

projection condition where the robot’s live performance is 
captured by a camera and projected to a wall in front of the 
child. 

 

 
     (c) Child participant playing the game with the 

‘disembodied’ robot in the sound only condition,     where 
the robot is hidden but audible and only its drumming 
sound is heard. 

Fig. 2 Screenshots from the experiment with children 
where they played (a) with the physical robot, (b) watching 
a projected image of the robot, and (c) hearing only the 
sound of the robot 

Interaction Game Setup 
For the first two experiments with adults, before every 
experiment, for each participant, we used a one minute 
demo of the robot where participants were shown how to 

interact with Kaspar. Here the participant played the game 
following a brief introduction of the robot and the game 
from the experimenter. They learned the rules of the game 
and got used to the robot without being video recorded. 
This was followed by three games reflecting the three 
experimental conditions [Kose-Bagci, et al., 2007; Kose-
Bagci, et al., 2008] each lasting three minutes, without 
indicating to the participants anything about the differences 
between the conditions.  
 
For the third experiment, we again had three games with 
different conditions, each of which took two minutes.  We 
had a 30 seconds demo of the first condition in that session 
which was carried out by one of the experimenters with 
necessary explanations which was same for all the 
sessions.  So if the first condition is the one with the 
projected image of Kaspar, then the children see exactly 
the demo of this condition, not the demo with the physical 
Kaspar itself. Unlike the first two experiments, the demo is 
given to a group of children. After the demo the 
participants will play individually with the robot in the 
actual experiment.    
           
For each experiment, we used all possible different 
presentation orders of the games, to analyze the effect of 
the order of the games on the humans. This is important for 
avoiding possible fatigue or learning by the participants. 
 
Compared to the experiments with adults, in the 
experiments with children, simpler gestures were used, and 
the game duration was decreased to two minutes from 
three minutes. Also the time between turns was decreased 
to adapt the game better for the children (i.e. to make the 
game faster and easy to understand). 

Data collection 
In the experiments, data were collected to analyse how the 
human participants evaluate different games and both the 
robot’s and the human participants’ performances during 
these games. We had three main sources of data in our 
experiments: questionnaires, the drumming data recorded 
by the robot itself, and the video recordings of the trials 
including the human partners’ drumming behaviour which 
were then annotated and then quantitatively analysed.   

Questionnaires, Consent, Ethics 
Before starting the trials, each adult participant was given a 
questionnaire and a consent and demographics form 
involving a short description of the experiment and related 
work. As described in detail in the following subsection, 
video recordings are important data sources for our studies,  
so in the consent forms we ask the participants’ permission 
to record their performances by video cameras during the 
experiments and to use these recordings to produce photos 
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and movies for scientific presentations. We also used these 
video recordings as data sources to analyse the 
performances of the participants and the robot. Therefore, 
participants were also given the option to consent to the 
video recording and analysis, but not to the use of videos 
for scientific presentations. If participants do not consent at 
all to be video recorded during the experiment then their 
data have to be excluded from the trial.  
 
Unlike some other HRI experiments, our experiments were 
totally volunteer based, our participants were not paid for 
their attendance of the trials. This made it difficult to find a 
large number of participants, with different features e.g. 
female or left handed participants. Also in the consent 
forms we inform them that participation in the study is 
voluntary and that they can leave the experiment at any 
point during the experiment without being questioned.  
   
Moreover, an ethics approval form including very detailed 
information about the experiments regarding safety, data 
collection etc. had to be submitted to the faculty ethics 
committee of the university. Approval had to be granted 
before the recruitment of participants and the actual 
experiments could start. In the case of child participants, in 
addition a parental consent form was sent to each parent of 
the children involving detailed information about the 
experiment and the presence of robots in the experiment, 
including the possibility of recording the sessions with 
video cameras and using these recordings later in scientific 
presentations. According to the result of these forms, some 
sessions were not recorded by video, or the recorded video 
was just used for data analysis but not in scientific 
presentations. 
 
In the first two experiments with adults, the questionnaire 
which was given before the experiments included general 
questions about the adult participants, e.g. name, age, 
nationality, their profession, and if they are parents/careers  
of children (to understand if they are used to playing with 
children/children’s games).  
 
The children were asked different questions e.g. regarding 
their tendency to play video games. We were very careful 
about not asking questions regarding their nationality or 
ethnic origin, which might be interesting in scientific terms 
(for cross-cultural comparisons) but may offend or cause 
discomfort to them. Also we tried to put the questions as 
simply and understandably as possible, and used small 
pilot groups to test the usability and understandability of 
the questionnaires before the real experiments. 
After each game each participant completed one page of 
the questionnaire to express her/his opinion about the game 
s/he had just played (evaluation of the game and the 
robot’s behaviour in that particular game i.e. 
sociable/unsociable, or enjoyable/not enjoyable, quality of 
the interaction for child participants, and the evaluation of 

the game, drumming of the robot and the social interaction 
with the robot in the case of adult participants). 
 
Once the participants had completed the items related to 
the last (3rd) game, they completed the last session of the 
questionnaire where they could judge the overall 
experience by deciding which of the three games they liked 
the best and which they liked the least and the reasons 
behind that decision.  
 
In adults they also had to judge whether there were any 
differences between the three games and state these 
differences.  
 
We tried to keep the number of questions very brief and 
used simple and direct phrases in the questionnaire.  
 
All the questions about the evaluations were scale based, 
and the participants were encouraged to write down and 
express their detailed feelings and suggestions after each 
evaluation. All of our questionnaires were designed with 
the help of our psychologist team members for the benefit  
of the participants.   

 Video 
The experiments were recorded by at least two different 
cameras positioned at different locations of the 
experimental  area (one facing the human participant and 
another facing the robot), at each single game. Usually a 
second experimenter was present in the experimental area 
to control the cameras, start/stop them during the trials, and 
(in order not to waste video tape)  not to record when the 
participants played demo games, or worked on the 
questionnaires between the trials. We used cameras with 
tapes and fixed them on tripods in several locations of the 
experiment room where we can view the experiment but do 
not interfere with the robot or the participant. We even 
used small tripods to fix the cameras on top of book 
shelves or doors to get the best viewing angle (to see both 
faces of the robot and human and the drums). 
 
The video recordings were then analysed manually to 
detect the performance of the human participant’s 
behavioral data (e.g. the number of drum bouts played by 
the human, and number of turns taken by the human at 
each game). Also the video recordings gave clues about the 
humans’ behaviours at certain situation, how they reacted 
physically and emotionally in different conditions. These 
observations and the data gathered were compared with the 
questionnaire results and the data recorded by the robot 
itself. 

Robot  
The behavioural data taken from the robot itself includes 

clues about the robot’s and the human participant’s 
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performance. Kaspar records its performance (e.g. the 
number of drum bouts played by Kaspar, and the number 
of turns taken by the Kaspar at each game). Kaspar also 
records the human’s performance as well (e.g. the duration 
between two drum bouts) to imitate their performance 
within its physical limitations.  There are two main sources 
of behavioral data: the audio feedback taken by 
microphones and analysed in real-time by the robot to 
extract features of the drumming (i.e. number of drum 
bouts played, timings and the durations between drum 
bouts), and the robot’s own actions (i.e. name of the action 
taken at that turn, joint values that are activated during the 
actions, and timings of the actions). 
Note that Kaspar does not have a memory unit on board so 
this data is recorded in real time on a laptop, not on Kaspar 
itself . 

 
 

Fig. 3 The experimental layout of the experiment with 
children playing drumming games with Kaspar in different 
conditions that varied in terms of the robot’s embodiment. 
 
Note, the robot’s gestures were kept very simple (e.g. 
simple head moves, nodding and blinking in the 
experiments with adults, and additionally a smile to show 
‘happiness’ and a neutral smile to show ‘sadness’ when the 
robot could not get any feedback from the human, and 
waving a hand to say the game is over, for the children 
participants). More ‘expressive’ gestures might have 
distracted participants and could have interfered with our 
research agenda.  

Legal and safety issues 
In our experiments we worked with only one humanoid, 
Kaspar, which was risky in case the robot broke down. Its 
power supplies were low voltage (6V and 12V) 
rechargeable lead-acid gel batteries for safety. The 
batteries should be charged fully before each trial, 
especially if the robot was very active during the 
experiments. Therefore we limited the use of the robot to a 
few hours a day. We always had access to a researcher 

responsible from the maintenance of the robot. The robot 
never interacted physically with the human, e.g. by 
touching, and it was stable on the table and did not move 
its body during the trials, except its head and arms.  Kaspar 
was placed on a table and we always kept a safety distance 
(at least 30 cm) between the robot and the participants. 
  
All of our researchers who worked with children had CRB 
clearance (CRB- Criminal Records Bureau, UK). During 
the event involving children visiting our University (with 
an opportunity of participants to experience various 
demonstrations of interactive software and robots, see 
[FearNot! event, 2008]), their teacher, and a psychologist 
from our team accompanied the children. The 
questionnaires were prepared and given to the children by 
the psychologist. Neither adults nor children were left 
alone with the robot. The children were not allowed to 
have sweets during the whole event, but had lunch which 
was prepared according to their dietary requirements.  

Ethical Issues 
Although our experiments targeted specific research 
questions they were also designed to be ‘fun’ for the 
participants who volunteered to take part in the study. This 
was particularly important for the trials involving children 
who visited our university as part of a school excursion 
that was meant to have an educational but also enjoyable 
nature.   Thus, we had to use a limited number of 
experimental conditions in order not the make the event 
boring for them. For the same reason the duration of the 
experiments had to be kept short, and overall the 
experiments had to be designed in a ‘pleasant’ manner 
(participants should feel relaxed and comfortable during 
the experiment). Our intention was to create a playful and 
engaging setup for the study of human-robot interaction, so 
many aspects of the work could not be as rigorously 
controlled as may have been desirable from a purely 
experimental design point of view. These ethical issues are 
important to consider in particular for children and other 
vulnerable people, since researchers do not want to “waste 
the time” of participants who volunteer in our studies and 
thus contribute to our research.  

Experimental and other methodological issues  
Before the experiments are set up, the experimental area 
and all equipment involved needs to be checked carefully, 
e.g. check that the video cameras and robots are working 
properly etc. Also, once the experimental design and setup 
have been decided, running a simulation of the experiment 
(whereby experimenters may take the role of participants) 
is important to see if the time restrictions are satisfied. This 
is a must especially when running experiments with lots of 
participants on the same day. Especially in the experiment 
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with children, we had to consider the timing for each child, 
including their preparation (entering the experimental area, 
sitting down etc.), the duration of the actual interaction 
experiment and the time required to complete the 
questionnaires. In addition, the experimenters need to 
prepare and practice explanations and answers to possible 
questions from the children about the work, including 
questions about the robot’s functioning etc. Note, this 
requires to a) provide as much detail as necessary in order 
to satisfy the curiosity of the children, and b) not to 
disclose too many details that may confuse or overwhelm 
the children, or introduce strong biases influencing the 
outcome of the experiments.  
 
We also decided to work with the children in teams, not 
alone, which would help them to get used to the robot and 
the game. But working with teams of children lead to other 
issues, like how to identify the children individually (and 
match the ID codes that they were given to the results of 
the data collected during the experiment etc.).  
 
In addition to within-subject comparisons (e.g. for testing 
different game conditions and different gestures of the 
robot) we also carried out between-subjects tests in order 
to study the impact of individual features of the 
participants which may affect the results, e.g. gender. 
 
Our experiments were ‘controlled’ (in the sense that each 
participant in a particular study was exposed to a specific 
and clearly defined experimental set up whereby a 
particular experimental procedure was followed involving 
different experimental conditions) but they were not fully 
restricted laboratory experiments because we intended to 
create a ‘playful atmosphere’  in order to facilitate natural 
interaction that is emerging between the robot and the 
human and any adaptation of the human to the robot and 
the game. Also, all our participants were volunteers so we 
needed to achieve an enjoyable task as well as a controlled 
experiment. Last but  not least, the group of children we 
worked with was an opportunity sample, and while we 
could control for age (due to the fact that the children 
arrived as part of a school class) we could not control e.g. 
for gender. 
 
Audio analysis was a very vital part of our game, and the 
robot’s “hearing” was effected by both external and 
internal noise (coming from the robot’s motors) so we had 
to use some noise filters or cover our microphones 
especially in the experiment with the children where we 
had 10-20 children shouting and talking in the same room 
(the experimental area was only separated by screens).  
Note, in the experiments with the children we deliberately 
decided to carry out the experiments in the same room 
were the other robotic group activities took place. 
Alternatively, we had considered isolating individual 
children or small groups of children and leading them to a 

different nearby experimental room. However, we decided 
against such a more ‘controlled’ approach since it would 
have interfered with the enjoyable nature of the event (as 
part of a school excursion in order to learn, playfully, about 
robots and virtual characters). It also ethically did not seem 
to be justified to remove individual children from their 
peer group in this group-oriented event.  
 
In terms of the experimental equipment, we tried to have a 
“natural” looking robot, using clothes for the robot with 
neutral and not too bright colors. We tried to keep the 
experimental area ‘tidy’, i.e. tried not leave unrelated 
objects in the experimental area that could distract the 
attention from the main focus of the experiment. 
 
Demos and explanations to participants were very 
important in our experiments; they were kept the same for 
all the participants. Giving slightly more explanation or a 
smile of the experimenter during the experiment might 
affect the evaluations of the participants. Also it is 
important to use the same experimenter for the all 
experiments since his/her behaviour or characteristics 
(gender, height, age, tone of voice etc.) may have an 
impact on participants in the experiments. Ideally 
experiments could be repeated with different 
experimenters, in order to reveal any effects this may 
cause, but practically this usually goes beyond the scope of 
an HRI study. In our HRI studies the experimenters had a 
‘passive role’ during the experiments, i.e. they were 
present but did not proactively engage with the 
participants. The main role was to provide demos, 
explanations, and generally guide the participants through 
the experiment.  
 
It is important to use small pilot groups to test the usability 
and understandability of the questionnaires before the real 
experiments. Especially when conducting large scale 
experiments, with strict time restrictions, this is a vital 
issue. In our experiment with children we could only use 
one child to test the questionnaire. Ideally several children 
should be used to get feedback in particular on the 
questionnaire design.  
 
Surveys and questionnaires might not always provide the 
‘full picture’. For example, females tend to have higher 
agreeableness scores than males and participants with 
higher agreeableness can thus be expected to rate the 
robot’s capabilities as better [Costa, et al., 2001]. Also if 
some of the participants who knew the experimenter, they 
might have be less ‘subjective’, or the primary school 
children might answer the questions in the same spirit as 
doing ‘homework’, and might not express their ‘natural’ 
feelings. So it is vital to collect additional behavioral data 
from different sources e.g. video recording, using different 
sensors, and comparing the behavioral data and 
questionnaire data for different aspects. Interestingly, our 
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research [Kose-Bagci, et al., 2007; Kose-Bagci, et al., 
2008] showed that results from different data sources 
might not ‘agree’. For example, when judging the most 
preferred game, and least preferred game, although a 
participant might dislike the drumming of robot in one 
game and evaluate the game in the questionnaire according 
to this, he/she might have scored the least error in terms of 
objective measures of drumming performance in that game  
 
It is important not to explain fully the overall experimental 
design and the game, not even details of the robot (in the 
embodiment experiments) to the participants before the 
start of the interaction experiments e.g. in instructions   
because the aim is to observe the adaptation of the human 
to the robot and different aspects of (non-verbal) 
communication emerging from the social interaction 
between the human participant and the humanoid. If the 
participant starts with too much information this may bias 
him/her and affect the results. Sometimes participants 
spend some time to explore the robot rather then playing 
the game, which increases performance error according to 
objective behavioural measures, but we did not intervene 
since we considered it a part of the interaction. We used 
the demo session to address this issue. Still participants 
asked questions at the end, for example: “Does the robot 
learn?”, “Can it see me?”, “Why does not it talk?” One of 
the participants claimed that the robot smiled at him 
‘badly’ when he did something ‘wrong’ although the robot 
was not making any facial gestures at all.  
 
The duration of the experiments is important. Our 
experiments with adults lasted 3 minutes and those with 
children 2 minutes. The experiment should be long enough 
to collect an adequate amount of data and short enough not 
to be boring since boredom also effects the evaluations of 
the participants. Even if the task is enjoyable and the 
humanoid is interesting, in experiments involving a 
repetition of movements or tasks, doing the same thing for 
several minutes is not always pleasant. 
 
Although we worked with groups of participants at 
different times (these three experiments were completed 
over more than 1.5 years), we kept all the experimental 
conditions identical (e.g. the experimental setup and the 
robot gestures used), within the same experiment, which 
was a hard task when using a robot (which had been used 
extensively during the same period for several other 
research projects), and dealing with more than 100 human 
participants. 
 
In all of our experiments, the robot was autonomous. 
Therefore it was important to avoid the belief in 
participants that the robot was remotely controlled by a 
Wizard-of-Oz (WoZ) technique, see e.g. [Green, et al., 
2004]. During the trials we tried to avoid using the control 
laptop, because when the experimenter worked with the 

laptop, the participants might have thought that she was 
controlling the robot. Moreover, in the embodiment 
experiments, the children could think that not the robot but 
the experimenter was playing the drum in the disembodied 
condition (when the robot was hidden but its drumming 
sound was heard), so we always kept the experimenter in 
view of the participants, but not watching the participants, 
not using the laptop, and not interfering with the 
participant or the robot. Rather, the experimenter did 
something seemingly ‘irrelevant’ to the study, i.e. reading 
a book. Being watched may put stress on the participants.  
 
The selection of the robot that was used in the HRI 
experiments is also an important issue. Some humanoid 
robot’s are functional and robust from the experimenter’s 
and designer’s point of view, but might look ‘scary’ 
especially from children’s point of view, compare research 
on the ‘uncanny valley’, e.g. [MacDorman & Ishiguro, 
2005]. Some participants find the inner noise of the robot 
operating ‘normal’ as this makes it more ‘robot-like’, but it 
can be annoying for others.  
 
Some people may have concerns towards robots which 
may prevent them from interacting with the robot 
‘naturally’. Such participants would tend to behave in a 
manner less ‘relaxed’ and ‘open’ towards the robot. Such 
an attitude might be hard to recognize in questionnaire data 
but can be detected in behavioral data. It is essential to 
gauge people’s feelings regarding and attitudes towards 
robots in order to detect participants with strong negative 
feelings towards robots. Generally, participants’ 
personality profiles, individual interests, hobbies etc, may 
also provide useful data that may explain how people react 
to and interact with robots in HRI experiments.   

Related work  
Other researchers have identified various important 
methodological issues in HRI research. However, a full 
survey of related work goes beyond the scope of this paper. 
Illustrating related work, Walters and colleagues (2005) 
also have provided a very useful discussion of the practical 
and methodological aspects of HRI studies which were 
based on several HRI experiments. They describe the legal 
and safety issues in detail. Those experiments took a 
human-centered perspective in HRI studies with a human-
scaled mobile robot which was primarily controlled by the 
WoZ technique. The methodological issues related to these 
experiments, which are slightly different from those of our 
experiments, were described in detail. Table 1 shows a 
comparison of both works. Importantly, while Walters et 
al. (2005) used a primarily remote controlled robot, our 
experiments have taken a dual perspective: developing 
autonomous behaviours for a humanoid robot to play 
interaction games with people, while at the same time 
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assessing the behaviour of people playing interaction 
games with the robot and their subjective evaluations of 
the games.  

 
Table 1. Comparison of Drum-mate and Walters et al. 

Wizard-of-Oz (2005) studies 
 Drum-mate 

studies 
[Walters, et al., 
2005] studies  

Robot platform Kaspar, a child 
sized humanoid 

PeopleBotTM, a 
human-sized 
wheeled robot 
base, extended  

Mobility of the 
robot 

Immobile, just 
head and arms 
move 

Mobile  

Control of the 
robot 

autonomous WoZ + 
(autonomously in 
a small scale) 

Appearance Human-like 
features 

Mechanical 
looking 

Experiments with 
participants 

One participant at 
a time 

One participant at 
a time and groups 
of participants 

Experimenter In view  of 
participants to 
prove the robot is 
operating 
autonomously 

Experimenters 
controlling the 
robot are hidden 
from the robot, 
the experimenter 
introducing the 
participants to the 
experiment etc. is 
in view  of 
participants 

Perspective of the 
trials 

Both robot and 
human centered 
(development of 
interactive games 
for a humanoid 
robot, as well as 
the study of 
people’s 
behaviour and 
subjective 
evaluation in 
interaction 
experiments) 

Human centered 
(studying 
perceptions, 
attitudes and 
behaviour of 
people towards 
robots) 

Conclusion 
   We presented the experimental design and the related 
issues result of three interaction experiments with an 
autonomous humanoid robot, involving in total 116 human 
participants playing human-humanoid drumming games. 
Despite the issues related to the experimental environment, 
participants, and the robot itself, we had significant results 

in terms of non-verbal and timing aspects of interaction, 
imitation, turn-taking and gender differences that are 
reported elsewhere [Kose-Bagci et al,. 2007; 2008; in 
preparation].  
 
The methodological issues, and approaches taken to 
address these and other issues presented in this paper will 
inform future studies related to  human-humanoid social 
interaction. Many of these issues will also play a role in 
other HRI experiments, including different application 
areas such as entertainment, service robots, and 
educational/therapy robots. Thus, we hope that this paper 
will be useful for other HRI researchers, in particular those 
with no or little experience in carrying out user studies.  
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This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is
particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used
in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The
design rationale of the robot and its technical features are described in detail. Three research studies will be presented that
have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children
with autism. Secondly, we illustrate its use in human–robot interaction studies investigating the role of interaction kinesics
and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on
interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in
social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the
specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning
the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of
the design for human–robot interaction experiments concludes the paper.

Keywords: humanoid robots; minimally expressive robot; human–robot interaction; social interaction

1. Introduction

A key interest in our research group concerns human–robot
interaction research; see Fong et al. (2003), Dautenhahn
(2007), Goodrich and Schultz (2008) for introductory ma-
terial of this research field. One of the most challenging
open issues is how to design a robot that is suitable for
human–robot interaction research, whereby suitability not
only concerns the technical abilities and characteristics of
the robot but, importantly, its perception by people who
are interacting with it. Their acceptance of the robot and
willingness to engage with the robot will not only funda-
mentally influence the outcome of human–robot interac-
tion experiments but will also impact the acceptance of any
robots designed for use in human society as companions or
assistants (Dautenhahn et al. 2005; Dautenhahn 2007). Will
people find a machine with a human appearance or the one
that interacts in a human-like manner engaging or frighten-
ing? If a face is humanoid, what level of realism is suitable?
Different studies have independently shown the impact of
robot appearance on people’s behaviour towards robots,
expectation from and opinions about robots; see Walters
(2008a) and Walters et al. (2008b) for in-depth discussions.
Lessons learnt from the literature indicate that a humanoid
appearance can support enjoyable and successful human–
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All authors carried out the work while being part of the Adaptive
Systems Research Group at University of Hertfordshire.

robot interaction; however, the degree of human-likeness
required for a certain task/context etc. remains unclear.

In contrast to various approaches trying to build robots
as visual copies of humans, so-called ‘android’ research
(MacDorman and Ishiguro 2006), or research into design-
ing versatile high-tech humanoid robots with dozens of
degrees of freedom (DoFs) in movement and expression
(cf. the iCub humanoid robot, Sandini et al. 2004), the ap-
proach we adopted is that of a humanoid, but minimally
expressive, robot called KASPAR1 that we built in 2005
and have modified and upgraded since then (see Figure 1).
Our key aim was to build a robot that is suitable for different
human–robot interaction studies. This paper describes the
design and use of the robot.

In order to clarify concepts that are important to the
research field of human–robot interaction, the following
definitions of terms that are being employed frequently in
this paper will be used2:

Socially interactive robots (Fong et al. 2003): Robots
for which social interaction plays a key role, different from
other robots in human–robot interaction that involve tele-
operation scenarios.

1KASPAR: Kinesics and Synchronization in Personal Assistant
Robotics.
2Other related definitions relevant to the field of human–robot in-
teraction and social robotics are discussed in Dautenhahn (2007).
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Figure 1. The minimally expressive humanoid robot KASPAR designed for social interaction.

Humanoid robots, humanoids (based on Gong and Nass
2007): “A robot which is not realistically human-like in
appearance and is readily perceived as a robot by human
interactants. However, it will possess some human-like fea-
tures, which are usually stylised, simplified or cartoon-like
versions of the human equivalents, including some or all of
the following: a head, facial features, eyes, ears, eyebrows,
arms, hands and legs. It may have wheels for locomotion or
use legs for walking” (Walters et al. 2008b, p. 164).

Of specific interest to the present paper are hu-
manoid robots with faces. Generally these can range from
abstract/cartoon-like to near-to-realistic human-like faces.
Section 2.2.2 discusses in more detail the design space of
robot faces and Section 3 motivates our decision for a min-
imally expressive face.

This paper has been structured as follows: Section 2
provides an introduction to important issues in the de-
sign of robots and robot faces, in particular with respect
to the design space of robots and how people perceive
and respond to faces. Related work and design issues dis-
cussed in the literature are critically reflected upon. Section
3 describes the issues and rationale behind the design of
minimally expressive humanoids in general and KASPAR
in particular, and provides construction details regarding
the current versions of the robot used in research. Section
4 illustrates its use in a variety of projects covering the
spectrum from basic research to more application-oriented
research in assistive technology. Human–robot interaction
studies with KASPAR are summarised and discussed in
the light of KASPAR’s design features. The conclusion

(Section 5) reflects upon our achievements and provides
a conceptual assessment of KASPAR’s strengths and
weaknesses.

2. Robot design for interaction

This section reflects in more detail on issues regarding
the appearance of a robot in the context of human–robot
interaction and how people perceive faces (robotic or hu-
man). Related work on designing socially interactive re-
search platforms will be discussed. Note, we do not discuss
in detail the design of commercially available robots since
usually little or nothing is made public about the details or
rationale of the design. An example of such robots is the
Wakamaru (Mitsubishi Heavy Industries), which has been
designed to ‘live with humans’. Unfortunately only brief,
online information has been provided about the design ra-
tionale, hinting at the importance of expressiveness in the
eyes, mouth and eyebrows (Wakamaru 2009).

Thus, for a more detailed comparison of the design
rationale of KASPAR with other robots, we focus our dis-
cussion of related work on other research platforms.

2.1. The design space of humanoid robots

The effect of the aesthetic design of a robot is an area that
has often been neglected, and only in visual science fiction
media or recently with the advent of commercial household
robots has it been paid much attention. A notable exception
is the ‘uncanny valley’ proposed by Masahiro Mori (Mori



Applied Bionics and Biomechanics 3

Figure 2. The uncanny valley (MacDorman et al. 2009).

1970). Mori proposed that the acceptance of a humanoid
robot increases as realism increases, up to a point where,
as the robot approaches perfect realism, the effect becomes
instead very disturbing and acceptance decreases sharply
because the robot starts to look not quite human or at worst
like a moving corpse (see Figure 2 to illustrate the ‘un-
canny valley’). In theory the realism of both appearance
and movement can give rise to this effect, with movement
evoking the stronger response. It is possible that there may
also be ‘behavioural uncanniness’ affecting perception of
a robot during social interaction and governed by (among
other things) the appropriateness and timing of its responses
to social cues. However, little empirical data exists to sup-
port Mori’s theory and opinions vary as to the strength of
the effect and its longevity; see MacDorman (2005a) and
MacDorman et al. (2005b) for recent works on the uncanny
valley.

Previous work has identified a number of issues that are
important in the design of robots meant to socially interact
with people (Dautenhahn 2004). A full review of the techni-
cal and theoretical aspects of different robot designs in the
field of humanoid robotics would go beyond the scope of
this paper; therefore we discuss in the following paragraphs
in more detail the key design features of the robot Kismet.
Both Kismet and KASPAR have been specifically designed
for human–robot interaction and, importantly, detailed in-
formation about the design rationale of Kismet is available
in the research literature.

When Breazeal (2002) designed Kismet, which ‘. . . is
designed to have an infant-like appearance of a fanciful
robotic creature’ (p. 51), with a youthful and appealing
appearance, her intention was not to rival but rather to con-
nect to the social competence of people. Furthermore, she
incorporated key features in the robot that are known to
elicit nurturing responses, as well as other non-humanoid
features (e.g. articulated ears), in conjunction with exag-
gerated, cartoon-like, believable expressions. The overall

cartoon-like appearance of the robot took advantage of
people’s liking and familiarity with cartoon characters. The
overall design has been very successful: ‘As a result, peo-
ple tend to intuitively treat Kismet as a very young creature
and modify their behavior in characteristic baby-directed
ways’ (Breazeal 2002, p. 51). However, it should be noted
that the robot has never been used in any task-oriented sce-
narios that involve the manipulation of objects due to the
fact that it does not have any manipulation abilities. The
overall design is based on the assumption that people are
eager to interact with the robot in the role of a caretaker.
We contend that while this may be an appropriate approach
for entertainment purposes, it is unclear how this design
approach of a ‘robotic pet/baby’ would apply to work that
is oriented towards robots as assistants or companions (see
a detailed discussion of these two different approaches in
Dautenhahn 2007). Note, Kismet was an expensive labo-
ratory prototype, and to run its sophisticated perception
and control software required more than 10 networked
PCs.

In Breazeal and Foerst (1999) several of Kismet’s de-
sign guidelines are presented for achieving human–infant
like interactions with a humanoid robot; however, the under-
lying basic assumption here is ‘the human as a caretaker’,
so some, but not all, of these guidelines are relevant for
this paper. We now discuss these guidelines in relation to
the specific approach that we took with the design of our
humanoid robot KASPAR.

Issue I: ‘The robot should have a cute face to trigger
the ‘baby-scheme’ and motivate people to interact with it,
to treat it like an infant, and to modify their own behavior
to play the role of the caregiver (e.g. using motherese, ex-
aggerated expressions and gestures)’.

Cuteness of the robot is not a key issue in the design
rationale of our robot KASPAR because we did not envis-
age human–infant caretaker interactions. On the contrary,
our goal was to have a robot that people may relate to in
different ways, depending on the particular context of use
and application domain.

Issue II: ‘The robot’s face needs several degrees of free-
dom to have a variety of different expressions, which must
be understood by most people. Its sensing modalities should
allow a person to interact with it using natural communica-
tion channels’.

Our approach partly agrees with the view on this issue;
however, we focused on what we call a minimally expres-
sive face with few expressions and few sensors in order to
emphasise the most salient human-like cues of the robot.
Rather than trying to make a robot very human-like, our
goal was to concentrate on a few salient behaviours, ges-
tures and facial expressions in order to run experiments
that systematically study the influence of each of these cues
on the interaction with people. Note, while Kismet also
includes some cues that are zoomorphic but not anthropo-
morphic (e.g. articulated ears), the design of KASPAR’s
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face focused on human-like features alone in order not to
violate the aesthetic consistency.

Issue III: ‘The robot should be pre-programmed with the
basic behavioral and proto-social responses of infants. This
includes giving the robot the ability to dynamically engage
a human in social [interaction]. Specifically, the robot must
be able to engage a human in proto-dialogue exchanges’.

Our approach uses an emphasis on non-verbal inter-
action without any explicit verbal ‘dialogue’. We are in-
terested in the emergence of gesture communication from
human–robot interaction dynamics. Also, rather than solely
building a research prototype for the laboratory, our aim
was to have a robot that can be used in different applica-
tion areas, including its use in schools, and under different
methods of control (remote control of the robot as well as
autonomous behaviour).

Issue IV: ‘The robot must convey intentionality to boot-
strap meaningful social exchanges with the human. If the
human can perceive the robot as a being “like-me”, the
human can apply her social understanding of others to pre-
dict and explain the robot’s behavior. This imposes social
constraints upon the caregiver, which encourages her to re-
spond to the robot in a consistent manner. The consistency
of these exchanges allows the human to learn how to bet-
ter predict and influence the robot’s behavior, and it allows
the robot to learn how to better predict and influence the
human’s behavior’.

The above is again very specific to the infant–caretaker
relationship that Kismet’s design is based upon. Rather than
a ‘like-me’ perception of the robot we targeted a design
that allows a variety of interpretations of character and
personality on the robot (which might be termed ‘it could
be me’ – see Dautenhahn 1997). Below we discuss this issue
in more detail in the context of the design space of faces.

Issue V: ‘The robot needs regulatory responses so that
it can avoid interactions that are either too intense or not
intense enough. The robot should be able to work with the
human to mutually regulate the intensity of interaction so
that it is appropriate for the robot at all times’.

Issue VI: ‘The robot must be programmed with a set of
learning mechanisms that allow it to acquire more sophis-
ticated social skills as it interacts with its caregiver’.

Issues V and VI as discussed by Breazeal and Foerst
relate specifically to the programming of the robot. For
KASPAR we did not aim at a ‘pre-programmed’ robot
but intended to build an open platform that would allow
the development of a variety of different controllers and
algorithms.

Other related work on humanoid robots includes the
Lego robot Feelix (Cañamero 2002) that reacts to tactile
stimulation by changing its facial expression. Feelix follows
a similar design approach as Kismet, i.e. using exagger-
ated features, but a low-cost approach with commercially
available Lego components. The humanoid robot Robota
(Billard et al. 2006) has been designed as a toy for children

Figure 3. Robota (Billard et al. 2006).

and used in various projects involving imitation, interac-
tion and assistive technology (Robins et al. 2004a, 2004b,
2005b). The key movements of this robot in these studies
include turning of the head (left and right movements) and
lifting of arms and legs (up and down movements of the
whole limbs). Facial expressiveness or the generation of
more complex gestures was not possible. The design con-
siderations of Robota (see Figure 3) addressed in (Billard
et al. 2006) include the following:

1. Ease of Set-up: This concerns the ease of setting up
sessions, e.g., in schools, and favours a light-weight,
small-sized and low-cost robot with on-board processing
and battery power.

Note, the above design consideration applies generally
to all robots that are meant to be used in different locations
where they have to be brought ‘in and out’ quickly, different
from a robot that relies on a sophisticated laboratory set-up
(such as above-mentioned Kismet). Since the robot whose
design we were undertaking was also meant to be suitable
for school applications, it was important for us, too, to keep
the costs down. We decided that the price of the robot should
be comparable to that of a laptop.

2. Appearance and behaviour: This criterion concerns the
human-likeness in the appearance of the robot. Robota
had a static face (from a toy doll), so it included some
human-like features. A doll-like appearance was also
considered to be ‘child-friendly’. Billard et al. (2006)
argued that taking a doll as a basis would help to integrate
the robot in natural play environments.

The above design considerations are consistent with
our approach to the design of KASPAR, where we used
a mannequin as the basis of the ‘body’ of the robot;
however, we replaced the head (including the neck) and
designed a minimally expressive robot. Thus, while the de-
sign of KASPAR started before Billard et al.’s publication
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of design guidelines (2006), several key aspects are
common.

Other research groups have studied the design of robots
for ‘child’s play’, including Michaud et al. (2003) who dis-
cuss design guidelines for children with autism but with
an emphasis on mobile robots and playful interactions
as related to the robot’s behaviour, focusing primarily on
non-humanoid robots. This work indicates that the design
space of robots is vast, and, depending on the actual user
groups and requirements as well as individual needs and
preferences, different designs may be favourable. Differ-
ent from this work, in the context of this paper we fo-
cus on minimally expressive humanoid robots, suitable for
human–robot interaction experiments in assistive technol-
ogy as well as developmental robotics research. Please
note, in Section 4.1 we discuss in more detail design is-
sues of robots for the particular application area of autism
therapy.

Since the key component of KASPAR is its minimally
expressive face and head, the next sections provide more
background information on the perception of faces.

2.2. Perceptions of faces

In this section we discuss some important issues to how
people perceive human or robot faces.

2.2.1. Managing perceptions

DiSalvo et al. (2002) performed a study into how facial fea-
tures and dimensions affect the perception of robot heads
as human-like. Factors that increased the perceived human-
ness of a robot head were a ‘portrait’ aspect ratio (i.e. the
head is taller than its width), the presence of multiple facial
features and, specifically, the presence of nose, mouth and
eyelids. Heads with a ‘landscape’ aspect ratio and minimal
features were seen as robotic. They suggest that robot head
design should balance three considerations: ‘human-ness’
(for intuitive social interaction), ‘robot-ness’ (to manage
expectations of the robot’s cognitive abilities) and ‘product-
ness’ (so that the human sees the robot as an appliance).
The idea of designing a robot to be perceived as a con-
sumer item is noteworthy for the fact that people’s a priori
knowledge of electronic appliances can be utilised in avoid-
ing the uncanny valley; the implication is that the robot is
non-threatening and under the user’s control. To fulfil their
design criteria, they present six suggestions: a robot should
have a wide head, features that dominate the face, detailed
eyes, four or more features, skin or some kind of covering
and an organic, curved form.

2.2.2. The design space of faces

Faces help humans to communicate, regulate interaction,
display (or betray) our emotions, elicit protective instincts,

attract others and give clues about our health or age. Sev-
eral studies have been carried out into the attractiveness of
human faces, suggesting that symmetry, youthfulness and
skin condition (Jones et al. 2004) are all important fac-
tors. Famously, Langlois and Roggman (1990) proposed
that an average face – that is, a composite face made up
of the arithmetic mean of several individuals’ features –
is fundamentally and maximally attractive (although there
are claims to the contrary, see Perrett et al. 1994), and that
attractiveness has a social effect on the way we judge and
treat others (Langlois et al. 2000).

Human infants seem to have a preference for faces, and
it appears that even newborns possess an ‘innate’ ability
to spot basic facial features, such as a pair of round blobs
situated over a horizontal line which is characteristic of two
eyes located above a mouth. It has been debated whether
this is due to special face recognition capability or due to
sensory-based preferences for general perceptual features
such as broad visual cues and properties of figures such
as symmetry, rounded contours etc., which then, in turn,
form the basis for learning to recognise faces (Johnson and
Morton 1991). The nature and development of face recogni-
tion in humans is still controversial. Interestingly, while the
baby develops, its preference for certain perceptual features
changes until a system develops that allows it to rapidly
recognise familiar human faces. Evidence suggests that ex-
posure to faces in the first few years of life provides the
necessary input to the developing face recognition system
(see Pascalis et al. 2005). The specific nature of the face
stimuli during the first year of life appears to impact the
development of the face-processing system. While young
infants (up to about six months of age) can discriminate
among a variety of faces belonging to different species or
races, children at around nine months (and likewise adults)
demonstrate a face-representation system that has become
more restricted to familiar faces. The social environment,
i.e. the ‘kinds of faces’ an infant is exposed to, influences
the child’s preferences for certain faces and abilities to dis-
criminate among them. Not only time of exposure but also
other factors, including emotional saliency, are likely to in-
fluence the tuning of the face recognition systems towards
more precision (Pascalis et al. 2005).

In terms of perception of emotions based on faces, it is
interesting to note that people can perceive a variety emo-
tions based on rigid and static displays, as exemplified in
the perception of Noh masks that are used in traditional
Japanese Noh theatre. Slight changes in the position of
the head of an actor wearing such a mask lead to differ-
ent types of emotional expressions as perceived by the
audience. This effect is due to the specific design of the
masks where changes in angle and lighting seemingly ‘an-
imate’ the face. Lyons et al. (2000) scientifically studied
this effect (see Figure 4) and also pointed out cultural dif-
ferences when studying Japanese as well as British par-
ticipants. We are not aware if this Noh mask effect has
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Figure 4. The Noh mask effect. Photo used with permission (Lyons et al. 2000).

been exploited deliberately in the design of humanoid robot
expressions.

In his book Understanding Comics (McCloud 1993) on
narrative art, Scott McCloud introduces a triangular design
space for cartoon faces (Figure 5). The left apex is realistic,
i.e. a perfect representation of reality, for example a pho-
tograph, or realistic art such as that by Ingres. Travelling
to the right faces becomes more iconic, that is, the details
of the face are stripped away to emphasise the expressive
features; emoticons such as ‘:)’ are a perfect example in the
21st century zeitgeist. The simplification has two effects.
Firstly, it allows us to amplify the meaning of the face, and
to concentrate on the message rather than the medium. Sec-
ondly, the more iconic a face appears the more people it
can represent. Dautenhahn (2002) points out that iconogra-
phy can aid the believability of a cartoon character. We are

Figure 5. The design space of comics (Blow et al. 2006), modi-
fied from McCloud (1993). Note, similar principles are also rele-
vant to animation and cartoons.

more likely to identify with Charlie Brown than we are with
Marilyn Monroe, as a realistic or known face can only rep-
resent a limited set of people, whereas the iconic represen-
tation has a much broader range – to the extent of allowing
us to project some aspects of ourselves onto the charac-
ter. Towards the top apex representations become abstract,
where the focus of attention moves from the meaning of the
representation to the representation itself. Examples in art
would be (to a degree) Picasso’s cubist portraits or the art of
Mondrian.

We can use this design space, and the accumulated
knowledge of comic’s artists, to inform the appearance of
our robots. Figure 6 shows some robot faces and their (sub-
jective) places on the design triangle. Most are ‘real-life’
robots although several fictional robots have been included,
as functionality has no bearing on our classification in this
context. At the three extremes are NEC’s Papero (iconic),
a small companion robot which is relatively simple and
cheap to make and allows easy user-identification; Han-
son’s K-bot (realistic), complex and theoretically deep in
the uncanny valley but allowing a large amount of expres-
sive feedback and Dalek (abstract), potentially difficult to
identify with but not as susceptible to the uncanny valley
due to its non-human appearance.

Of course, the design space only addresses the static ap-
pearance of the robot. The nature of most robot faces is that
they encompass a set of temporal behaviours that greatly af-
fect our perception of them. For example, as these issues are
so important in human–human interaction (Hall 1983), it
seems well worthwhile investigating the rhythm and timing
of verbal and, especially, non-verbal behavioural interaction
and dynamics of robots interacting with humans, an area
referred to as interaction kinesics (Robins et al. 2005a).
An extension of McCloud’s design space to investigate
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Figure 6. Robot faces mapped into McCloud’s design space, updated version of Blow et al. (2006). (1) Dalek (© the British Broadcasting
Corporation/Terry Nation); (2) R2D2, fictional robot from ‘Star Wars’ (© Lucas Film Ltd.); (3) DB (© ATR Institute Kyoto); (4) MIT
humanoid face project (© MIT); (5) Kismet (© MIT/Cynthia Breazeal); (6) Infanoid (© Hideki Kozima); (7) Wakamaru communication
robot (© Mitsubishi Heavy Industries); (8) HOAP-2 (© Fujitsu Automation); (9) Minerva tour-guide robot (© Carnegie Mellon
University); (10) Toshiba partner robot (© Toshiba); (11) QRIO (© Sony); (12) ASIMO (© Honda); (13) K-Bot, extremely realistic
24 DoF head built by David Hanson (© Human Emulation Robotics); (14) Repliee-Q1 (© Osaka University/Kokoro Inc.); (15) False
Maria, fictional robot from Fritz Lang’s 1927 film ‘Metropolis’; (16) C3PO, fictional robot from ‘Star Wars’ (© Lucas Film Ltd.); (17)
WE-4R robot (© WASEDA University); (18) AIBO robotic dog (© Sony); (19) Keepon, minimal DoF HRI robot (© Hideki Kozima);
(20) Papero household robot (© NEC); (21) Leonardo HRI research robot (© MIT Personal Robots Group); (22) Nexi HRI research
robot (© MIT Personal Robots Group); (23) Pleo commercial companion robot (© Ugobe Inc.); (24) Probo medical companion robot
for children (© Vrije Universiteit Brussel); (25) Nao personal robot (© Aldebaran Robotics).

behavioural aspects would be a worthwhile study, specifi-
cally how a robot’s behaviour affects its perception as iconic,
realistic or abstract, and the effect of social behaviour
on the uncanny valley and user identification with the
robot.

As one moves in the design space of faces from re-
alism towards iconicity, a human is more likely to iden-
tify themselves with the face due to the decrease in spe-
cific features, and the distinction between other and self
becomes less and less pronounced. Could this idea be use-
ful in robot design? If a robot is to be designed to extend
humans’ abilities or carry out tasks on their behalf, iconic
features may possibly allow the user to project their own
identity onto the robot more easily. In contrast, realistic
face designs will be seen objectively as someone else, and
abstract designs often as something else. In this case the
interaction partner’s identification with the robot will be
discouraged by the non-iconic nature of the design. Some
robot roles (such as security guards) might benefit from
reinforcing this perception. While the idea of the robot as
an extension of self remains speculative at this point, fu-
ture work in this area needs to shed more light on these
issues.

3. Design of KASPAR

This section details the technical design of KASPAR. We
start with general considerations for the design-space of
minimal expressive humanoids, particular initial design re-
quirements for KASPAR and then present the technical
design and construction details.

3.1. Robot design and construction details

3.1.1. General considerations for the design-space
of minimal expressive humanoids

First we discuss some key considerations on the expres-
sive face/head and general appearance and expression in
minimal expressive humanoids for human–robot social in-
teraction. In the next section the requirements for KASPAR
are introduced.

3.1.2. Balanced design

• If face, body and hands are of very different complex-
ities, this might create an unpleasant impression for
humans interacting with the robot. Aesthetic coher-
ence also requires balance in the physical design and
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in turn also the behavioural and interactional design
of the robot and its control.

• DoFs and design should be appropriate for the actual
capabilities that the robot will possess and use (oth-
erwise inappropriate expectations are created in the
human). (cf. Dautenhahn and Nehaniv 2000).

3.1.3. Expressive features for creating the impression
of autonomy

• Attention: Visible changes in direction of head, neck
and eye gaze direction (i.e. with independent DoFs
within eyes) are the most important expressive fea-
tures in creating the impression of autonomy. In a
humanoid, this entails actuation of the neck in some
combination of pan, tilt and roll.

• Emotional state: Expressive components in face
(eyes, eyebrows, mouth, possibly others) are at the
next level of importance (see point 3 below).

• Contingency: The human interaction partner should
see contingency of the robot’s attentional and expres-
sive states as it responds to interaction – this entails
behavioural design on appropriate hardware (see be-
low for minimal 6+ DoF systems).

Conveying attention (indication of arousal and direc-
tion of attention) and the impression of autonomy has
been illustrated in the elegant design of the very minimal,
non-humanoid robot Keepon by Hideki Kozima (Kozima
et al. 2005).

3.1.4. Minimal facial expressive features

One can make use of the Noh mask-like effects discussed
above. This may be compared to Y. Miyake’s concept of
co-creation in man–machine interaction, namely that a hu-
man’s subjective experience of a technological artifact, such
as a robot or karakuri (traditional Japanese clockwork au-
tomaton), lies in the situated real-time interaction between
observer, artifact and the environmental situation (Miyake
2003; see also Dautenhahn 1999). Therefore, we propose
that a largely still, mask-like face (or even other body parts)
that is dynamically oriented and tilted at different angles can
be designed and used to induce various perceptions of the
robot’s state in the interaction with a human participant.

Unlike extreme minimal robots (such as Keepon) or
robots with complex facial actuation expressiveness in
the head (e.g. Kismet) in conjunction with the Noh-like
elements of design, a few DoFs within the head may
provide additional expressiveness (e.g. smiling, blinking,
frowning, mouth movement etc.). Human-like robots with
such minimal degrees of face actuation include Feelix by
Lola Cañamero at University of Hertfordshire (Cañamero
2002) and Mertz by Lijin Aryananda at MIT-CSAIL
(Aryananda 2004).

Possibilities for this additional facial actuation (approx-
imately 6+ DoFs) are included:

• Eyebrows: 270◦ rotary 1 DoF/eyebrow (× 2), RC
servo; if an additional DoF is to be used, then it could
be used for raising/lowering the eyebrow in the verti-
cal direction. (Eventually, directly actuated eyebrows
were dropped from the first design of KASPAR in
order to maintain aesthetic coherence. The adopted
design leads to indirect expressiveness via the eye-
brows of the face mask under deformations due to
mouth and smile actuation.)

• Eyes: Pan and tilt, possibly supporting mutual gaze
and joint attention.

• Eyelids: Blinking (full or partial, at various rates).
• Lips/mouth: Actuators for lips to change shape of

mouth, e.g. from horizon lips to open mouth, possibly
more DoFs a right and left edge to lift/lower mouth
(smile/frown); also opening/closing of mouth.

In a minimally expressive robot, some subset of the
above features could be selected (e.g. direct actuation of
emotional expression could be omitted completely, while
retaining the capacity to show direct attention, or, if in-
cluded, any combination of eyebrows, eyelids or mouth
actuation etc., could be omitted).3

3.1.5. Specific requirements for a minimally expressive
humanoid suitable for different human–robot inter-
action studies: KASPAR

The overall minimally expressive facial expressions of
KASPAR have been designed in order not to ‘overwhelm’
the observer/interaction partner with social cues but to al-
low him or her to individually interpret the expressions as
‘happy’, ‘neutral’, ‘surprised’ etc. Thus, only as few motors
were used that were absolutely necessary to produce certain
salient features.

• Similar to Kismet, as discussed above, KASPAR was
meant to have a youthful and aesthetically pleasing
design. Different from Kismet, we did not want to
explicitly elicit nurturing responses in people, but in-
stead support the function of KASPAR as a playmate
or companion. So we refrained from exaggerated fa-
cial features and decided on a minimally expressive
face.

• It was considered important that the robot has the size
of a small child, in order not to appear threatening.

◦ KASPAR sits on a table in a relaxed playful way
with the legs bent towards each other (the way
children often sit when playing).

3We thank H. Kozima for discussions on the design of Keepon
and A. Edsinger-Gonzales for technical discussions on the imple-
mentation of Mertz.
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◦ The head is slightly larger in proportion to the
rest of the body, inspired by comic’s design as
discussed above (in order not to appear threat-
ening).

• Unlike Kismet which requires a suite of computers
to run its software, we decided to have KASPAR’s
software running either on-board the robot or from
a laptop. The reason for this was that we envisaged
KASPAR to be used in various human–robot interac-
tion studies, including studies outside the laboratory,
so the robot had to be easily transportable, easy to set
up etc.

• A low-cost approach was also considered practical
in case future research or commercial versions were
planned (e.g. to use KASPAR as a toy, or educa-
tional/therapeutic tool in schools or at home).

• In order to have a ‘natural’ shape, a child-sized man-
nequin was used as a basis. The legs, torso and the
hands were kept. The hands were not replaced by
articulated fingers in order to keep the design sim-
ple, and in order to invite children to touch the hands
(which is more like touching a doll).

• Arms were considered necessary for the study of ges-
ture communication, and they also allow the manip-
ulation of objects which is important for task-based
scenarios, e.g. those inspired by children’s play. It
was decided to build low-cost arms with off-the-shelf
components that are not very robust and do not allow
precise trajectory planning etc, but can nevertheless
be ‘powerful’ in interaction for producing gestures
such as waving, peek-a-boo etc.

• The neck was designed to allow a large variety of
movements, not only nodding and shaking the head,
but also socially powerful movements such as slightly
tilting the head (important for expressing more subtle
emotions/personality traits such as shyness, cheeki-
ness etc.).

• KASPAR has eyelids that can open and close. Blink-
ing can provide important cues in human–human in-
teraction, so we decided that this was a salient feature
to be added.

3.1.6. Technical design considerations

A main criteria for KASPAR emphasised the desirability
of low cost. The budget for KASPAR allowed up to 1500
Euros for material costs. Therefore, the following decisions
were made at the initial design specification stage:

A shop window dummy modelled after an approxi-
mately two-year-old girl was available at reasonable cost.
It already possessed the overall shape and texture required
for the body of the robot and could be readily adapted to
provide the mainframe and enclosure for the robot system’s
components. Therefore, it was decided that KASPAR would
be stationary and would not have moving or articulated legs.

Figure 7. Detailed view of face mask attachment points.

In line with our discussion of identification and projec-
tion (as for Noh masks), it was also decided that the silicon
rubber face mask from a child resuscitation practice dummy
would be used for the face of the robot. These masks were
flesh coloured and readily available as spare parts (to facili-
tate hygienic operation of the dummy). The masks were also
sufficiently flexible to be deformed by suitable actuators to
provide the simple expression capabilities that would be re-
quired, and also provided simplified human features which
did not exhibit an unnerving appearance while static (cf.
the ‘uncanny valley’ mentioned above, Mori 1970). See
Figure 7 for the attachment of the mask to the robot’s head.

It was decided that all joint actuation would be achieved
by using radio control (RC) model servos. These were orig-
inally made for actuating RC models, but as they have
been commercially available to the mass hobby market at
low cost, they are also commonly used as joint actuators for
small-scale robots. Interface boards are also available which
allow them to be interfaced and controlled by a computer.

The main moving parts of the robot were head, neck
and arms; hence, the original head, neck and arms were
removed from the shop dummy to allow replacement with
the respective new robot systems. The batteries and power
and control components were fitted internally. KASPAR’s
main systems are described in more detail in the following
sub-sections.

Further details of the design and construction of head
and arms, as well as details of the robot’s control and power
supply are provided in Appendix A.

3.1.7. KASPAR II

About a year after completing KASPAR we built a second
version called ‘KASPAR II’, and both robots are currently
used extensively in different research projects. KASPAR II
had been used in experiments on learning and interaction
histories as reported in Section 4.3 (all other studies men-
tioned in this paper used the original KASPAR robot). KAS-
PAR II’s design is very similar to the original (KASPAR I),
with a few modifications primarily in terms of upgrades.
Details of KASPAR II are given in Appendix B, which also
provides information on upgrades, changes and planned
future improvements of KASPAR.
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3.1.8. Remote control of the robot

In applications involving children with autism (see Section
4.1), a remote control was used to operate KASPAR. It is
made of a standard wireless keypad (size 8 cm × 12 cm)
with 20 keys. Different keys were programmed to activate
different behaviours in KASPAR, i.e left/right arm drum-
ming, waving, different postures etc. These are dynamic
expressive behaviours released via single key press. The
programmed keys had stickers on them with simple draw-
ings representing the behaviour, e.g. a drum for drumming
(two keys – right and left), a smiley for a ‘happy’ posture, a
hand for hand-waving etc. The remote control allowed the
introduction of collaborative games and role switch, with
a view to use the robot as a social mediator, as will be
explained in more detail in Section 4.1.

3.2. Software

The software development of KASPAR is not the focus of
this paper and will thus only be mentioned briefly. The robot
can be used in two modes: remotely controlled as well as
autonomous operation. Unskilled operators can easily run
and develop programmes for the robot using the novel user-
friendly KWOZ (KASPAR Wizard of OZ) graphic user
interface (GUI) software which runs on any Windows or
Linux PC. This interface has been used in human–robot in-
teraction scenarios when an experimenter (usually hidden
from the participants) remotely controlled the robot from
a laptop (see Section 4.1). This type of control is different
from the remote control device that was specifically intro-
duced to openly introduce collaborative games (see Section
3.1.8).

In a variety of projects KASPAR operates au-
tonomously, see examples in Sections 4.2 and 4.3. An ap-
plications programming interface (API) provides access for
programmers to develop custom programmes and access to
open source robot software produced under the Yet Another
Robot Programme (YARP) initiative (Yarp 2008).

3.3. Aesthetics of the face

As mentioned above, a child resuscitation mask was used.4

The mask is produced by the Norwegian company Laerdal,
which specialises in medical simulators and first produced
‘Resusci-Anne’, as a life-like training aid for mouth-to-
mouth ventilation. Anne’s face mask had been inspired
by the ‘peaceful-looking and yet mysterious death mask’
(Laerdal Products Catalogue 2008–2009) of a girl who is
said to have drowned herself in the Seine. The death mask
is said to have first appeared in modellers’ shops in Paris
around the 1880s. In a 1926 catalogue of death masks it is

4Thanks to Guillaume Alinier of the Hertfordshire Intensive Care
& Emergency Simulation Centre at University of Hertfordshire
for his generous donation of the face mask.

called ‘L’Inconnue de la Seine’ (the unknown woman of the
Seine). Replicas of the mask became fashionable as a dec-
orative item in France and Germany. The mask and as yet
unconfirmed stories surrounding its origin then sparked the
imagination of many poets and other artists, such as Rilke,
for the next few decades and led to numerous literary art
works (The Guardian Weekend, 2007). The mysterious and
beautiful, ‘timeless’ quality of the mask may contribute to
its appeal to participants in human–robot interaction stud-
ies. In our view, the mask itself has a ‘neutral expression’
in terms of gender as well as age. It has a skin colour, with-
out facial hair or any additional colouring, and we left it
unchanged in order to allow viewers/interaction partners to
impose different interpretations of personality/gender etc.
on the robot.

Interestingly, the specific design and material that the
rubber mask is made of, in conjunction with the attachment
of the mask to the actuators, creates KASPAR’s unique
smile, which is minimal but naturalistic and similar to the
so-called ‘genuine smile’ or ‘true smile’ shown by peo-
ple. Ekman et al. (1990) describe the Duchenne smile (the
genuine smile) that is characterised by movements of the
muscles around the mouth and also the eyes. Humans show
a true smile typically involuntarily. This smile is perceived
as pleasant and has positive emotions associated to it, in
contrast to other smiles in which the muscle orbiting the eye
is not active. A variety of other smiles can be observed and
they occur, e.g. when people voluntarily try to conceal neg-
ative experience (masking smiles), feign enjoyment (false
smiles) or signal that they are willing to endure a negative
situation (miserable smiles).

KASPAR’s smile causes a very slight change in the
mask around the eyes. This change is based on passive
forces pulling on the mask when the mouth moves. Thus,
this ‘true’ smile is possible due to particular way in which
the smile was designed, how the mask is attached and the
material properties of the mask.

As a consequence, KASPAR’s smile is very appealing
(Figure 8), and similar to a genuine smile shown by people.
This is a novel feature that is different from many other
robot (head) designs where smiles often appear ‘false’ since
they either only operate the mouth or different parts of the
face but not in the naturally smooth and dynamic fashion it
occurs in KASPAR’s face mask.

Note that the dynamic transition of the facial expres-
sions (i.e. from neutral to a smile, cf. Figure 8) plays an
important part in how people perceive KASPAR’s facial ex-
pressions. Experimental results of an online survey with 51
participants (Blow et al. 2006) have shown that natural tran-
sitions (taking about two seconds from neutral expression to
smile) are seen as more appealing than sudden (artificially
created) transitions. Also, the larger the smile, the greater
the participants’ judgement of ‘happiness’. However, while
smiles with a natural transition are seen as more appeal-
ing than static pictures of the smiles, those with a sudden
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Figure 8. KASPAR’s minimally expressive face illustrating four
expressions designed for human–robot interaction. Clockwise
from top left: neutral, small, medium and large smiles.

transition are not (Blow et al. 2006). This emphasises the
need for consistency of appearance (in this case a humanoid
face with a natural smile) and behaviour (the transition time
of facial expressions). Further results of this study show that
all four of KASPAR’s expressions (Figure 8) shown to the
participants were found appealing or very appealing. Note,
our primary research interest is in human–robot interaction,
not in facial design or emotion modelling, but these results
give encouragement to participants’ ratings of KASPAR’s
facial expressions. Other researchers might use KASPAR
for a further investigation of these issues concerning the
perception of robot facial expressions.

3.4. Contextual features

Contextual features are an important ingredient of interac-
tion design (Preece et al. 2002). In order to help people
relate to the robot socially we used various contextual fea-
tures in terms of the robot’s clothing. We dressed the robot in
children’s clothing (shirt, trousers and socks). We utilised
children’s used clothing which appear more natural than
newly purchased clothing. We did not try to hide the fact
that KASPAR is a robot, on the contrary we left the neck
and wrists uncovered so that cables and pieces of metal can
be seen.

For the applications of the robot in autism therapy (see
Section 4.1) where we mainly work with boys, we wanted
to give the robot a boyish appearance and added a baseball
cap and a wig in order to emphasise the child-sized and
playful nature of the robot. We tried different hair colours,
but the dark-coloured wig gave the most consistent ap-
pearance. The cap can also serve as a prop and invites
children to remove and replace it etc. Moreover, in several
research projects where we study human–humanoid inter-
action games, we place a toy tambourine in the robot’s lap,
which the robot is able to drum on. This feature adds to
the robot’s perceived playfulness and allows the study of
task-based interaction (e.g. drumming).

3.5. Gestures

As discussed above, our initial requirements were to have
arms that allow simple gestures. During the course of us-
ing KASPAR in different research projects a number of
dynamic gestural expressions were defined (Figure 9).

Note, while within our human–robot interaction
research group we did not systematically study how dif-
ferent user groups perceive KASPAR’s appearance and
behaviours, we have been using the robot in multiple ex-
periments, demonstration and public engagement events in-
volving children and adults of different age ranges, gender,
background etc. In total, more than 600 children have been
exposed to the robot (either watching its live demonstrations
or participating in an interaction experiment) along with
about 300 adults. These encounters were part of interaction
experiments carried out in schools or in the laboratory, or
were part of public engagement events taking place either
in schools, museums or conference venues, or on university
premises. While feedback from the public events was very
informal in nature, we nevertheless have gained anecdotal
evidence that can be described as follows:

• Children of various ages (typically developing chil-
dren as well as children with special needs, including
children with autism; cf. Section 4.1) generally show
a very positive reaction towards KASPAR, attempt-
ing spontaneously to play and interact with the robot,
often touching it etc. The minimal facial expressions
and gestures appear particularly appealing, the child-
like appearance and size of the robot seems to elicit
play behaviour similar to what children may show to-
wards other interactive toys. Once children discover
(through play and inquiry from the researchers) that
KASPAR has a wider range of abilities than con-
ventional interactive toys that can be bought in toy
shops, their curiosity appears to get reinforced and
they continue to engage with KASPAR more sys-
tematically, e.g. exploring its eyes etc. For typically
developing children the minimal/subtle expressive-
ness in KASPAR seems to encourage them to reply
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Figure 9. Some of KASPAR’s expressions. Children usually interpret these expressions as ‘good bye’ (top, left), ‘happy’ (top, middle),
‘surprised’ (top, right), ‘sad’ (bottom, left) and ‘thinking’ (bottom, right). Note, our goal was not to create scientifically plausible emotional
and other expressions (compare FEELIX, Kismet), but to create a robot with – from a user-centred perspective – appealing and interactional
salient features.

with emphasised or bigger expressions in return, i.e.
with a bigger smile, and bigger hand movements in
imitation games etc.

• Adults show in general a more cautious and less
playful attitude towards KASPAR, sometimes com-
menting on specific design features, e.g. noticing that
the head is disproportionately larger than the rest
of its body (as has been explained, this was a de-
liberate cartoon-inspired design choice). It appears
(from explicit comments given to the researchers)
that adults tend to spontaneously compare KASPAR
with very realistically human-like robots they have
seen in movies or on television. Their expectations
towards the robot’s capabilities are similarly high, so
overall, adults tend to have a more critical attitude to-
wards the robot. For these reasons, in our experiments
involving adult participants we took care to introduce
the robot and its capabilities before the start of the
experiment.

Psychologists may further investigate the above issues,
which go beyond the scope of our research, in future sys-
tematic studies.

4. Applications of KASPAR in research

Since 2005 our research team has been using KASPAR
extensively in various research projects in the area

of robot-assisted play, developmental robotics, gesture
communication and development and learning. This sec-
tion illustrates the experiments and the results that were ob-
tained from some of these studies. We discuss these studies
in the light of KASPAR’s interaction abilities that afford
a great variety of different human–robot interaction ex-
periments. Note, a detailed description of the motivation,
research questions, experiments and results would go be-
yond the scope of this paper. Instead, the following sections
aim to illustrate the different usages of the robot in differ-
ent interaction scenarios and applications where different
methodological approaches have been used in the research
and to document the experiments. Case study I illustrates
work in a project in assistive technology based on case study
evaluations whereby a narrative format has been chosen to
describe the work. Case study II is situated in the context
of human–robot interaction studies whereby a more experi-
mental approach has been taken that takes into account not
only the evaluation of the performance of the human–robot
dyad (pair) but also the subjective evaluations of the experi-
ment participants. Finally, case study III reports on research
in developmental robotics whereby the emphasis is on the
development and evaluation of cognitive architectures for
robot development that relies on human interaction. Each
case study will provide pointers to published work on these
experiments so that the reader is able to find detailed in-
formation about the different methodological approaches,
experiments and results.
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4.1. Case study I: robot-assisted play and therapy

This case study discusses the use of KASPAR in robot-
assisted play, in the specific application context of therapy
for children with autism.

4.1.1. Motivation

Our research group has been involved for more than 10
years in studies that investigate the potential use of robots
in autism therapy (Dautenhahn and Werry 2004) as part
of the Aurora project (Aurora 2008). Different humanoid
as well as non-humanoid robots have been used. The use
of robots in robot-assisted play (with therapeutic and/or
educational goals) is a very active area of research and a
variety of special-purpose robots have been developed in
this area (Michaud et al. 2003; Kozima et al. 2005; Saldien
et al. 2008). Other work is exploring available research
platforms (Kanda and Ishiguro 2005; Billard et al. 2006)
or commercially available robots in an educational context
(Tanaka et al. 2007). While in the area of assistive tech-
nology a variety of special requirements and needs need to
be considered (cf. Robins et al. 2007 which reports on the
IROMEC project that specifically designs a novel robot for
the purpose of robot-assisted play for children who cannot
play), KASPAR originally had not been designed only for
this specific application area. However, as discussed above,
the design of KASPAR included lessons learnt from the
use of robots in autism therapy. And not surprisingly, KAS-
PAR turned out to be a very engaging tool for children with
autism and has been used extensively as an experimental
platform in this area over the past few years.

This section presents some case study examples that
highlight the use of KASPAR in the application area of
autism therapy. Autism here refers to Autistic Spectrum
Disorders, a range of manifestations of a disorder that can
occur to different degrees in a variety of forms (Jordan
1999). The main impairments that are characteristic of peo-
ple with autism, according to the National Autistic Society
(NAS 2008), are impairments in social interaction, social
communication and social imagination. This can manifest
itself in difficulties in understanding gesture and facial ex-
pressions, difficulties in forming social relationships, the in-
ability to understand others’ intentions, feelings and mental
states etc. They also usually show little reciprocal use of eye
contact. As people’s social behaviour can be very complex
and subtle, for a person with deficits in mind-reading skills
(as with autism), this social interaction can appear widely
unpredictable and very difficult to understand and interpret.

KASPAR, which was designed as a minimally expres-
sive humanoid robot, can address some of these difficulties
by providing a simplified, safe, predictable and reliable en-
vironment. The robot was found to be very attractive to
children with autism and a suitable tool to be used in edu-
cation and therapy. As autism can manifest itself to different
degrees and in a variety of forms, not only children in differ-

ent schools might have different needs but also children in
the same school might show completely different patterns
of behaviour from one another and might have different
or even some contradictory needs. Importantly, interaction
with KASPAR provides multi-modal embodied interaction
where the complexity of interaction can be controlled and
tailored to the needs of the individual child and can be
increased gradually.

4.1.2. Illustration of trials

The following examples show the potential use of KASPAR
in education and therapy of children with autism. They
present a varied range of settings (e.g. schools, therapy ses-
sions etc.) and children who vary widely in their abilities
and needs (from very low functioning children to high func-
tioning and those with Asperger syndrome). KASPAR was
found to be very attractive to all these children regardless of
their ability. Children who were usually not able to tolerate
playing with other children initially used KASPAR in soli-
tary play and closely explored its behaviour, postures and
facial features and expressions. Later, assuming the role of a
social mediator (Robins et al. 2004b; Marti et al. 2005) and
an object of shared attention, KASPAR helped these chil-
dren (and others) in fostering basic social interaction skills
(using turn-taking and imitation games), encouraging inter-
action with other children and adults. All trials took place
in schools for children with special needs (Examples I–V)
or health centres (Example VI). The experimenter was part
of and actively involved in all of the trials; compare with
Robins and Dautenhahn (2006) for a detailed discussion on
the role of the experimenter in robot-assisted play.

The examples in school are part of a long-term study
where children repeatedly interact with KASPAR over sev-
eral months. More details about trials and analysis of the
results can be found in Robins et al. (2009).

Example I. KASPAR promotes body awareness and sense
of self

KASPAR encourages tactile exploration of its body by
children of different age groups irespective of their gen-
der (Figure 10). All children with autism who first met
KASPAR were drawn into exploring him in a very physical
way. This tactile exploration is important to increase body
awareness and sense of self in children with autism.

Example II. KASPAR evokes excitement, enjoyment
and sharing – mediates child/adult interaction

We observed situations when children with severe
autism who have very limited or no language at all got ex-
cited in their interaction with KASPAR and sought to share
this experience with their teachers and therapists. These
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Figure 10. Tactile exploration of KASPAR by children from different age groups and gender.

human contacts may give significance and meaning to the
experiences with the robot (Figure 11).

Example III. KASPAR helps to break the isolation

Liam is a child with severe autism. Although in his
home he interacts regularly with other family members, in
school he is withdrawn to his own world, not initiating any
interaction with other people (neither with other children
nor with the teachers). After playing with KASPAR once a
week for several weeks, Liam started to share his experience
with his teacher (Figure 11, left), exploring the environment
and communicating (in a non-verbal manner) with adults
around him (both with the teacher and the experimenter) as
can be seen in Figures 12 and 13.

Example IV. KASPAR helps children with autism to
manage collaborative play

KASPAR’s minimal expressiveness, simple operation
and the use of a remote control encourage children not only
to play with it but also to initiate, control and manage col-
laborative play with other children and adults (see Figures
14 and 15).

Example V. KASPAR as a tool in the hands of a therapist

As stated above, interaction with KASPAR is a multi-
modal embodied interaction where the complexity of
interaction can be controlled, tailored and gradually in-
creased to the needs of the individual child. Figure 16 shows

how a therapist is using KASPAR to teach a child with
severe autism turn-taking skills. Adam is a teenager who
does not tolerate any other children, usually his focus and
attention lasts only for very short time, he can be violent to-
wards others and can also cause self-injury. However, after
he was first introduced to KASPAR, he was completely re-
laxed, handled KASPAR very gently and kept his attention
focused on it for as long as he was allowed (approximately
15 minutes). The therapist used his keen interest in KAS-
PAR to teach him turn-taking skills with another person.
Initially, Adam insisted on being in control all the time
and refused to share KASPAR with anyone else, but after
a while he allowed the therapist to take control, and slowly
they progressed into full turn-taking and imitation games.

Example VI. KASPAR as a teaching tool for social skills

KASPAR was used in a pilot scheme to teach children
with autism social skills during their family group therapy
sessions run by the local child and adolescent mental health
centre. During these sessions children practise how to ap-
proach other children to befriend them in the playground
and in school. Children learnt how to ask precise questions
by approaching KASPAR (as a mediator between them and
other children), asking the robot a question and interpreting
its response. KASPAR was operated by another child who
gave the answer indirectly via the robot’s gestures and facial
expressions (Figure 17).

Figure 11. Liam seeks to share his excitement with his teacher (left); Derek shares his enjoyment with his therapists (right).
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Figure 12. Liam is exploring KASPAR’s facial features very closely (in this snapshot it concerns the eyes) and then turns to his teacher
and explores her face in similar way.

Example VII. Use of a remote control by children with
autism to operate KASPAR

In Examples IV and VI children used the remote con-
trol (Figure 18) to facilitate collaborative play. They were
given the remote control and shown how to operate it. Most
children got excited once they discovered and explored the
use of its keypad, and asked for it every time they came to
play with KASPAR.

The objectives for the children to use the remote con-
trol were varied. For those children who always wanted to
be in control (a typical behaviour in autism), the remote
control was a tool for learning turn-taking skills. It was a
‘reward’ once they learnt to ‘let go’ of the control, and not
only gave it to another person but also participated in an
imitation game where the other person was controlling the

robot. For children who are usually passive and follow any
instruction given, the use of the remote control encouraged
taking initiative, discovering cause and effect and realising
that they could also do actions on their own (e.g. they can
change the robot’s posture).

Moreover, whenever possible, the experimenter and a
child, or two children were encouraged to play together
(e.g. an imitation game), with the robot assuming the role
of a social mediator. In this scenario the remote control is
a key object that facilitates the acquisition of new skills
that are vital for children with autism, i.e. they no longer
merely follow instructions of games given to them by adults
(which is often the case in classroom settings) but are also
actually allowed to take control of a collaborative game to
initiate, follow, take turns and even have the opportunity to
give instructions to their peers.

Figure 13. Liam communicates with the experimenter.

Figure 14. Billy controls an imitation game (using a remote control) in a triadic interaction with the robot and the experimenter.
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Figure 15. KASPAR mediates child–child interaction in a turn-
taking and imitation game: one child controls KASPAR via remote
control, the other imitates KASPAR. The children then switch
roles.

4.1.3. Reflections on KASPAR’s design

As has been mentioned, the Aurora research team has been
using a variety of different robots in robot-assisted play
for children with autism, including non-humanoid mobile
robots, a humanoid robotic doll as well as a zoomorphic (in
this case dog-like) robot (see Figure 19).

All three approaches with different robots used have
in common that the child’s control of the robot is indirect,
i.e. through interaction – the robot and the child are active
participants in the interaction, and enjoyment of the child
is a key aim. Also, in all three studies the child can in-
fluence whatever game is being played. Table 1 shows in
boldface the specific features of KASPAR that have turned
out to be very successful during interactions with children
with autism, as demonstrated in the above-mentioned case
studies.

To summarise, following are the key features of
KASPAR that turned out to be very important in the robot-
assisted therapy with children with autism:

• A variety of facial/head and gestural expressions that
allow a spectrum of social interaction and commu-
nicative as well as collaborative games.

• A remote control to operate the robot that can be
operated by the experimenter or therapist as well as
by children themselves. This control forms the basis

of a variety of different games, e.g. imitation and
turn-taking games.

• The remote control-facilitated collaborative games
among children on their own initiative.

Note, after reviewing the literature (see discussion in
Dautenhahn and Werry 2004) and discussions with psy-
chologists we suggest that some of the attractiveness of
KASPAR to children with autism is its minimal expres-
siveness, i.e. possessing simple facial features with less de-
tails – a face that appears less overwhelming and thus less
threatening to children (in comparison to a person’s face
with numerous facial details and expressions that often are
overwhelming to children with autism causing information
overload). Also, KASPAR’s limited amount of facial ex-
pressions makes its behaviours more predictable, which
again suits the cognitive needs of children with autism. The
generally very positive reactions from children (some ver-
bal but most non-verbal due to limited language abilities)
further support the view that KASPAR can provide a safe
and enjoyable interactive learning environment for children
with autism as motivated in Section 4.1.1.

4.2. Case study II: drumming with KASPAR –
studying human–humanoid gesture
communication

This second case study concerns the use of KASPAR in the
European project ‘Robotic Open-Architecture Technology
for Cognition, Understanding, and Behaviours’ (Robotcub;
Sandini et al. 2004; Robotcub 2008) in the field of devel-
opmental robotics.

4.2.1. Motivation

‘[I]nterpersonal coordination is present in nearly all aspects
of our social lives, helping us to negotiate our daily face-
to-face encounters . . . We also coordinate our nonverbal
behavior with others to communicate that we are listening
to them and want to hear more’ (Bernieri and Rosenthal
1991, p. 401).

Figure 16. A therapist is using KASPAR to teach turn-taking skills to a child with autism.



Applied Bionics and Biomechanics 17

Figure 17. KASPAR as part of family group therapy sessions to mediate between children and teach social skills.

Over the past two years KASPAR has been used ex-
tensively in our drum-mate studies, which investigate the
playful interaction of people with KASPAR in the context of
drumming games as a tool for the study of non-verbal com-
munication (Kose-Bagci et al. 2007, 2008a, 2008b). This
work forms part of our studies on gesture communication as
part of the EU 6th framework project Robotcub. Drumming
is a very suitable tool to study human–humanoid non-verbal
communication because it includes issues such as social
interaction, synchronisation, and turn-taking which are im-
portant in human–human interaction (Kendon 1970; Hall
1983; Bernieri and Rosenthal 1991; Goldin-Meadow and
Wagner 2005). In robotics, different works have used robot
drumming as a test bed for robot controllers (Kotosaka and
Schaal 2001; Degallier et al. 2006). Other approaches fo-
cus on the development of a robot drummer that is able to
play collaboratively with professional musicians (Weinberg
et al. 2005; Weinberg and Driscoll 2007) or in concert with
human drummers and at the direction of a human conductor
(Crick et al. 2006). Our work uses drumming as a test bed
for the study of human–humanoid non-verbal interaction
and gesture communication.

From a practical viewpoint, drumming is relatively
straightforward to implement and test, and can be applied

Figure 18. The remote control used in scenarios with children
with autism.

technically without special actuators like fingers or special
skills or abilities specific to drumming. So we could im-
plement it with the current design of KASPAR, without
additional need for fingers, or extra joints. With just the ad-
dition of external microphones for sound detection, it was
able to perform drumming with tambourine style toy drums
(Figure 20). Note, we did not need an additional drumstick,
as due to its specific design KASPAR’s hands are able to
perform the drumming. In these experiments only one hand
(the left one) was used for the drumming.

4.2.2. Drumming experiments with KASPAR

KASPAR, in our experiments, has the role of an au-
tonomous ‘drumming companion’ in call-and-response
games, where its goal is to imitate the human partner’s
drumming (Figure 20). In the drum-mate studies, the human
partner plays a rhythm, which KASPAR tries to replicate,

Figure 19. Top row: Non-humanoid, mobile robots used in the
Aurora project – Aibo (left, Sony), Labo-1 (right, AAI Canada,
Inc.). Bottom row: Different appearances of Robota, the humanoid
doll–robot that has been used with children with autism. The
‘robot-like’ appearance on the right has been shown to be more
engaging in first encounters of children with autism compared to
Robota, the doll-robot (Robins et al. 2006).



18 K. Dautenhahn et al.

Figure 20. A screen shot from the experiments where KASPAR
is a drum-mate of human interaction partners.

in a simple form of imitation (mirroring5). KASPAR has
two modes: listening and playing. In the listening mode, it
records and analyses the played rhythm, and in the playing
mode, it plays the rhythm back by hitting the drum posi-
tioned in its lap. Then the human partner plays again. This
turn taking will continue for the fixed duration of the game.
KASPAR does not imitate the strength of the beats but only
the number of beats and duration between beats, due to its
limited motor skills. It tailors the beats beyond its skills to
those values allowed by its joints. KASPAR needs a small
time duration (e.g. at least 0.3 seconds in the experiments)
between each beat to get its joints ‘ready’, so that even if
the human plays faster, KASPAR’s imitations will be slower
using durations of at least 0.3 seconds between beats. It also
needs to wait for a few seconds before playing any rhythm
in order to get its joints into correct reference positions.

In the first set of experiments (Kose-Bagci et al. 2007),
head gestures accompanied the drumming of KASPAR.
Here KASPAR just repeated the beats produced by the
human partner, and made simple fixed head gestures ac-
companying its drumming (we used very simple gestures,
without overt affective components like smiling or frown-
ing in order not to overly distract the participants during the
experiments). The participants, in return, perceived these
simple behaviours as more complex and meaningful and
adapted their behaviour to the robot’s gestures. In this part
of the study, we used deterministic turn-taking skills, simply
mirroring the human’s playing, which caused problems in
terms of timing and negatively affected human participants’

5Here we use ‘mirroring’ to refer to generalised matching of as-
pects of behaviour in interaction, e.g. number and timing of beats
in a drumming interaction. In particular, it does not refer here to ip-
silateral vs. contralateral imitation. Mirroring plays an important
part in communicative interactions and the social development
of children. For further discussion of mirroring and imitation,
see Nehaniv and Dautenhahn (2007) and Nadel and Butterworth
(1999).

enjoyment. In the second part of the study (Kose-Bagci
et al. 2008a), we developed novel turn-taking methods that
appear more natural and engage the human participants
more positively in the interaction games. Here, compu-
tational probabilistic models were used to regulate turn-
taking skills of KASPAR emerging from the dynamics of
social interaction between the robot and the human partner.
Although we used very simple computational models, and
this work is a first step in this domain, we were able to
observe some very ‘natural’ games in terms of coordinated
turn-taking games, and some of the participants even com-
pared the game to a game they might play with children.

From the first set of experiments and our public demon-
strations where we used gestures as social cues, we got
positive feedback from the participants (48 adults and 68
primary school children). Especially at the public demon-
strations where we used more complex gestures (e.g. smiles
when KASPAR imitated human drumming, frowns when
KASPAR could not detect human drumming or waving
‘good bye’ with a big frown when it had to finish the game),
we got very positive feedback and public attention.

The reason behind KASPAR’s successful head and face
gestures is hidden in its face design. KASPAR’s facial ex-
pressions and head and arm gestures seemed to influence the
way human participants perceive the robot and the interac-
tion. Even blinking and nodding and other head movements
affect significantly human participants’ evaluations of the
robot and the games. Besides, the size of KASPAR makes it
appear more ‘child-like’ which affects people’s evaluations.
Some of the adult participants compared the drumming ex-
perience they had with KASPAR with the experiences they
had with their two to three-year-old children.

It is important to note that while KASPAR’s drum play-
ing did not change over time, and stayed the same in differ-
ent games, the participants learned the limits of KASPAR
and the rules of the game. Participants seemed to adapt
themselves to the game better and the success rate im-
proved over time. Humans, as shown here, were not passive
subjects in this game, but adapted themselves to the capa-
bilities of the robot. In order to facilitate and motivate such
an adaptation, aspects of the interaction that are not directly
related to the task itself, such as interactional gestures – like
KASPAR’s simple head/face gestures and blinking – may
play an important role. A variety of research questions have
been addressed using KASPAR in human–robot drumming
experiments. A detailed discussion and results pertaining
to these questions would go beyond the scope of this paper
but can be found in Kose-Bagci et al. (2007, 2008a, 2008b).
The next section illustrates some of the results.

4.2.3. Results and discussion

The following is a brief summary of results of some of the
key points resulting from experiments presented in Kose-
Bagci et al. (2007, 2008a, 2008b).
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• A trade-off between the subjective evaluation of the
drumming experience from the perspective of the par-
ticipants and the objective evaluation of the drum-
ming performance. Participants preferred a certain
amount of robot gestures as a motivating factor in the
drumming games that provided an experience of so-
cial interaction. However, the sample was divided in
terms of what degrees of gestures were appropriate.

• The more games participants played with the robot
the more familiar they became with the robot; how-
ever, boredom was also mentioned by some partic-
ipants which indicates the essential role of research
into how to maintain a user’s interest in the interaction
with a robot.

• The more participants played with the robot the
more they synchronised their own drumming be-
haviour with the robot’s. The different probabilis-
tic models that controlled the robot’s interaction
dynamics led to different subjective evaluations of
the participants and different performances of the
games. Participants preferred models that enable the
robot and humans to interact more and provide turn-
taking skills closer to ‘natural’ human–human con-
versations, despite differences in objective measures
of drumming behaviour. Overall, results from our
studies are consistent with the temporal behaviour-
matching hypothesis previously proposed in the liter-
ature (Robins et al. 2008), which concerns the effect
that participants adapt their own interaction dynam-
ics to that of the robot’s.

4.2.4. Reflections on KASPAR’s design

How suitable has been KASPAR in the interaction exper-
iments using drumming games? KASPAR’s movements
do not have the precision or speed of industrial robots
or some other humanoid robots that have been developed
specifically for manipulation etc. One example of a high-
specification robot is the iCub that has been developed
within the European project Robotcub at a cost of €200,000
(Figure 21). The iCub has the size of a 3.5-year-old child,
is 104 cm tall and weighs 22 kg. It has 53 joints mainly
distributed in the upper part of the body. While KASPAR
has been designed from off-the-shelf components, every
component of the iCub has been specifically designed or
customised for the robot in order to represent cutting edge
robotic technology.

Also, special purpose robotic percussionists have been
designed specifically for the purpose of efficient drum-
ming, e.g. Haile (Weinberg et al. 2005). The design ra-
tionale of Haile, a robot with an anthropomorphic, yet ab-
stract shape that can achieve drumming speeds of up to 15
Hz, was very different from KASPAR: ‘The design was
purely functional and did not communicate the idea that
it could interact with humans by listening, analyzing, and

Figure 21. The iCub robot.

reacting’ (Weinberg and Driscoll 2007). Haile is a special
purpose drumming robot that can join and improvise with
live professional players. Unlike Haile, which was specifi-
cally designed for performing drumming, KASPAR is using
drumming as a tool for social interaction. Detailed techni-
cal comparisons of KASPAR with Haile or the iCub are
not useful because these all serve very different purposes.
For example, the iCub has been designed for tasks such
as crawling and manipulation, and Haile can achieve im-
pressive drumming performances in terms of speed and
precision.

However, despite KASPAR’s low-precision design, our
studies have shown that it is very suitable for human–robot
interaction studies where speed, precision or complex
movement patterns are not of primary importance, as is
the case in our experiments on drumming games that were
successful in terms of social interaction, imitation and
turn-taking. And it is in such cases that the low-cost robot
KASPAR, which can easily be built and maintained by
robotics researchers, is socially effective and suitable as a
tool for interaction experiments. Also, compared with the
iCub, KASPAR is safer to use in interactions even when
involving children and tactile interactions with people
(cf. Section 4.1.2 where, in the case of children with
autism interacting with KASPAR they often touched the
robot, e.g. stroking or squeezing the cheeks, tapping the
chin etc.). KASPAR moves relatively slowly and cannot
exhibit strong forces, which limits the risks involved
in human–robot interaction6. Even small children can
easily stop, e.g. KASPAR’s arm movements by simply
grabbing its hands/arms, and the coverage of metal parts

6We believe that any device or toy used in interactions with people
can potentially provide a safety risk, e.g. children can choke on
CE-certified commercially available toys. Thus, it is a matter of
reducing risks as much as possible.
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with clothing (or parts of the original mannequin used for
the hands) prevents cuts and bruises.

4.3. Case study III: ‘peekaboo’ – studying
cognition and learning with KASPAR

This last case study illustrates the use of KASPAR II, as
part of the above-mentioned project Robotcub, for the in-
vestigation of cognition and learning. In this section we
provide a brief summary of this research illustrating the use
of KASPAR II. More details about this particular experi-
ment can be found in Mirza et al. (2008).

4.3.1. Motivation

Why use a robot to study cognition? The answer to this ques-
tion defines modern research into Artificial Intelligence and
the mechanisms and processes that contribute to the cog-
nitive capabilities of humans and many other animals. In-
creasingly, the importance of embodiment and situatedness
within complex and rich environments are becoming recog-
nised as crucially important factors in engendering intelli-
gence in an artifact (see for example Clancey 1997; Pfeifer
and Bongard 2007) and the philosophical position regarding
‘structural coupling’ of Maturana and Varela (1987). The
‘embodied cognition’ hypothesis argues that ‘cognition is a
highly embodied or situated activity and suggests that think-
ing beings ought therefore be considered first and foremost
as acting beings’ (Anderson 2003).

That many aspects of cognition are grounded in em-
bodiment is not the whole story though. We want to take a
further step and ask ‘why use a humanoid robot with ex-
pressive capabilities to study cognition?’ In this case, two
other aspects come into play. Firstly, having a human-like
body allows the robot to participate in a social context,
and secondly, in the absence of a language, being able to
evoke emotional responses in a human interaction partner
through facial expressions, the communicative capability
of the robot is greatly enhanced.

In this section we describe research work that uses the
early-communicative interaction game ‘peekaboo’ as a sce-
nario through which aspects of ontogenetic development
(i.e., development over a lifetime through accumulation of
experience) can be studied. The research is focused on un-
derstanding how an interaction history (Mirza et al. 2007),
developed continually over time from the sensorimotor ex-
perience of a robot, can be used in the selection of actions
in playing the ‘peekaboo’ game.

‘Peekaboo’ is a well-known interaction game between
infant and caregiver where, classically, the caregiver, having
established mutual engagement through eye contact, hides
their face momentarily. On revealing their face again the
caregiver cries ‘peekaboo!’, or something similar usually
resulting in pleasure for the infant and cyclic continuation

of the game. Bruner and Sherwood (1975) studied the game
in terms of its communicative aspects showing that timing
is crucial. Moreover, research shows that such games can
serve as scaffolding for the development of primary inter-
subjectivity and the co-regulation of emotional expressions
with others (Rochat et al. 1999).

4.3.2. ‘Peekaboo’ experiments with KASPAR

In order to better understand the experiments, we first pro-
vide brief details on the robot’s interaction history archi-
tecture and its socially interactive behaviour. More infor-
mation about the experiments and results are provided in
Mirza et al. (2008).

4.3.2.1. Interaction history architecture. The interaction
history architecture has at its heart a mechanism for relat-
ing the continuous sensorimotor experiences of a robot in
terms of their information-theoretic similarity to one an-
other. At any time the robot’s current experience (in terms
of the sum of its sensorimotor values for a given period of
time, the time-horizon h) can be compared to those in its
history of interaction. The most similar one from the past
can then be used to extract an action policy that was earlier
successful. The feedback from the environment acts to en-
hance those experiences that result in high reward for the
robot. By bootstrapping the history, by exploring interaction
possibilities, by executing any action from its repertoire,
the robot can rapidly develop the capability to act appropri-
ately in a given situation. See Mirza et al. (2007) for further
details.

4.3.2.2. Actions, feedback and reward. A total of 17 ac-
tions were available to the robot, and these can be con-
sidered in three groups: movement actions (e.g head-right,
wave-right-arm or hide-head), facial expressions (e.g. smile
– see Figure 22) and resetting actions (e.g. reset)7. The fa-
cially expressive actions convey the response of the robot in
terms of the reward it receives. This provides instantaneous
feedback for the interaction partner. Reward is given as an
integral part of the interaction. The human partner encour-
ages the robot with calls of ‘peekaboo’. Such an increase
in sound level combined with the detection of a face by the
robot’s camera-eyes, results in a high reward.

4.3.2.3. Experimental method. The robot faces the hu-
man partner and the interaction history started, initially
empty of any previous experience. Interaction then com-
mences with the robot executing various actions and the
human offering vocal encouragement when thought ap-
propriate, which continues for about three minutes. Three

7The actions that can be executed at any time are restricted for
reasons of practical safety of the robot.
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Figure 22. Facial expressions of KASPAR II. From left –to right: smile, neutral, frown.

different conditions were tried. Firstly, the hid-face be-
haviour was encouraged with a call of ‘peekaboo’ when
the robot revealed its face again. The second condition en-
couraged an alternative action (such as turn-head-left) and
the final condition was to offer no vocal encouragement at
all during the interaction.

4.3.3. Results and discussion

A total of 22 runs were completed. Sixteen of these for the
first condition (encouraging the hiding action), three for the

second one and three for the no-encouragement condition.
In 67% of the cases where reward was given (‘peekaboo’ or
otherwise), the robot repeated the encouraged behaviour. In
the cases where no encouragement was given no repeated
action took place.

Figure 23 shows for the first run (d0032), how the
motivational variables (face, sound and resultant reward)
vary with time, along with the actions being executed.
The interaction partner encourages the first ‘peekaboo’ se-
quence (‘hide-face’ on the diagram). Note that the ‘peeka-
boo’ behaviour is actually a combination of actions to hide

Figure 23. Illustration of results: Example of ‘peekaboo’ encouragement condition. The trace shows, against time, the detection of the
face and audio encouragement as well as the resulting reward. Along the top are shown the actions executed.
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the face (action 6), any number of ‘no-action’ actions (ac-
tion 7) and an action to return to the forward resting position
(action 0) (for clarity only the primary action is shown on
the trace). This results in a maximal reward shortly after the
hide-face action, and as the interaction partner continues to
reinforce the ‘peekaboo’ behaviour with vocal reward, this
pattern can be seen repeated throughout the trace.

The results supported the hypothesis that by encourag-
ing the behaviour the interaction history of the robot would
cause combinations of actions to be repeated in search of
more reward. Furthermore, the exact combination of actions
necessary is not hard coded as other action combinations
can be similarly encouraged. Finally, not providing encour-
agement results in random, non-interactive behaviour. It
was also found that the timings of the feedback and thus
the interaction were important – too early or too late and
alternative actions were encouraged.

4.3.4. Reflections on KASPAR’s design

Any embodied agent engaging in temporally extended inter-
action with its environment can make use of an interaction
history; however, the particular embodiment plays an im-
portant role in managing both the types of interactions that
are possible as well as the expectations of such possibilities
in an interaction partner. As such, the particular design of
the KASPAR series of robots plays an important role. For
instance, bearing a physical similarity to that of a human
infant means that complex speech will not be expected, but
that attention to a human face and sounds might be ex-
pected. Probably, the most important aspect of the physical
design of KASPAR is its expressive face that provides a
mechanism for the robot’s actuators to influence a human
interaction partner just as a robotic arm might influence the
position of an object. However, in terms of the interaction
history, it is also important that the embodiment provides
not only suitable actuators and appearance but also well-
engaged sensory surfaces. These are crucial for providing
information about how the environment is changing with
respect to the actions of the robot. As such, the KASPAR
robots provide both visual and auditory sensors as well as
(in KASPAR II) proprioceptive sensors that feed back in-
formation about the positions of its joints over and above
the controlled position. Overall, this experiment illustrated
the suitability of the robot for quantitative experiments in
cognitive and developmental robotics for research involv-
ing human–robot interaction scenarios where accuracy and
speed of movements is not of primary importance.

5. Conclusion

This paper has described the development of a minimally
expressive humanoid robot – KASPAR. The design ratio-
nale, guidelines and requirements, as well as the design
of the robot itself were described in detail. We also dis-

Figure 24. Assessment of the minimally expressive robot
KASPAR. The continuous scales ranging from low to high pro-
vide a conceptual (not quantitative) assessment. Please note, for
the ‘ease of programming’ category two estimations can be made,
depending on whether one chooses to operate the robot in remote
controlled mode/using the keypad (very easy to operate even by
children), or whether the robot is used by researchers to develop
new software (requires computer science knowledge).

cussed our approach in the context of related research work
on socially interactive robots. While a detailed compari-
son of KASPAR with other robots, as well as experimental
investigation comparing the suitability of those robots in
human–robot interaction studies, go beyond the scope of
this paper, in the following part we conceptually assess
KASPAR (see Figure 24) according to different continu-
ous scales ranging from high to low. We propose these
dimensions as relevant assessment criteria for the design
of humanoid (or other) robots used for multiple purposes
involving interaction with people.

KASPAR affords a variety of usages for human–robot
interaction studies in the laboratory or in schools, in being
able to provide a high degree of expressiveness and ability
to carry out interaction games. Disadvantages of KASPAR
concern the technical constraints on its movements in terms
of speed, precision etc.; however, these issues are usually not
crucial in more socially oriented human–robot interaction
research. Note that the ‘mobility’ of KASPAR (i.e. ease of
transport) and suitability for a variety of interaction sce-
narios (see section 4) and application areas are important
to the field of human–robot interaction, as most existing
robotic platforms are still limited to usage in the laboratory
and need to be set up and operated by highly trained staff.
KASPAR belongs to a new category of more ‘user friendly’
and (relatively) inexpensive robots that can be constructed
by robotic students and researchers with no specific expert
knowledge in humanoid robotics.
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Generally, any robot designed for human–robot inter-
action scenarios is likely to have strengths and weaknesses
depending on the particular requirements given by their
application context. However, the assessment criteria pro-
posed here may also be applicable to other robotic platforms
and thus allow a matching of requirements posed by appli-
cation contexts and robot abilities.

We hope that this paper has served multiple purposes:

• A detailed account of the design of a minimally ex-
pressive humanoid research platform that will inform
other researchers interested in such designs.

• An introduction of key issues relevant in the design
of socially interactive robots.

• An illustration of the use of the robot KASPAR in
a variety of research projects ranging from basic re-
search to application-oriented research.

• A discussion of the advantages and disadvantages of
the socially interactive robot.

To conclude, designing socially interactive robots re-
mains a challenging task. Depending on its envisaged pur-
pose(s) different designs will be of different utility. Building
a robot for a particular niche application is difficult, building
a multi-purpose robot primarily for social interaction, as we
did, is a huge challenge. The solution we found in KASPAR
(and its offspring that already exists and new versions that
are in the making) cannot be ideal, but it has served not only
its original purpose but also exceeded our expectations to an
unforeseen degree. The project to build KASPAR started in
2005 and was envisaged as a two-month, short-term project
for a small study on humanoid expressiveness, and it was
also the first attempt of our interdisciplinary research group
to build a humanoid robot. We succeeded, as evidenced by a
large number of peer-reviewed publications emerging from
work with the robot. And KASPAR has been travelling
the world to various conferences, exhibitions and therapy
centres. But how to develop believable, socially interactive
robots, in particular robots that can positively contribute to
society as companions and assistants, remains a challeng-
ing (research) issue. We are still learning, and by writing
this paper we would like to share our experiences with our
peers.
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Appendix A

Head design and construction
The head was designed to mount and support the face mask and
provide actuation for the facial expressions. The neck has three
main DoFs: pan, tilt and roll8 (see Figures A1 and A2). This did
not provide the same flexibility or range of movements possible by
a real human (multi-jointed) neck, but allows the robot to express
simple head gestures, such as shaking (side to side), nodding (up
and down) and tilting (head to one side).

The head also provided another three DoFs for the eyes:
eyes up/down, left/right, and eyelids open/close (Figure A1, A3).
Miniature video cameras were also mounted in the eyes (Figure
A4). Another two DoFs actuated the mouth; mouth open/close,
and mouth smile/sad.

The video cameras incorporated into Kapar’s eyes are
miniature-type cameras, both with a 1/4 inch B & W CMOS
Image sensor producing a PAL output of 288 (H) × 352 (V) with
an effective resolution of 240 TV lines, 1/50 to 1/6000 shutter
speed, sensitivity of 0.5 lux/f 1.4. The physical dimensions are
approximately 20 × 14 mm (excluding lugs) with a depth of 25
mm and a weight of approximately 25 g. Three wire connections
are available: red = +ve (DC 9 to 12 V, 20 mA max), black =
common Gnd and yellow = video out.

The head frame was constructed mainly from sheet alu-
minium, with custom-machined components produced for the
universal joint at the neck. The individual parts are bolted to-
gether with machine screws and nuts. The RC servos used were
mounted on the head frames by means of screws, and transmis-
sion of actuation to the neck, face and eyes achieved by means of
push-rods (Figure A5).

All the wiring to the servos used the standard three-wire RC
connectors and extensions. The video camera wiring was made
using fine twin (+Vs and signal) core screened (0 V) flexible
cables. Strain relief for the wires was made at the neck joint by
means of cable ties (Figures A2 and A5).

Arms design and construction
The arms were constructed from standard kit parts, which are now
available to hobbyists at a reasonable cost for making directly
driven joint and link chains from standard size RC servos. The
forearms from the original shop dummy were mounted on 6 mm
machine screws, and attached to form the hand end of the arms
(Figure A6). The shoulder ends of the arms were mounted on
plates bolted into the shoulders of the shop dummy (Figure A7).
The arm wiring consisted of standard RC three-wire connections
from each servo back to the controller board, with strain relief
provided by cable ties at appropriate points.

Controller
The controller interface board used is a LynxMotion SSC32 Servo
controller board (cf. LynxMotion (2007), Figure A8, right), with
the ability to control up to 32 servos simultaneously. Only 16 ser-
vos are used for KASPAR’s movements, so there is the possibility

8In fact, the neck joints would normally be described as pan,
tilt and yaw. However, because of the unusual configuration of
KASPAR’s neck linkage, the configuration could be more cor-
rectly described as one pan, and left and right compound tilt/yaw
movements.

Figure A1. KASPAR’s head with silicon rubber face mask
removed.

to use additional servos in future enhancements. The board inter-
faces the host computer via an RS232 serial port, which is mostly
not provided as standard on most modern PCs or laptops. There-
fore, a small RS232 to USB adaptor board is also included inside

Figure A2. Rear view of head showing wiring and neck joints.

Figure A3. Detailed view of eye actuator linkages.

Figure A4. Miniature video cameras are fitted in each eye.
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Figure A5. Top view of head showing actuator transmission link-
ages and wiring.

Figure A6. View of arm showing original shop dummy hand
attachment.

KASPAR to provide a standard USB interface. Both controller and
adaptor board are mounted on an aluminium backplate, which also
provides mechanical protection and access to KASPAR’s internal
systems (Figure A8, left).

Power
For safety, KASPAR is run from two low-voltage lead acid gel
batteries. The servo actuators are powered from 6 V, 4 AH battery,
and the controller, logic and cameras are supplied by a smaller 12
V, 1 AH battery. Both batteries are protected from short circuits
and overload by in-line slow-blow fuses. The main 6 V power fuse

Figure A7. Arm is attached at shoulder end by plates fixed in the
dummy body.

value has been set deliberately low (15A) to avoid overloading
and subsequent burnout of the expensive high torque shoulder
RC servos when manhandling by clients occurs. The batteries
are re-charged by two separate chargers, which are connected to
KASPAR’s batteries by different styles of plug to ensure correct
connection. The 6 V charger does not have the capacity to keep the
main motor power battery fully topped up while the robot is being
used intensively, but if left connected while in use does increase
the working time of the robot from about one hour to one and a
half hours.

Appendix B

KASPAR II
KASPAR II uses colour video cameras, otherwise the specification
of the cameras is identical to those used for KASPAR I, except
they are slightly larger with dimensions of 25 × 15 mm and a
depth of 20 mm.

KASPAR II’s arms use five (one extra over KASPAR I) RC
servos apiece, as each incorporates an extra wrist (twist) DoF.
The arm links and fittings are custom-made from 1.5 mm thick
aluminium sheet, which produces a cleaner, standardised design,
avoids the sharp edges which are a feature of the kit linkage
parts for KASPAR I and also incorporates extra brackets to mount
additional joint position sensors.

Figure A8. Rear view of KASPAR showing the back plate cover (left); controller board (right).
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KASPAR II has arm joint position sensors that provide
real-time feedback of the arm positions to the control com-
puter/programme. This is achieved by mounting standard 10 K
� rotary potentiometers on each arm joint, providing a 0–5 V
DC analogue signal proportional to the respective arm joint posi-
tions. The analogue signals are then converted by two 8-channel
Phidgit USB analogue to digital converters (ADC) which incor-
porate USB ‘pass through’ connectors allowing them to be ‘daisy-
chained’ directly onto the standard USB bus to the host control
computer.

Since the original dummy body used for KASPAR I was tem-
porarily no longer available for purchase, the dummy body used
for KASPAR II is one modelled after a larger approximately six-
year-old child, which provides more physical space to accommo-
date the extra sensors and interface electronics. There is a hole
in the chest, with suitable brackets where a Swiss Ranger 3000
(SR3000) general purpose range imaging camera may be mounted
enabling straightforward measurement of real-time depth maps.
It uses the on-board power supply (12 VDC, 1A max) and in-
terfaces to a host computer via a mini USB 2.00 connection.
The specifications are as follows: 176 × 144 pixels, field of
view 47.5◦ × 39.6◦, range up to 7.5 m (for 20 MHz modula-
tion), lens f/1.4, illumination power (optical) = 1 W (average
power) at 850 nm and physical dimensions 50 × 67 × 42.3 mm
(aluminium).

The head mechanism is identical to that used for KASPAR
I, although the wiring is made through connectors to allow easy
removal and servicing.

Upgrades, changes and planned future
improvements
The limited time for which KASPAR can be operational between
re-charges has been a problem, and it is desirable to increase the
main 6 V battery life. This could be achieved in a number of
ways, either by reducing the power requirements of the robot, or

by using a larger capacity 6 V battery or charger. Currently, the
fuses are mounted internally and require removal of the back plate
for access. A relatively simple change would be to use panel-
mounted fuses with external access, which would allow operators
to change the fuse easily. A more long-term solution would be the
incorporation of a flexible current limiting circuit.

While speech interaction is not the main focus of our research,
other future applications would like to incorporate speech synthe-
sis, which could be achieved using a dedicated speech synthesis
module via the on-board USB adaptor. An on-board microphone
for recording interaction partners’ speech and sound would be
convenient, but the noise generated by the robot may make usage
difficult. Both these functions may also be achieved very simply by
the incorporation of a loudspeaker and a microphone on the robot
which could then be connected to the host computer soundcard
input and output connections.

The seven different types of servos originally used have now
been standardised to just three types. The four shoulder servos
and the base neck servo are high torque types ( HiTec 645 MG)
and typically cost three times as much as the same sized servos
(HiTec HS-422) used for other joints. A single small micro-sized
servo (a Supertec NARO HPBB) is used for the pan movement
of the eyes. The main limitations with regard to using these RC
servos are the relatively poor accuracy obtained and the lack of
control feedback. These deficiencies have now been remedied
to some extent in new generation servos aimed specifically at
the hobby robotics market, but these were not available when
KASPAR was designed and built. A review of these new servo
types would probably allow the replacement of the original servos
with more capable ones, though it is likely that they would be
more expensive and require some redesign of the head and arm
parts.

The SSC-32 controller has the capacity to potentially control
another 16 RC servo actuators. This might be used to add ad-
ditional facial expressions, or leg movements (for gestures only
rather than locomotion in order to maintain the simplicity of the
design).
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I. INTRODUCTION

Social interaction plays a vital role in a child’s development.
At an early age, children acquire basic social skills, such as
mutual gaze and turn-taking, that serve as a scaffold for more
sophisticated forms of socially-mediated learning, including
language. Children learn these skills through interaction with
their caretakers, motivated by intrinsic social drives that cause
them to seek out prolonged social engagement as a fundamen-
tally rewarding experience. It is desirable to have robots learn
to interact in a similar manner, both to gain insight into how
social skills may develop and to achieve the goal of natural
human-robot interaction. This paper describes a system for the
learning of behavior sequences based on rewards arising from
social cues, allowing the iCub, a childlike humanoid robot
with a developmentally-inspired design, to engage a human
participant in a social interaction game.

II. SOCIAL CUES

A. Visual Attention
Gaze is a powerful social cue. It is also one that becomes

socially significant at an early developmental stage; even
young infants are responsive to other’s gaze direction [1]. The
simplest gaze cue, and one that is the basis and developmental
precursor to more complex gaze behaviors such as joint
attention, is the recognition having another’s visual attention
[2]. This ability is crucial in a social context, as it provides
valuable feedback about whether one is interacting with (or
has the potential to interact with) someone or whether you are
disengaged and merely sharing the same space. While there
has been work done in the field of robotics using human gaze
patterns to reproduce natural-appearing gaze in robots [3], [4],
there has been no work explicitly modeling the role of gaze as
a form of social feedback that may guide the robot’s overall
behavior. In this system, a gaze tracker worn by the human
participant is used to collect gaze direction data in real time as
sensor input for the robot (and a potential source of reward).

B. Turn-taking
Turn-taking plays a fundamental role in regulating human-

human social interaction and communication whereby role-
switching and the dynamics are not determined by external
forces but emerge from the interaction. It has vital implications
in many areas like robot-assisted therapy, especially in studies

related to children with autism, where turn-taking games have
been used to engage the children in social interaction [5]. Turn-
taking is a skill that children begin to develop early in life.
Caretakers teach infants how to engage in turn-taking through
interacting with them [6]. The cues that regulate turn-taking
are multimodal, and may be either general or task-based.

We hypothesize that fluid turn-taking requires attention to
the recent history of both one’s own and the other’s actions in
order to anticipate and prepare for the shift in roles. In light of
this, the robot’s control architecture incorporates a short term
memory over the recent history of sensor data relevant to the
regulation of turn-taking (to be described in Section IV). Two
forms of non-verbal turn-taking are supported in this interac-
tion, drumming and peek-a-boo. Drumming allows the human
and robot to engage in turn-taking with clearly defined and
easily detectable beginnings and endings. Studies on emergent
turn-taking in a drumming interaction have been carried out by
the authors previously using a similar childlike humanoid robot
[7]. Peek-a-boo is more ambiguous (given sensing limitations)
but well understood by human participants, and has also been
studied before in embodied human-robot interaction [8].

III. THE INTERACTION HISTORY ARCHITECTURE

This research extends past work on the iCub using the
Interaction History Architecture (IHA). IHA is a system for
learning behavior sequences for interaction based on grounded
sensorimotor histories. While the robot acts, it builds up
a memory of past “experiences” (distributions of sensors,
encoders, and internal variables based on a short-term temporal
window). Each experience is associated with the action the
robot was executing when it was recorded, as well as a reward
value based on properties of the experience. These experiences
are organized for the purpose of recall using information
distance as a metric. As the robot acts, the most similar past
experience to its current state is found, and new actions are
probabilistically selected based on their reward value. For a
full description of the architecture, see the journal article [8].

IV. SHORT TERM MEMORY

In addition to a dynamic memory of sensorimotor experi-
ence and associated rewards, it is also useful to have a more
detailed, fully sequential memory of very recent experience.
This is especially true for skills such as turn-taking, where



Fig. 1. A person interacts with the iCub using the gaze tracker and drum.

the recent history of relationships between one’s own and
another’s actions must be attended and responded to. While
the experience metric space preserves some ordering of experi-
ences (so that rewards over future horizons may be computed),
there is not a mechanism to recall the most recent experience,
only the most similar. Additionally, experiences aggregate data
over a window of time, eliminating potentially useful fine-
grained information about changes in sensor values. The short
term working memory preserves temporal information about
the sensorimotor data over the span of several past experiences.
This is especially important for guiding social interactions
as it allows rewards to be designed based on these histories
of interaction, rather than just the instantaneous state of the
interaction that the robot is currently experiencing.

V. DEVELOPING SOCIAL INTERACTION

In order to demonstrate these concepts, rewards based on
social drives are designed to influence the development of
behaviour in an open-ended face-to-face interaction game
between the iCub and a human. This work is an extension
of an earlier application of IHA to the learning of the game
peek-a-boo on the iCub to allow more types of interaction and
social cues. The human participant interacts with the robot
and may provide it with positive social feedback using their
presence and gaze direction, as well as by playing a drum. The
rewards representing these social drives for human presence,
visual attention, and synchronized turn-taking may be based
on the current state of the robot’s sensorimotor experience
or on the history of experience represented in its short term
memory. The robot uses this feedback to acquire behavior that
leads to sustained interaction with the human.

The robot comes to associate sequences of simple actions
and gestures, such as waving or hitting the drum, executed
under certain conditions with successful interaction based on
its past experience. The pre-defined actions that the robot
chooses among may be either low-level motions that don’t
have meaning except as part of a sequence or movements
that have an (implicit) goal, such as an arm motion to hit
the drum. There is no distinction in how these actions are
represented internally to the architecture, and both kinds of
actions may make up parts of learned behavior sequences.
The extended Interaction History Architecture is intended to
support the robot developing different socially communicative,
scaffolded behaviours in the course of temporally extended
social interactions with humans by making use of social

drives and its own first-person experience of sensorimotor flow
during social interaction dynamics.

VI. FUTURE WORK

The role of learning in this system is currently restricted
to learning the experience space and the associations between
experiences and rewards in order to find effective behavior
sequences . But there are many opportunities to extend the role
of learning in this system to produce social behavior in a more
developmentally plausible manner. While the relationships
between sensors monitored for feedback about turn-taking
were predefined in this case, one could instead use statistical
methods to discover which sensor channels are associated and
predictive of one another. This would allow for task-specific
turn-taking cues to be discovered, as well as general task-
invariant cues. And while gaze is used in this system as a
form of social feedback, the robot has no active gaze behavior.
It would be interesting to learn action sequences for gaze
behavior as well, especially gaze used to regulate turn-taking.

There is also the opportunity to engage in meta-learning
about the learned behavior sequences. The topology of the
experience metric space could be used to make generalizations
about experiences, using the clustering of experiences to
identify closely related behaviors or interactions. The ability to
make aggregate representations of these clusters that capture
their fundamental properties could reduce the computational
cost of finding similar experiences, while possibly allowing
for more powerful predictions based on current experience,
opening up the potential of anticipating the actions of others
or even recognizing intent.
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