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1 Introduction: Before Gesture and Communication

1.1 Executive Summary

This document is the second deliverable for D6.1, comprising a summary of the research work in
grounding gesture communication and results from robotic models and experiments. We report on
ongoing research in development and use of gestural communication using interaction histories in
social games, perception of robot expressions using KASPAR an interactive robot developed at the
University of Hertfordshire, adaptation of a robot to detected styles of play, and work to develop an
eye-contact detection module for the iCub.

We present results from a study of interaction dynamics between a human and a robot that devel-
ops the capacity to play the early learning game “peekaboo” using an underlying interaction history
based control architecture. A robotic model was developed that uses a history of interactions to direct
future actions extending earlier work in this work package. The interaction history is realised as a met-
ric space of sensorimotor experiences based on the informational relationships between experiences.
“Peekaboo” is important as it is considered to contribute developmentally to infant understanding
and practice of social interaction, providing the scaffolding upon which infants can co-regulate their
emotional expressions with others, build social expectations and establish primary intersubjectivity
[28]. Study of the rules, timing of gestures, and the ontogeny of such games in a artificial agents will
enhance our understanding of the mechanisms of the development of early gestural communication
capabilities.

We report on research in how the interaction between a human and robot can be affected by the design
of the face and in particular the perception of certain robotic expressions (in particular the smile). This
is important in laying the basis for communicative interactions using facial expressions and gestures.
KASPAR, the expressive, interactive humanoid robot platform for studying human robot interaction
and kinesics developed at Hertfordshire, is used in these trials as well as in the child-robot interaction
studies reported in deliverable 5.4, and we report here on the progress in its development.

We present a proof-of-concept of a robot adapting its behaviour on-line during interactions with a
human according to detected play styles. Play is important as a vehicle for learning and developing
skills in a variety of areas including communication and social skills. In the context of autonomous
robots using play in development, it is useful for the robot to be able to engage in different styles of
play both within a single developmental stage and between stages.

1.2 Relation to Project Objectives

Deliverable 6.1 and work conducted in WP6 contributes primarily to PO-3 (as stated in Annex 1,
Section 2), that is “the study and implementation of early stages of human cognitive development in an
embodied artificial system”. Specifically, it focuses on parts iv and v, that is, “learning and regulating
interaction dynamics” and “developing autobiographic memory based on interaction histories”.
The further development of the dynamically constructed, embodied interaction history grounded in
the sensorimotor experience of the robot, with extension to predicting and directing future action
contributes to the construction of a shared autobiographic memory and interaction history as detailed
in PO-3-v. Further, the study of the “peekaboo” gestural communication scenario contributes to the
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learning of interaction dynamics as stated in PO-3-iv.
In relation to the specific project objectives (Annex 1, Section 8) the work in this deliverable con-
tributes to SO-3 (b) “the ability of understanding and exploiting simple gestures to interact socially”.

1.3 Approach and Motivation

We take a bottom-up approach to studying gesture and communication, starting from signalling and
interaction at a local level and exploring emerging interactional structure. Our study is based on a
model of cognition as the development and activity of an embodied dynamical system structurally
coupled to its environment, which develops in sophistication in response to a history of interactions
with the environment (including the social environment). Cognitive structures arise from the recurrent
sensorimotor patterns that enable and scaffold increasingly complex perceptually guided interaction.

Trevarthen [31] describes the importance of rhythm and timing and inter-subjectivity in early commu-
nicative interactions of infants with a caregiver, and terms these protoconversations. Motivated by this
viewpoint we propose looking at how a robotic agent can develop capabilities to engage in these kinds
of protoconversations with a human partner, and choose early interaction games such as “peekaboo”
as vehicles for this study.
In terms of mechanisms by which communicative interaction and supporting cognitive processes can
come about, we are motivated in particular by embodied dynamical systems and their development
[30, 8, 14]. Non-linear dynamical systems show stable states, attractors and transitions between them.
The activity and stability of a dynamical system is governed by system parameters and changes in
these parameters cause transitions between attractors. Cognitive processes and in particular remem-
bering can be understood in these terms with the attractors of the system being memories, recall of
which is caused by (sensory or internal) inputs to the system causing transitions between stable attrac-
tors and states.
A characteristic of the cognitive systems of human infants is that they do not base actions only on
immediate sensor input. Instead, as for post-reactive systems in general, they are able to act on a
wider time-horizon [23] basing actions on a history of previous interactions. Furthermore they base
actions on predictions of sensory inputs and states of the world, and this extension of the time-horizon
into the future goes from sub-second predictive movement of muscles through expectations of future
world and personal states to types of planning and goal directed action.
Our approach recognises that this wide temporal horizon is grounded in the sensorimotor experience
of the agent, and this motivates research into defining a behavioural model which has at its core
a dynamically created and recreated interaction history that emerges from the sensorimotor flow of
information. New experience is compared using information theoretic concepts to known experience
and used to guide and predict future behaviour and interaction. Representation and significance of
events within this history are emergent quantities arising from interaction with the environment and
natural reward systems.
An important aspect of our approach is for any history of sensory input, actions and interactions
to be without externally imposed representational constraints. This is motivated by the desire to
ground any internal structure in the sensorimotor coupling with the environment and to circumvent
the symbol-grounding problem1. From the perspective of cognition as the development and activity
of an embodied dynamical system, the experiential history consists of time-extended structures in

1The symbol grounding problem refers to the difficulty in connecting the semantics of arbitrary symbols to real world
entities or events [1], this is not to say that there are no symbols, only that they are sufficiently well grounded.
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the sensorimotor space and the space of experiences (described below) is organised on the direct
sensorimotor history of the agent.

2 Research Areas: Interaction Histories

2.1 Peekaboo Early Interaction Game

The development of gestural communication skills is grounded in the early interaction games that
infants play. Therefore in the study of the ontogeny of social interaction, gestural communication
and turn-taking in artificial agents, it is instructive to look at the kinds of interactions that children
are capable of in early development and how they learn to interact appropriately with adults and
other children. A well known interaction game is “peekaboo” where classically, the caregiver having
established mutual engagement through eye-contact, hides their face momentarily. On revealing their
face again the care-giver cries “peek-a-boo!’, “peep-bo!”, or something similar. This usually results
in pleasure for the infant which, in early development, may be a result of the relief2 in the return of
something considered lost (i.e. the emotionally satisfying mutual contact), but later in development
also may be a result of the meeting of an expectation (i.e. the contact returning as expected along with
the pleasurable and familiar sound), and the recognition of the pleasurable game ensuing [21, 32].
Bruner and Sherwood [5] studied peekaboo from the viewpoint of play and learning of the rules
and structures of games. They also recognise that the game relies on (and is often contingent with)
developing a mastery of object permanence as well as being able to predict the future location of
the reappearing face. We suggest that the parts of the game can be viewed as gestures in a largely
non-verbal communication. The hiding of the face is one such gesture, and the vocalisation, and the
showing of pleasure (laughing) are others. In order for the protoconversation to proceed successfully,
the gestures must be made by either party at the times expected by the players, and the absence or
mistiming can result in the game cycle being broken. Learning of the game is supported by further
gestures such as a rising expectant intonation of the voice during hiding, as a reassurance or cue of
the returning contact. Later in development the roles of the game can become reversed with the child
initiating the hiding, while still obeying the established rules by, for instance, uttering the vocalisation
on renewed contact.
In all this, the rhythm and timing of the interaction are crucial and, Bruner and Sherwood suggest
that the peekaboo game and other early interaction games act as scaffolding on which later forms
of interaction, particularly language and the required intricate timing details can be built [26, pp.
424-425].
In relation to the development of social cognition in infants, “peekaboo” and other social interaction
games that are characterised by a building and then releasing of tension in cyclic phases are important
as they are considered to contribute developmentally to infant understanding and practice of social
interaction. Peekaboo provides the caregiver with the scaffolding upon which infants can co-regulate
their emotional expressions with others, build social expectations and establish primary intersubjec-
tivity [28].

2.2 Interaction History Architecture

We describe an architecture where an embodied robotic agent can make use of an interaction history
to guide ontological development to act appropriately in a changing environment. The direct senso-

2In the context of humour, peekaboo in its early stages is an example of relief laughter. That is relief that the caregiver
that is thought to have disappeared, actually has not [32].
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Figure 1: Schematic of the Interaction history based control architecture.

rimotor motor history of the agent is used to create grounded experiences of different lengths which
can be compared with one another using a metric measure based on the information distance between
them. The agent acts on the basis of its experiences and the choice of action depends, in part, on the
feedback of reward from the environment. This architecture was initially explored in [19], where the
efficacy of the experience space was verified by the robot’s use of the history to predict the future
position of a ball.
To relate experiences with other experiences in an interaction history, we use information distance
measures [29, 6] and a mathematical concept of experience and the relations between them. These
are defined in [24] (See Appendix A). Information distance related techniques have been successfully
used in the past, for instance, to compare behaviours from the perspective of the agent [17, 13] and
for an agent to infer a model of its own sensory and actuator apparatus by acting in the environment
[25]. This suggests that behaviour can be guided by moving in a continually constructed space of
experiences by selecting appropriate actions that will move the agent closer to particular experiences,
return to familiar ones and explore new ones [18].

We describe a computational model (Figure 1) that demonstrates how such interaction histories can
be explicitly integrated into the control of a robot. The basic architecture consists of processes to
acquire sensory and motor data from the robot as it acts in the environment. From this a metric space
consisting of past interaction experiences is constructed by comparing new experiences to previous
ones in terms of their information distance. A process then selects past experiences near (i.e. with
low information distance) to the current experience. The selection is also based on the values of
internal variables that change according to a motivational system. The action following the chosen
past experience becomes the next action of the agent. Finally, there is an internal feedback process
that adjusts the values of internal variables associated with any experience when it has been used to
select future action, making it more or less likely to be chosen in the future.
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For a more detailed description of the interaction history architecture see published papers [19, 20]
reproduced in Appendix B1.1 and B1.2.

2.3 Experiments with the Interaction History Architecture

Experiments were conducted using an implementation of the Interaction History Architecture realised
in a Sony Aibo robot. The robot interacted in controlled conditions with both a human subject or a
fixed image of a human face. An initial experiment established the efficacy of the metric-space of
experience using a simple task of predicting the path of a ball by matching the relevant experience
from the history of experiences. A second preliminary study assessed the architecture as a whole in
controlling a robot in playing peekaboo with a human partner. A third experiment investigated the
effect of the horizon length of experiences on the ability to play the game and was conducted using a
static image of a face for the robot to interact with.
In these experiments the role of the vocalisations as encouragement is replaced by an internally gen-
erated dynamic system of variables altering in response to key stimuli, i.e. presentation of a human
face.

2.3.1 Experiment 1: Metric-space and ball prediction

Given a robot acting in an environment, how well can it predict future events based on its recent
history of experience?
In this experiment the metric space of experience was tested in absence of the action control loop. The
experimental condition was that the robot was stationary, and a pink ball was moved in the air in view
of the robot’s visual system. The path of the ball in each trial included repeated vertical, horizontal
and circular movements. The robot was equipped with software that could localise the position of the
centre of the ball with respect to the video frame.
The sensorimotor experience of the robot used to create experiences consisted of all sensor values
(including IR distance and buttons) and motor positions. Visual sensory flow was derived by extracting
average red colour values in 9 regions of the video frame. Additionally the horizontal and vertical
location of the ball constituted two further sensors.
The time for the ball to describe a circle (or to move horizontally or vertically for a complete cycle)
was approximately 6000ms, and the horizon length of the experiences in the experiment was approx-
imately 4800ms or 40 timesteps of 120ms duration. Thus the horizon length was shorter than, but on
the same scale as a single cycle of the repeated behaviour and the experiences would comprise 4

5 of a
cycle.
It was found that the experience matching was successful in that the matched experience corresponded
well with the current experience such that, projecting forward, the subsequent ball position could be
correctly determined. For full results and discussions see [19] reproduced as Appendix B1.1.

2.3.2 Experiment 2: Peekaboo with human partner

This second experiment utilised the full interaction history architecture to control the actions of the
robot by referring to a developing space of experience from which to select actions. The scenario
was the peekaboo game described where the robot played the role of the child in the later version of
the game where the child hides its face. The game was simplified to not include an audio component
which, along with the emotional dimensions of expression generation and recognition has the func-
tion of providing encouraging motivation to ensure continuation and reward for participating. This
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was replaced by an internally generated motivational subsystem that was driven by coupled sets of
equations controlled by the presence or absence of a face in the view of the robot’s camera. The
motivational subsystem had the characteristic that the presence of a face alone would not result in a
very high values for the motivational variables but repeated disappearance and reappearance of a face
would result in increasingly higher values.
The experiences stored in the history were tagged with the value of the motivational variables and
this, in combination with the proximity of experiences to the target (current) experience, provided
a selection criteria for a similar high valued experience. The action taken following the selected
experience was chosen as the next action for the robot. Where a suitable experience could not be
found (as was more likely in the early interactions) then a random choice of action was taken. This is
similar to a form of body babbling [16] and serves to explore the possibilities offered by interaction
with the environment.
The results from this trial showed that it was possible for the robot to choose a series of actions that
resulted in peekaboo-type behaviour (i.e. the robot repeatedly hiding and revealing its face) when
faced with a human partner. The experience space was observed to have been modified enhancing
certain specific experiences. Again for full results and discussions see [19], Appendix B1.1.

2.3.3 Experiment 3: Effect of horizon length

The purpose of this investigation was initially to evaluate whether the model for development based
on interaction history performed better than random action selection for the task of playing the game
of peekaboo. Secondly, the hypothesis that the horizon length of experience would affect the ability
to develop the capacity to play the peekaboo game was tested by trying a number of different horizon
lengths in a controlled experiment. The hypothesis was that the horizon length of experience needs
to be of a similar scale to that of the interaction in question. If it is too short, the experience does
not carry enough information to make useful comparisons to the history. If it is too long, then the
interesting part of the interaction becomes lost in the larger experience.
This experiment again utilised the simplified peekaboo scenario with the internal motivational system
replacing the audio and emotive components of the interaction, however in this case the human partner
was also replaced with a static image of a face.
Six trials of 2 minute duration for each horizon length of 8, 16, 32, 64 and 128 timesteps (0.96, 1.92,
3.84, 7.68 and 15.36 seconds respectively) were run. For comparison, a further 6 trials were run where
the action selection was random and not based on history. In each of the trials the experiential metric
space started unpopulated.
Key results were firstly that despite the random action selection resulting in short periods of peekaboo-
type behaviour, that longer sustained peekaboo-type behaviour only occurred in the experience driven
trials. Furthermore there were specific situations in the experience driven trials where an interrupted
peekaboo sequence was recommenced on seeing a face, whereas for the random trial, no clear rela-
tionship between seeing a face and playing of peekaboo was seen. A second important result was that
the horizon length of experience that results in the peekaboo cyclic behaviour was indeed of the same
order as that of the length of cycle itself. This would indicate a need for an experience space that
was built up of many different horizon lengths, thus covering different periods of cyclic or recurring
behaviour, and for methods for adaptive selection of appropriate temporal horizons.
The experimental results are published as [20] and are reproduced as Appendix B1.2 to this report.
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3 Research Areas: Interactive Humanoid

3.1 Introduction

As robots enter everyday life and start to interact with ordinary people, questions surrounding their
appearance [10], expressions [4], and of the regulation of interaction dynamics between human and
robot are becoming increasingly important. Our perception of a robot can be strongly influenced by
its general appearance and in particular its facial appearance.
We conducted research with the goal of advising on robot design for the purposes of human-robot
interaction (HRI) in developmental robotics, and synthesising relevant ideas from narrative art design,
the psychology of face recognition, and recent HRI studies into robot faces. We discuss the effects of
the uncanny valley and the use of iconicity and its relationship to the self-other perceptive divide, as
well as abstractness and realism, while classifying existing designs along these dimensions.
KASPAR, a minimally expressive HRI research robot being developed at the University of Hertford-
shire provides a test-bed for some of these concepts and we discuss the current state of development.
The first study using KASPAR looked at human perceptions of robot expressions (smiles) was con-
ducted and is discussed below.
The robot KASPAR has also been used to support a series of “Wizard-of-Oz” type of experiments
where KASPAR interacts via non-verbal communication with typically developing children and chil-
dren with autism. The results of trials studying the kinesics, or rhythm and timing of non-verbal
gesture and communication, are reported in deliverable D5.4

3.2 KASPAR - Progress Report

During RobotCub meetings and discussions in 2005 it became apparent that the issue of facial ex-
pressions had not been addressed specifically in the original workplan, in particular the use of an
articulated face and the effect of expressions as a feedback device for people interacting with the
iCub had not been considered. To investigate these issues as part of task 6.2 (early communication
behaviours) it was agreed by the RobotCub coordinator that University of Hertfordshire will pursue
a small scale pilot study into minimal expressiveness in a humanoid robot head, due to the group’s
expertise in social robotics, human-robot interaction as well as affective computing and expression
through interaction in robots.
As a result, Hertfordshire developed KASPAR during the second half of the first year, a low-cost child-
sized humanoid HRI research robot to perform research into fundamental communication behaviour.
In the second year, control boards and camera capture devices were integrated into the robot. Software
was developed to control the low-level function of the motors and capture of video images. Further
API software was developed to allow the robot to be controlled using a Wizard-of-Oz paradigm,
providing the operator the ability to programme and recall gestures and assign them to keystrokes,
and also for later autonomous functioning.
The hardware was enhanced to include two articulated 3 DOF arms with fixed (moulded) hands. This
allowed the robot to execute a wider range of gestures and carry out tasks such as playing a drum.
Further development is planned to include simple hands with cable driven digits. There will be in-
dependent control of the thumb and forefinger with the distal 3 fingers tied and controlled together.
Software development planned includes wrapping the control software in YARP2 for the purpose of
compatibility with RobotCub software.
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3.3 Design of Robot Faces

The effect of the aesthetic design of a robot is an area of scientific study that has often been neglected
in the past. A notable exception is the ‘uncanny valley’ proposed by Masahiro Mori [22, 9] suggesting
that the acceptance of a humanoid robot increases as realism increases, but with a catastrophic fall
in acceptance just as the robot approaches human-like realism. In more recent work DiSalvo an
colleagues [10] proposed that human robot design should balance considerations of ‘human-ness’,
‘robot-ness’ and ‘product-ness’ to manage the user acceptance of the robot.
In consideration of the human face, studies would suggest that symmetry, youthfulness and skin con-
dition are important factors in perception of attractiveness [12] (although there are claims to the con-
trary, see [27]). In his book Understanding Comics [15], Scott McCloud introduces a triangular design
space for cartoon faces, placing faces in a space where the extremes represent realistic, iconic and ab-
stract faces. Dautenhahn suggests that the more iconic a face appears, the more people it can represent
and so can aid believability [7].
This design space can be used for interactive and developmental robot designs, and may prove in-
formative in choosing appropriate designs for different niches of robots. For instance, if a robot is
required to carry out tasks on a person’s behalf, then an iconic design may possibly allow the user to
project themselves onto the robot and gain acceptance of the robot’s role. This is further discussed in
[3] and [2] (included as Appendix B2.1).

3.4 Experiment - Perception of Robot Smiles

A study was conducted to investigate people’s perception of the expressions made by KASPAR, and
in particular the smile. This would provide a necessary baseline to inform future experiments where
KASPAR’s expressions will be used in interaction dynamics experiments.
The experiment presented subjects with videos of KASPAR smiling and asked them to rate the smile
for perceived “happiness” of the robot, and the how “appealing” the smile looked. Parameters that
were manipulated were the ‘size’ of the smile and the transition time from a neutral expression to the
smile, with a static image of the various smiles and the neutral expression providing further conditions.
The hypotheses were: that static expressions would appear less appealing than dynamic transitions,
that natural transition speeds would be more attractive than abrupt transitions, and that the larger the
smile, the better would be the recognition of happiness in the expression. The results supported all
three hypotheses, with the finding that, although static expressions appear less appealing than natural
speed dynamic transitions as expected, abrupt transition were perceived as even less appealing.

The full results and discussions of this experiment are in [2] which is reproduced in the appendices.

4 Research Areas: Detecting and Adapting to Different Styles of Play

Play is important as a vehicle for learning and developing skills in a variety of areas including com-
munication and social skills. In the context of autonomous robots using play in development, it is
useful for the robot to be able to engage in different styles of play both within a single developmental
stage and between stages. An initial challenge is for the robot to detect different styles of play as they
are occurring and adapt its style of play to the circumstances.
We present a proof-of-concept of a robot adapting its behaviour on-line during interactions with a hu-
man according to detected play styles. The generic styles of play explored in the study were “gentle”
and “strong” and involved a human interacting with the Sony Aibo using touch sensors on the head,
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chin, and back of the robot. Sensor data was pre-processed by first quantizing and summing over
all input sensors and then using Fast Fourier Transforms (FFT) to extract shift-invariant frequency
domain information. The magnitude of the vectors from the FFT were fed into an artificial neural
network self-organising map (SOM).
The SOM was trained offline and nodes classified as “gentle” and “strong” according to their activa-
tion in response to the type of interaction in the training set. Experiments were then conducted which
initially validated that the algorithm running on-line was able to correctly and efficiently classify types
of play, and moved on to test the ability for the robot to adapt its type of play on-line in response to the
detected type of play. A further experiment investigated the model’s response to the type of repetitive
play sometimes practised by children with autism.

The full details of the experiments and results as well as discussions on achievements and limitations
of the model can be found in [11], reproduced as Appendix B3.1 to this report. This work is conducted
in conjunction with the Aurora project (http://homepages.feis.herts.ac.uk/ comqbr/aurora/index.html)
which investigates how robots may be used to help children with autism to overcome some of their
impairments in social interactions.

5 Research Areas: Gestures EPFL

6 Research Areas: Neuroscience
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A Appendix A: Geometry of Experience

A.1 Information Sources as Random Variables

Consider a sensor or effector that can take on various settings or values modeled as a random variable
X changing with time, taking value x(t) ∈ X , where X is the set of its possible values with discrete
time t.

A.2 Entropy and Information Distance

Entropy is the information-theoretic measure of uncertainty introduced by Claude Shannon [29] and
its units are bits. The entropy H(X ) of a sensor or actuatorX is then H(X ) = −

∑
x∈X p(x) log2 p(x),

where p(x) gives the probability of value x being taken. Conditional entropy H(X|Y) of a random
variable X given Y is the amount of uncertainty that remains about the value X given that the value
of Y is known.

H(X|Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)
p(y)

,

where p(x, y) is given by the joint distribution of X and Y .3 The information distance between X and
Y is

d(X ,Y) = H(X|Y) + H(Y|X ).

This satisfies the mathematical axioms for a metric:

1. d(X ,Y) = 0 if and only if X and Y are equivalent.4

2. d(X ,Y) = d(Y,X ) (symmetry)
3. d(X ,Y) + d(Y,Z) ≥ d(X ,Z) (triangle inequality).

The satisfaction of these axioms is shown by Crutchfield [6]. Thus d defines a geometric structure
on any space of jointly distributed information sources such as a robot’s sensory, motor and internal
variables.

A.3 Sensorimotor Variables with Time Horizons

For a particular agent, in a particular environment, consider a sensorimotor variable X . Its distribution
will be affected by the agent-environment interaction. In the context of a particular environment and
beginning from a particular moment in time t0 until a later moment t0 + h (h > 0), we regard the
sequence of values x(t0), x(t0+1), . . . , x(t0+h−1) taken by an information sourceX as time-series
data from a new random variable Xt0,h, the sensorimotor variable with temporal horizon h for sensor
(or actuator) X starting at time t0, depending on situated experience.

A.4 Information Distance between Time-Shifted Sensorimotor Variables

A particular robot engages in various behaviours and interactions in a particular environment, and we
consider two of its sensorimotor variables X and Y . (Possibly X = Y .) Consider the values taken

3We assume approximate local stationarity of the joint distribution of random variables representing the sensorimotor
variables over a temporal window and that this can be estimated closely enough by sampling the sensorimotor variables.

4For information sources, “equivalence” refers to re-coding equivalence. That is, the values of X are a function of those
of Y and vice versa. See [6].
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by X beginning at time t0 and those of Y beginning at time t1. (Possibly t0 = t1.) Consider the
two-component random variable Xt0,h × Yt1,h with horizon h, whose distribution is estimated from
the values (x(t0 + i), y(t1 + i)) ∈ X × Y . The first component here comes from X , starting from
time t0, and second component comes from Y with a temporal shift of t1− t0 units, starting from time
t1. We can also estimate the probability joint time-shifted distribution and the information distance
d(Xt0,h,Yt1,h) between X during the first temporal region and Y during the second temporal region
by measuring the frequencies of occurrence of values (xt0+i, yt1+i) as i runs from 0 to h− 1.
Clearly there are issues related to the size of the temporal horizon h and also the number of values X
and Y may take that affect the accuracy of these estimates. Also in practice, independent samples of
time shifted sensorimotor variables are not available.

A.5 Experience Metric

Consider the set of all sensorimotor variables available to an agent. Suppose there are N such,
X 1, . . . ,XN . Let E(t, h) = (X 1

t,h, . . . ,XN
t,h) be the (ordered) set of these variables considered over

a temporal window of size h starting at t. We call E(t, h) the agent’s experience from time t having
temporal horizon h.
Let E = E(t, h) and E′ = E(t′, h) be experiences of an agent from time t and t′, respectively, both
with horizon size h. Define a metric on experiences of temporal horizon h as

D(E,E′) =
N∑

k=1

d(X k
t,h,X k

t′,h),

where d is the information distance.

D is a metric on the set of experiences of an agent having a fixed temporal horizon h and D = 1
N D,

the average experience distance per sensorimotor variable, is also a metric on the set of experiences
of an agent having a fixed temporal horizon h.

The units of D are bits and those of D are bits per sensorimotor variable.

Another metric on experience is given by

D∗(E,E′) = ΣN
k=1Σ

N
j=1d(X k

t,h,X j
t′,h).

Clearly, D ≤ D∗.
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B Appendix B: Selected Publications

B.1 Interaction Histories

B.1.1 Interaction histories: From experience to action and back again.

N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst. Interaction histories: From expe-
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Abstract— We describe an enactive, situated model of inter-
action history based around a growing, informationally self-
structured metric space of experience that is constructed and
reconstructed as the robot engages in sensorimotor interactions
with objects and people in its environment. The model shows
aspects of development and learning through modification of the
cognitive structure that forms the basis for action selection as a
result of acting in the world. We describe robotic experiments
showing prediction of the path of a ball and an interaction game
“peekaboo”.

Index Terms— Interaction History, Information Theory,
Robotic Control Architectures

I. I NTRODUCTION

A challenge of research into situated, enactive cognition in
robots is to reach beyond reactive architectures to architec-
tures that can reflect the time-extended behaviour character-
istic of humans and many animals. We are interested in how
cognitive structures in natural and artificial systems can arise
that capture the history of interactions and behaviours of an
agent actively engaged in its environment, without resorting
to symbolic representations of past events.

We introduce an architecture that has at its heart a changing
dynamic structure describing the space of experience of the
agent or robot. The robot chooses how to behave in the
world based on what it has experienced, and this results in
further experience and modification of previous experience
establishing a tight coupling of experience and action.

This paper proceeds by presents our concept of an inter-
action history and then describes the model and architecture
that we use. Finally we describe experiments conducted on a
robot platform that investigate the capabilities of the model.

II. I NTERACTION HISTORY

We use a working definition of aninteraction history
as the temporally extended, dynamically constructed and
reconstructed, individual sensorimotor history of an agent

∗The work described in this paper was conducted within the EU Integrated
Project RobotCub (“Robotic Open-architecture Technology for Cognition,
Understanding, and Behaviours”) and was funded by the European Com-
mission through the E5 Unit (Cognition) of FP6-IST under Contract FP6-
004370.

situated and acting in its environment including the social en-
vironment.The first key part of the definition is that the agent
is situated and actively acting within its environment, that is
the history is not a disembodied memory, but an active part of
the interaction of the agent and its environment. This follows
the idea of structural coupling and enactive cognition of
Maturana and Varela [1] and the concept of situated cognition
[2]. Remembering is then the effect of historical interactions
on the actions of an agent in response to a particular situations
[3]. This brings in the next key part of the definition, that
the history is dynamically constructed and reconstructed. In
other words, interactions with the environment construct the
structures that are used for remembering how to act. Thus,
memory consists not of static representations of the past
that can be recalled with perfect clarity, but rather is the
result of an accumulation of interaction with the environment
manifesting as current action.

An important aspect of the interaction history is that it is
constructed from the perspective of the individual, that is, it
is autobiographical in nature. In terms of the accepted separa-
tion of memory types due to Endel Tulving [4], this would be
episodic memory as opposed to semantic memory. That is, it
is the memory of events (with a temporal aspect and, usually,
a personal aspect), rather than the memory of knowledge and
categories. However this apparently clear dichotomy is not
applicable to a description of interaction history as, through
the process of reconstruction, categories and knowledge may
emerge from many overlapping experiences, while certain
unique events may still stand out and give memory its
episodic nature. While we do not claim that an interaction
history can describe all aspects of (human) memory, we
believe that exploring the features of an interaction history
may give insights into the nature of memory as a whole. The
final part of the definition that we would highlight is that
it need not be representational but must be grounded in the
sensorimotor experience of the agent.

A. Extended Temporal Horizon

A robotic agent with an interaction history has the potential
to act on an extended temporal horizon [5] resulting in
behaviour that goes beyond that of a reactive agent or an
affective agent. The distinction is that behaviour will be



modulated by temporally extended past experience as well as
by internal state (affect) and immediately by environmental
stimuli (reactivity).

B. Development and Learning

A further aspect of an interaction history which manifests
itself as modification of behaviour based on a history of
previous interactions is that it can serve to scaffold learning
and development of a situated agent. The key here is how
previous experience is used to affect current and future be-
haviour. For example, classical conditioning or a two-process
reinforcement learning based on positive and negative rein-
forcers [6] are potential mechanisms for connecting previous
experience with choice of action. Development can be seen
as the increasing richness of the connections of experience
with action, again mediated by a suitable mechanisms.

III. E NACTIVE ROBOT MODEL OF INTERACTION

HISTORY USINGSENSORIMOTOREXPERIENCE

We describe a computational robotic model (Fig. 1) that
illustrates how an interaction history can be integrated into
the control of a robot using the concepts described in the
previous section.

The basic architecture consists of processes to acquire
sensory and motor values from the robot as it acts in the
environment, from this a metric space of past interaction
experiences is constructed. A further process continuously
examines current experience in the context of the space of
previous experience and selects actions to execute.

Fig. 1. Interaction history based control architecture.

A. Sensory and Internal Variables

The sensory information available to the robot falls into
three broad categories: proprioceptive, exteroceptive and in-
ternal. Proprioceptive variables are constructed by sampling
motor position and exteroceptive variables are those from
sensors such as buttons, infra-red distance, vision1 and audi-
tion2. In addition to these, sensory input can also be built

1Vision sensors here are built by subdividing the visual field into regions
and taking average colour values over each region at each timestep. In these
experiments a 6x6 grid is used taking the average of the red channel only.

2Auditory channels were not used in the examples discussed.

from internal variables that might, for instance, indicate
drives and motivations, or be the result of processing of raw
sensory data e.g. ball position. Sampling is done at regular
intervals (between 100-120ms in the experiments presented).

B. Experience Space

The experience space is constructed from overlapping ex-
periences of a particular horizon size with relative positions in
the space determined by the informational distance between
them (see sectionIV). Many potential experience spaces of
different horizon length can be built and co-exist [7].3.
As the metric landscape of experience is built, each experi-
ence is further enhanced withvalue attributesof the expe-
rience. These are the instantaneous values of any sensor or
internal variable, for example variables indicating “satiation”,
“battery-level”, “contentment” and so forth. Experiences are
also annotated with the actions that the robot takes at any
timestep (see sectionIII-C ).

C. Action Selection, Development and Learning

While an experience space can be built without much
difficulty, the challenge is how to have experience modulate
future action in a meaningful way and to be further shaped
by that action. To achieve this goal, a simple mechanism
is adopted whereby the robot can execute one of a number
of “atomic” actions (or no action) at any timestep4. At
any timestep the robot can choose an action based on past
experience or, if an appropriate one is not found, can choose
a random one. The ability to choose a random action has the
advantage of emulating body-babbling, i.e. apparently ran-
dom body movements that have the (hypothesized) purpose
of learning the capabilities of the body in an environment [8].
Early in development, there are few experiences on which to
draw, so random actions would be chosen more often, and
later in development, it is more likely that an appropriate
experience (and thus action) can be found. Additionally, with
a small probability, the robot may still choose a random
action as this may help move out of “local minima”, and
potentially discover new, more salient experiences.
To choose an action based on experience, the robot first
examines the experience landscape for similar experiences
near the current one. That is it finds acandidate experience
with the shortest information distance to the current one. The
next action that was executed following that experience is a
candidate actionto be executed next.
The candidate experience is chosen with a probability pro-
portional to that experience’s perceivedvalue in terms of
the stored value attributes (see section III-B above). The

3Note that sensor data is not being stored to build the interaction history,
only the time-evolving probability distributions from which joint entropy
can be estimated are stored.

4While this is probably not the most sophisticated model for acting, it is
at least tractable.



exact nature of the calculation ofvalue is dependent on the
nature of the drives and motivations ascribed to the agent. For
these experiments we use an internal variable that increases
whenever a ball or human face is seen, but decays over time.
This is explained in more detail in sectionV-C.
Finally, we introduce a feedback process that evaluates the
result of any action taken in terms of whether there was an
increase in valueafter the action was executed, and then
adjusts the stored value attributes of the candidate experience,
from which the action was derived, up or down accordingly.
Closing of the perception-action loop in this way with feed-
back together with growth of the experiential metric space,
results in the construction of modified behaviour patterns over
time. This can be viewed as ontogenetic development, that
is, as a process of change in structure and skills through
embodied, structurally coupled interaction [9].

IV. GEOMETRY OFEXPERIENCE

In previous papers [7], [10]–[12] the authors have de-
veloped a mathematical geometry of experience that uses
Shannon information theory [13] to place experience on a
metric space as well as to compare sensorimotor experience
using trajectories through projected sensor and motor spaces.
The basis is the information metric [14], a measure of the
“distance”, in terms of information, between two random
variables. We use the measure to compare sensorimotor
experience over time and across modalities and the following
is a brief overview of the relevant aspects.

A. Information Distance

An agent situated and acting in an environment will have
many external and internal sensory inputs any of which can
be modeled as random variables changing over time. For any
pair of sensorsX andY the conditional entropyH(X|Y) of
X given Y is the amount of uncertainty that remains about
the valueX given that the value ofY is known.

H(X|Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log2

p(x, y)
p(y)

,

wherep(x, y) is given by the joint distribution ofX andY.5

The information distance6 betweenX andY is then given
by

d(X ,Y) = H(X|Y) +H(Y|X ).

5We assume approximate local stationarity of the joint distribution of
random variables representing the sensorimotor variables over a temporal
window and that this can be estimated closely enough by sampling the
sensorimotor variables.

6This satisfies the mathematical axioms for ametric:
1. d(X ,Y) = 0 if and only if X andY are equivalent.
2. d(X ,Y) = d(Y,X ) (symmetry)
3. d(X ,Y) + d(Y,Z) ≥ d(X ,Z) (triangle inequality).

B. Time-Horizon

Consider any sensor variableX , beginning from a partic-
ular moment in timet0 until a later momentt0 + h (h > 0),
we regard the sequence of valuesx(t0), x(t0 +1), . . . , x(t0 +
h− 1) taken by an information sourceX as time-series data
from a new random variableXt0,h, thesensorimotor variable
with temporal horizonh starting at timet0
With this definition and that of information distance, we can
then compare any sensorimotor variables over the same sized
time-horizons, whether from the same sensor at different
times, different sensors at the same time or, indeed, different
sensors at different times.

C. Experience Metric

We formalize an agent’sexperiencefrom time t over a
temporal horizonh as E(t, h) = (X 1

t,h, . . . ,XNt,h) where
X 1, . . . ,XN is the set of all sensorimotor variables available
to the agent. We can then define a metric on experiences of
temporal horizonh as

D(E,E′) =
N∑

k=1

d(X kt,h,X kt′,h),

whereE = E(t, h) andE′ = E(t′, h) are two experiences
of an agent andd is the information distance (see [7], [10]).

V. EXPERIMENTS

We describe two experiments that explore the possibilities
of the model of interaction history discussed. The first
evaluates the veracity of the experience space by examining
the ability of the model to predict future states of the world
with reference only to the metric space of experience. The
second shows early steps in using the model to play an
interaction game, “peekaboo”, with a human partner.

A. Experiment 1: History-based Prediction

Given a robot7 acting in an environment, how well can it
predict future events based on its recent history of experi-
ence?
In this experiment the architecture was simplified, removing
the developmental feedback loop, to examine the efficacy
of using the metric space of experience to locate similar
experiences. Two conditions were examined: in the first, the
head stayed still while the ball was moved, and in the second
a reactive process allowed the head to follow the ball.8

The position of the ball at the end of each experience
was stored with the experience as a value attribute, and
the predicted future positionof the ball was given by the

7See Fig. 2. The robot used in this and all other experiments is the
Sony AIBO ERS-7. Robot control programming was achieved using URBI-
Universal Real-time Behaviour Interface [15].

8Simple colour based visual processing allowed the position of a pink ball
in the visual field to be located as an(X,Y ) position, and the head would
reactively move to centre that position.



Fig. 2. Sony Aibo ERS-7, Left: with pink ball, Right: hiding head while
playing ”peekaboo”. The camera vision is partially obscured by the arm.

attributes stored with the experiences following the candidate
(most similar previous) experience.

It is important to note that, the robot is not matching
current ball position with previous ball position, rather we
use all sensory and motor variables as information sources
to detect similarity between experiences, and then use the
tagged ball position to give the experimenter an indication
as to how well the experience was chosen. For verification
purposes a path is drawn on the display of the robot’s visual
field during operation, indicating the predicted future path.

B. Experiment 1: Results and Discussion

In Fig. 3, we show a sequence of images from one trial
from the first condition where the robot was passive while the
ball was moved. The sequence lasts just over 4 seconds and
consists of approximately 40 timesteps (1 timestep∼100ms)
and 8 experiences (experience granularity9 of 5) 10.

In the sequence shown and others, the robot required
very few examples of a sequence (usually one) before the
appropriate experience could be located. This demonstrates
that the information distance measure is capable of placing
subjectively similar experiences (to an external observer) near
to each other in the experience space. However, it was found
that while the path of the ball could be predicted fairly well
early on in the sequence, later on, as the choice of experiences
grew, the candidate experience chosen was not always the
most appropriate.

As an illustration of the problem, consider the eighth
image in Fig. 3, here the predicted path from the candidate
experience corresponds to the half circle that the ball has just
been through (rather than the half-circle it is just about to go
through, as in the other images). The candidate experience
chosen is informationally close to another experience half

9Experience granularity denotes the number of timesteps between end-
points of successive experiences. A granularity of 1 would store an experi-
ence ofhorizon timesteps at every timestep.

10Images are saved asynchronously at a rate of approx. 4 per second..
There were approximately 73 experiences at a granularity of 5 timesteps
between experiences (about 38 seconds of activity) before the ones shown.
Before the images shown, the ball was moved from left to right 4 times and
in a clockwise circle once.

Fig. 3. Series of consecutive images from the Aibo camera showing ball
path prediction using a sensorimotor interaction history. The robot does not
move its head in this sequence. Images are sequential left to right and top to
bottom and 147 images (73 experiences horizon length 40) precede these.
The line shows the path prediction for 10 timesteps ahead. The crosses are
from various methods for ball detection, only one of these was actually used
as sensory input. Horizon=40, Number of Bins=5, Experience granularity=5
timesteps. Images captured approximately once every 2-3 timesteps.

a cycle back in time that may have been more appropriate,
and the fact that the two possible experiences correspond
to motions of the ball from opposite sides of a circle con-
tributes to their being “recoding equivalents”11, only differing
in phase. Clearly, one solution to the issue is to provide
the mechanism with more information, for instance from
proprioception, with which to distinguish experience. The
experiment is artificially hampered due there being no motor,
active, component to the interaction.

Fig. 4 shows a series of images showing the path predic-
tion in the second condition, where the robot was actively
following at the ball with its head. The ball path is generally
a small loop starting at and finishing near the centre of the
image. This is to be expected as, since we are plotting just
the position of the ballwithin the imagethen, this cannot
describe the absolute position of the ball in space. To better
assess the result of the experiment, we would need to have
the predicted position of the head rather than the ball. Further
work, will look into the predictive capabilities of the method
with regard to the robot acting as a whole.
C. Experiment 2: Sensorimotor contingencies in an interac-
tion game - Peekaboo

The purpose of this experiment was to investigate whether
the development of an enactive interaction history in a

11That is, are a small information distance apart.



Fig. 4. Series of consecutive images (left to right, top to bottom) from the
Aibo camera showing ball path prediction using a sensorimotor interaction
history. The robot’s head reactively follows the ball in this sequence.
Images are sequential left to right and top to bottom and the sequence
is approximately 3 seconds long. (See text and Fig. 3 for further notes).
Horizon=20, Number of Bins=2, Experience granularity=4 timesteps.

robot could be used for the robot to act appropriately in
an interaction that required following a spatio-temporally
structured set of “rules”, that when followed result in high
motivational value. The full architecture was used, with the
action feedback loop modifying potential future interaction.

The simple interaction game ofpeekabooplayed between
adults and babies or young children was taken as a model.
The game consists of a repeated cycle of an initial con-
tact, disappearance, reappearance, and acknowledgment of
renewed contact [16]. Bruner and Sherwood suggest that
the peekaboo game may provide scaffolding for further
interaction and learning [16] and as such is useful in studying
the development of interaction capabilities in a robot in a
social environment.

Bruner and Sherwood also suggest that the peekaboo game
itself may emerge from the exploitation of innate tendencies
or motivations in the child and we model important aspects
of potential precursors to this game as actions, drives and
motivations of the cognitive model of the robot. Specifically,
the robot gains “pleasure” (increase in internal variable 1)
in seeing a face, however if the face is lost, it has a rising
“expectation” (internal variable 2) of seeing the face again,
and the “pleasure” in seeing the face at a later time is
increased by the value of that expectation. The atomic actions
implemented for the selection mechanism were: 1) move head
up, 2) down, 3) left, 4) right and 5) hide/reveal head.
The robot is preprogrammed with abilities to recognize a
generalized face12 and this yields sensory variables indicating
the position of the face in the visual field.

12Implemented using Intel OpenCV HAAR Cascades [17].

D. Experiment 2: Results and Discussion

Thus far we have completed a basic feasibility study with
one of the authors interacting with the robot. The results tend
to show that the robot, after a period of random movement
does start to engage in repeated cycles of behaviour, Fig. 5.
If the robot were not to hide its face, it would have long
periods of seeing the face which do not result in high
motivational value (internal variable 1), instead the robot
generates intermittency in seeing the face by hiding its own
face resulting in high motivational value when the face is
next seen. This often includes cycles of hiding and revealing
the face, as shown in Fig. 5.

Fig. 5. Time series of motor and sensor values showing engagement of
robot in peekaboo game. The bottom part of the graph shows when the face
is seen and the two internal variables are shown varying in response to this.
The peaks in the leg motor trace indicate when the robot is hiding its head
with its foreleg.

Fig. 6 shows the value assigned to experiences and how these
change over time. It is clear that only a few experiences are
regularly selected and thus modified over time, increasing and
decreasing in value. The final metric space of experiences is
depicted in Fig. 7, and indicates that the experience space
has a consistent (non-random) structure with definite peaks
that correspond to those few experiences that become present
candidate experiences.

VI. D ISCUSSION ANDFUTURE DIRECTIONS

The positive results from the experiments using the expe-
rience space to predict future experiences indicate that the
method of information distance has the potential of forming
the basis of an interaction history, particularly if the whole
embodied experience of the robot is taken into account.
However, mechanisms may be needed to disambiguate the
experience in the space when there are many experiences to
select from. Steps towards this are made in using “value” to
test candidate experiences against each other, however, other
mechanisms might be considered, e.g. finding exemplary
experiences by grouping near experiences. Further, it is also
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Fig. 6. Graph showing the “value” (as shade) assigned to experiences (on
vertical axis), and how this progresses over time as values are changed while
the robot actively reconstructs its experience space. The zoomed in region
shows individual experiences changing in value. Note that the triangular
shape is due to new experiences being added over time, and that most
experiences do not change in their values.

Fig. 7. Depiction of experience space at the end of the run shown in
Fig. 6. The axes in the plane are the experiences being compared while
the height indicated their experiential information distance. The black peaks
are low information distances and indicate “similar” experiences. It is these
experiences that provide candidates from which to select action.

clear that experiences of different time horizon sizes will be
needed to anticipate experience on different timescales.

There are also good indications that the method of choos-
ing action based on “value” can be useful in choosing
between many potentially similar experiences, however, how
this value is assigned and modified will need to be made more
sophisticated in order to better assign credit to appropriate
action, and to handle multiple, potentially conflicting, goals.
Similar comments apply to the simple method of action
selection. In a more complex environment an action selection
mechanism that can deal with appropriate action in a partic-
ular context, and that can deal with parallel and temporally
extended actions and behaviours would be needed.

Future directions for the research will include investigating
more generic approaches to ascribing motivation to artificial
agents in order to select experience and action, for example
sensorimotor contingencies, drives for comfort (predictability
of environment) or novelty (see for example [18]). Further
work will be conducted on the peekaboo game as a testbed
in which to study the development of interactive behaviour.
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Abstract

The game peekaboo, ordinarily played be-
tween an adult and baby, is used as a situ-
ation where a robot may develop social in-
teraction skills such as rhythm, timing and
turn taking, using its experience and history
of interactions over different temporal hori-
zons. We present experiments using a robot
that explore the length of experiences in an
architecture that selects action based on a
metric space consisting of previous experience
and feedback from the environment. Results
show that sequences of interactions that al-
low the robot to play the game successfully
emerge from the interplay between environ-
mental or social feedback and experience of
various lengths.

1. Introduction

One of the main challenges faced in building agents
embedded in a social environment is how they can
make use of their experience and history of interac-
tion to modulate future action in a meaningful way
and to be further shaped by that action. We take
the view that appropriate mechanisms, while based
in innate abilities, should largely develop through on-
togeny. Our approach is to conduct experiments on a
physical robot (see figure 1) to examine these mech-
anisms for development.

In the study of the ontogeny of social interac-
tion and turn-taking in artificial agents, it is instruc-
tive to look at the kinds of interactions that chil-
dren are capable of in early development and how
they learn to interact appropriately with adults and
other children. A well known interaction game is
“peekaboo” and in general consists of a repeated
cycle of an initial contact1, disappearance, reap-
pearance, and acknowledgement of renewed contact
(Bruner and Sherwood, 1975). Bruner and Sher-
wood note that, while the peekaboo game itself

1Initial contact is usually face-to-face mutual looking
(Bruner and Sherwood, 1975).

Figure 1: Aibo playing “peekaboo” game. Left: Sony Aibo

with human partner Right: Using a static image. (Top:

hiding head with front-leg, Bottom: Aibo’s view, showing

face detection.)

emerges from the exploitation of an innate tendency
in the child that is rewarded by pleasure in respon-
siveness, the game is highly rule bound and needs to
be learnt.

Peekaboo is a common game played by very young
children2 with adults. The contingent, temporal
structure of the game makes it useful as a tool to
better understand the role of interaction as a possi-
ble mechanism to ground robot ontogeny in human-
robot interaction. The child must develop some an-
ticipation of what might happen in the future, and,
moreover, the meeting of this expectation (or indeed,
failure to meet) is where the fun and interest inherent
in the game comes from.

The rhythm and timing of the interaction are cru-
cial and, Bruner and Sherwood suggest that the
peekaboo game and other early interaction games
act as scaffolding on which later forms of interaction,
particularly language and the required intricate tim-
ing details can be built (Pea, 2004, pp424-425).

The temporal structure of the peekaboo game sug-
gests that a robot control or cognitive architecture
needs to take into account the history of interac-
tion. We describe an architecture where an embod-
ied robotic agent can make use of an interaction his-
tory to guide ontological development to act appro-

2(Bruner and Sherwood, 1975) studied 7 month old to 17
month old children but note that the game is played by
younger children still.



priately in a changing environment. The direct sen-
sorimotor motor history of the agent is used to cre-
ate grounded experiences of different lengths which
can be compared with one another using a metric
measure based on the information distance between
them. The agent acts on the basis of its experiences
and the choice of action depends, in part, on the feed-
back of reward from the environment. This archi-
tecture was initially explored in (Mirza et al., 2006),
where the efficacy of the experience space was veri-
fied by using the history to predict the future posi-
tion of a ball.

To relate experiences with other experiences in
an interaction history, we use information distance
measures (Shannon, 1948, Crutchfield, 1990) and a
mathematical concept of experience and the relations
between them. These are defined in (Nehaniv, 2005)
and reviewed in Section 2.4. Information dis-
tance related techniques have been successfully used
in the past, for instance, to compare behaviours
from the perspective of the agent (Mirza et al., 2005,
Kaplan and Hafner, 2005) and for an agent to infer
a model of its own sensory and actuator apparatus
by acting in the environment (Olsson et al., 2005).
This suggests that behaviour can be guided by mov-
ing in a continually constructed space of experiences
by selecting appropriate actions that will move the
agent closer to desired experiences.

We emphasise an ontogenetic developmental ap-
proach (Lungarella et al., 2004, Blank et al., 2005)
to acquiring appropriate behaviour, in that, the
structures controlling action are modified by inter-
action and experience and new skills are acquired. A
new feature of our approach is the growth and ex-
ploitation of the developing agent’s (metric) space of
experiences driving its ontogeny in interaction with
its environment.

This paper continues by describing in further de-
tail the model of interaction history, the metric
space of experience and implementation in a phys-
ical robot. We then describe experiments where we
investigate the effect of temporal scale (horizon) of
experience on the ability of the robot to develop in
playing the game. We conclude the paper with the
results of the experiments and a discussion of the
strengths and limitations of the current model, and
outline how future research can further improve the
models discussed.

2. Model of Interaction History

In developing a model of interaction history we start
out by considering what such a history might be, and
present a working definition. We then describe the
model in outline and go on to explain its key parts,
namely: the metric space of experience, the action se-
lection mechanism and the motivational subsystem.

2.1 Interaction History

We use a working definition of an interaction history
as:

the temporally extended, dynamically con-
structed, individual sensorimotor history of
an agent situated and acting in its environ-
ment including the social environment, that
manifests as current action.

The key aspects of this definition are:
• Temporal extension: experiences are associated

to episodes of particular duration in terms of
events experienced by the agent. The horizon3

of an agent extends into the past (including all
previous experience available to the agent) and
also into the future in terms of prediction, antic-
ipation and expectation.
• Dynamic construction: This indicates that the

history is continually being both constructed and
reconstructed, with previous experiences being
modified in this process, and potentially affect-
ing how new experiences are assimilated.

• Grounding : the history need not be representa-
tional (i.e. recorded in terms of imposed repre-
sentations) and is grounded in the sensorimotor
experience of the agent.
• Remembering, manifest as action: “memory”

consists not of static representations of the past
that can be recalled with perfect clarity, but
rather is the result of an accumulation of in-
teraction with the environment and this his-
tory of interaction is revealed as current and fu-
ture action. See for example (Rosenfield, 1988,
Dautenhahn and Christaller, 1996).

2.2 An Interactive History Architecture

We describe a computational model (Figure 2) that
demonstrates how such interaction histories can be
explicitly integrated into the control of a robot. The
basic architecture consists of processes to acquire
sensory and motor data from the robot as it acts in
the environment (see Section 2.3), from this a met-
ric space consisting of past interaction experiences
is constructed (see Section 2.4). A process then se-
lects past experiences near (i.e. with low informa-
tion distance) to the current experience (see Section
2.5). The selection is also based on the values of in-
ternal variables that change according to a motiva-
tional system (see Section 2.6). The action following
the chosen past experience becomes the next action
of the agent. Finally, there is an internal feedback
process that adjusts the values of internal variables
associated with any experience when it has been used

3Horizon has a different technical meaning when we talk of
the horizon length of an experience as detailed in Section 2.4



Figure 2: Interaction history based control architecture.

to select future action, making it more or less likely
to be chosen in the future.

There are many potential architectures that
take history of action and interaction into ac-
count, including top-down deliberative architec-
tures such as Soar (Nuxoll and Laird, 2004), con-
nectionist systems that have memory, for in-
stance Elman networks or recurrent neural networks
(Rylatt and Czarnecki, 2000) and certain behaviour
oriented control systems combined with learning
(Matarić, 1992, Michaud and Matarić, 1998). Our
model is not deliberative as no overall plan is
constructed, and it makes history explicit and in-
spectable unlike neural network approaches in gen-
eral. Most behaviour based models do not include
learning from past experience, but of those that do
our approach differs in that the history is not speci-
fied in terms of the behaviour being selected (or in-
deed, the action being selected), but in terms of the
sensorimotor history.

2.3 Sensory and Internal Variables

The sensory information available to the robot4 falls
into three broad categories: proprioceptive (from
motor positions), exterioceptive (environmental sen-
sors, including vision) and internal (these might, for
instance, indicate drives and motivations, or be the
result of processing of raw sensory data e.g. ball
position). The actual variables used in this imple-
mentation are summarised in (Table 1), with further
discussion of internal variables in Section 2.6 and Ap-
pendix A.

All the variables are treated as “random variables”
with local stationarity, for which we can estimate the
probability distributions and entropy for the purpose
of calculating information distance and the experi-
ence metric. See Section 2.4. We also use certain
of these variables to indicate “quality” and in these
cases, the instantaneous values of those variables at

4Sampling is done at regular intervals (between 100-120ms
in the experiments here). Vision sensors are built by subdi-
viding the visual field into regions and taking average colour
values over each region at each timestep. In these experiments
a 3x3 grid over the image is used taking the average of the red
channel only.

Table 1: Sensors and Internal Variables
Type Examples Total

Exterioceptive IR-distance, Buttons 15

Proprioceptive Joint positions, 18

Visual Average colour values in a 3x3
grid over image

9

Internal Face position, ball position,
desire to see a face

10

the end time point of the experience is attached to
the experience.

2.4 Experience Space

The metric space of experience is constructed from
“experiences” of a particular horizon length (in
timesteps) with relative positions in the space de-
termined by the information distance between them.

We formalise an agent’s experience from time t
over a temporal horizon h as

E(t, h) = (X 1
t,h, . . . ,XNt,h)

where Xnt,h is the random variable estimate from the
sequence of values taken by a sensor n from time t
to t+h taken from the set of all sensorimotor inputs
available to the agent. A metric on experiences of
temporal horizon h is then defined as

D(E,E′) =
N∑

k=1

d(X kt,h,X kt′,h),

where E = E(t, h) and E′ = E(t′, h) are two ex-
periences of an agent and d is the information dis-
tance between two random variables X and Y given
by d(X ,Y) = H(X|Y) + H(Y|X ). The information
distance satisfies the axioms of a metric and can be
estimated from the probability distributions5 of the
sampled, discretised variables. See (Nehaniv, 2005)
for proofs and discussion.

2.5 Action Selection and Development

While an experience space can be built without much
difficulty, the challenge is how to have experience
modulate future action in a meaningful way and to be
further shaped by that action. To achieve this goal, a
simple mechanism is adopted whereby the robot can
execute one of a number of “atomic” actions (or no
action) at every timestep (see table 2). Each action
takes 2 seconds or less to execute and the re-centre
head action is duplicated to offset the two actions
which take the head away from the centre. A record
of actions executed by the robot at any time is kept
to facilitate the action-selection based on history of
experience.

5Note that the discretised (binned) values of all variables
at all time intervals are stored in order to be able to estimate
the joint distribution with other (new) experiences.



Table 2: Actions
Action Description

0 Do Nothing

1,2 Look right/left

3 Track ball with head

4,5 Re-centre head

6,7 Hide head with left/right foreleg

8,9 Wave with left/right foreleg

10 Wag tail

To choose an action based on experience, a number
of candidate experiences from the experience space
near to (that is with short information distance to)
the current experience are selected, and one chosen
according to:

pEn ∝ QEn

D(En, Ecurrent)
− C (1)

where pEn is the probability of choosing a candidate
past experience En with quality QEn , taken from the
set of K experiences {E1, . . . , EK} in the neighbour-
hood of the current experience Ecurrent. The exact
nature of the calculation of quality is dependent on
the nature of the drives and motivations ascribed to
the agent (see section 2.6 and Appendix A).

The next action that was executed following the
chosen past experience is then the action to be exe-
cuted next.

If none of the candidate experiences is chosen, then
a random action is executed. This has the advantage
of emulating body-babbling, i.e. apparently random
body movements that have the (hypothesised) pur-
pose of learning the capabilities of the body in an en-
vironment (Meltzoff and Moore, 1997). Early in de-
velopment, there are fewer experiences in the space,
so random actions would be chosen more often. Later
in development, it is more likely that an the action se-
lected will come from past experience. Additionally,
with a small probability reflected by the constant C
above, the robot may still choose a random action
as this may potentially help to discover new, more
salient experiences.

Finally, we introduce a feedback process that eval-
uates the result of any action taken in terms of
whether there was an increase in quality after the
action was executed, and then adjusts the quality
of the candidate experience, from which the action
was derived, up or down accordingly. Closing of the
perception-action loop in this way with feedback to-
gether with growth of the experiential metric space,
results in the construction of modified behaviour pat-
terns over time. This can be viewed as ontogenetic
development, that is as a process of change in struc-
ture and skills through embodied, structurally cou-
pled interaction (Lungarella et al., 2004).

Our approach uses temporally extended experi-

ence rather than instantaneous state6. We would
argue that this distinction is important as tem-
poral structure is inherently captured in experi-
ences of different lengths. Moreover, we do not as-
sume that the environment can be modeled as a
Markov Decision Process (this is particularly im-
portant when there is an interaction partner) as is
the case with most reinforcement learning paradigms
(Sutton and Barto, 1998) and in particular with ap-
proaches that do not use a model, for example Q-
learning.

Related work in the multi-agent domain
(Arai et al., 2000) has agents in a grid world
acquiring coordination strategies, and uses a fixed-
length episodic history expressly to counter the
MDP assumption. However, that model is also state
based and so uses a profit-sharing mechanism to
assign credit to state-action pairs. Moreover, it does
not compare episodes of history with previous ones,
nor locate them in a metric space.

2.6 Environmental feedback

We make use of feedback from the environment as
actions are executed, and define certain internal vari-
ables and their dynamics such that they provide feed-
back appropriate for the peekaboo game (noting that
an appropriate temporal arrangement of actions is
still necessary to actually play the game). This can
be seen as building in innate drives and motivations
in the robot that underly and scaffold the learning of
the rules of interaction games, in a way analogous to
inherited drives and motivations in human babies.

To provide appropriate feedback, we require a high
value for motivation when a face is seen following a
period where there has been no face seen. Three in-
ternal variables are used to model this: f indicating
when a face is seen, m the motivational value that is
used as the quality of experience, and d the desire to
see a face when one is not seen. The exact nature of
the dynamics is determined by 6 parameters encod-
ing rates of decay, increase and feedback of f and d.
For details see Appendix A.

3. Experiments

The purpose of this investigation was initially to eval-
uate whether the model for development based on in-
teraction history performed better than random for
the task of playing the game of peekaboo. Secondly,
the hypothesis that the horizon length of experience
would affect the ability to learn was tested by trying
a number of different horizon lengths in a controlled
experiment. The hypothesis was that the horizon
length of experience needs to be of a similar scale to
that of the interaction in question. If it is too short,
the experience does not carry enough information to

6that is the instantaneous values of the sensory variables



make useful comparisons to the history. If it is too
long, then the interesting part of the interaction be-
comes lost in the larger experience.

3.1 Implementation and Setup

The architecture was implemented using using URBI
(Baillie, 2005) and Java on a Sony Aibo ERS-7 robot
dog and a desktop computer. The system runs on-
line with telemetry data being sent over wireless to a
desktop approximately every 120ms where the metric
space of experience is constructed and used in action
selection.

The robot stays in a “sitting” position throughout
the experiments with the forelegs are free to move,
facing a picture of a face (see Figure 1) at a fixed
distance of 40cm. A picture was used rather than an
interaction partner in these particular experiments to
allow analysis of the robot’s interactions in isolation
when comparing horizon lengths, and for experimen-
tal repeatability. Early experiments where the robot
faced a human interaction partner are presented in
(Mirza et al., 2006) and this is also the subject of
future experiments.

For the purposes of these trials, we define
peekaboo-like behaviour to have occurred when face
detection has been lost and then regained (one or
more times) resulting in a maximum value for the
motivational variable m. The duration of the se-
quence being taken from the point of the first loss
of face through to the last point at which high mo-
tivation can be sustained without a break in the se-
quence.

We ran 6 trials of 2 minute duration for each hori-
zon length of 8, 16, 32, 64 and 128 timesteps (0.96,
1.92, 3.84, 7.68 and 15.36 seconds respectively). For
comparison, a further 6 trials were run where the
action selection was random and not based on his-
tory. In each of the trials the metric space started
unpopulated.

4. Results

Table 3 summarises the results of 36 trial runs, while
Figure 3 shows, for selected trials, time-series graphs
of the motivational variables coupled with the ac-
tions taken. Peekaboo behaviour, involving hiding
the head, was seen in 18 of the 36 runs. All of the tri-
als using random action selection showed some peek-
aboo behaviour, although it was intermittent and not
regular (see figure 3A for example). All but one of
the horizon size 8 trials, and all but two of hori-
zon size 16, also showed peekaboo, however, there
were longer periods of repeated behaviour. Figure
3A (horizon size 8) shows the best example of an
extended period of peekaboo behaviour; the repeat
period is approximately 42 timesteps or 5 seconds,
and the episode continues for around 640 timesteps

(76 seconds). During this episode the head is hidden
to the left and right and this is interspersed with
head-centring actions. Through all of these episodes
periods of no action serve to alter the timing of the
cyclic periods.

Of the longer horizon length (32, 64 and 128) tri-
als, three showed peekaboo behaviour, but three also
showed an emergent behaviour which resulted in high
motivation, see Figure 3C for an example. Here the
robot stares ahead at the face while intermittently
waving. Due to the way that the robot was sat dur-
ing some of these trials the robot was shaken slightly
as the front arm finished the wave and rested on the
hind leg, causing a momentary loss of face detection.
Given the sensitivity of the motivational system, this
was enough, when repeated, for the dynamics to re-
sult in increased desire d and therefore high motiva-
tion m.

5. Discussion and Future Work

All of the trial runs where only random actions were
selected resulted in some episodes of high motiva-
tional value (m). It is likely that this is due to a
very sensitive motivational system7 combined with a
range of actions, most of which would result in some
loss of face detection. However, to see longer periods
of high motivation, some controlled behaviour must
be selected (as a contrary example see Figure 3F
where no peekaboo-like dynamics are seen). Cyclic
behaviour with the long peekaboo-like sequences of
repeated action is only seen in the experience-driven
trials.

In some of the experience-driven trials repeated
behaviour was seen that could have resulted in high
motivation were the head pointed forward, however,
a single action turned the head away, and experience
alone was not able to re-centre the head. On one oc-
casion however, when the head was re-centred (ran-
domly) then the experience space allowed a resump-
tion of the peekaboo sequence (see figure 3E). It is
possible that if each trial had a longer duration, then
the experience space would be richer and recentring
behaviour would be selected. This also may point to
a reason why the trials using longer horizon lengths
performed poorly: appreciation of current state may
be necessary to notice that the head is not pointing
forward (for instance) and this may be easier with a
shorter time horizon.

The best of the cyclic behaviour was seen in the
experience-driven trials of horizon size 8 and 16
timesteps (approx 1 and 2 seconds respectively).
This result indicates that it is necessary to have a

7The motivational system tuned with the parameters given
in Appendix A, would result in high values of m after a few cy-
cles where the face signal was lost for anywhere between 50ms
to 9.5 seconds. Thus it was inevitable that high motivational
value should be reached with even random actions.



Table 3: Experiment Summary. Duration and period in timesteps (ts) of peekaboo (pkb) behaviour for each trial. Also

noted is where high m is attained with an alternative, emergent sequence.

Run Random Horizon 8 Horizon 16 Horizon 32 Horizon 64 Horizon 128

length/period length/period length/period length/period length/period length/period

1 120ts / 40ts 180ts / 45ts 260ts / 40ts none Waving pkb 400ts none

2 220ts / 55ts 150ts / 40ts none none none none

3 220ts / 45ts fig 3A, 640ts/42ts 140ts/45ts,200ts / 50ts fig 3F, none none 100ts / 40ts

4 200ts / 60ts 130ts / 45ts fig 3E, 260,240ts/40ts none none none

150ts / 70ts repeated sequence

5 160ts / 50ts none Waving emergent fig 3C Waving pkb fig 3D, 160,100,140ts 120ts / 40ts

pkb 150ts 540ts / 47ts / 40ts

6 fig 3B 250ts / 42ts 120ts / 40ts Waving pkb none none

80,140ts / 40ts 840ts / 47ts

short time-horizon, and this may be related to the
length of single actions (about 2 seconds), and thus
the natural period8 of the cyclic behaviour. A reason
why this may be the case is that, to bootstrap the
initial repetitive behaviour, it is necessary to focus
on an experience of one cycle length when there is
only a single (possibly randomly generated) example
of the cycle in the agent’s experience.

An important direction that needs to be explored
is the anticipation of future action and expectation
of future reward, although how far ahead in the fu-
ture may vary for the development of different skills
and task abilities. Currently experiences of the same
length are being compared, however it is also pos-
sible to have shorter term current experience being
matched with parts of longer term episodic experi-
ence, and the current short experience being given
an anticipated future value related to the best value
in the extended experience. We expect this approach
to better balance the requirement, as found above,
to have short horizons for comparing experience suc-
cessfully while also taking into account temporally
extended aspects of interaction.

Further, given the apparent dependence on hori-
zon length, it may be necessary to operate on many
different horizon lengths, and an adaptive, variable
experience length may help in then finding areas of
high value for the different kinds of interaction the
robot will encounter. We suggest that an approach
to deciding on appropriate experience lengths will
come from the density of “interesting” features or
events in the experience space, the determination of
which will take into account motivational dynamics,
value of experience, and possibly rates of change of
experience distances.

These particular experiments do not have any in-
teraction from the partner’s side and so are lacking
a vital part of the interaction. The motivational dy-
namics compensate for this by providing a reward

8Note that the motivational system itself does not dictate
this period as any cyclic behaviour of period up to 19 seconds
can result in high values of m.

landscape based only on internal factors and the sin-
gle external stimuli of a face. However, we argue
that the interaction history can be extended to a
fully interactive scenario by, for instance having the
interaction partner modulate both the external stim-
ulus (the presentation of the face) as well as, po-
tentially, the reward signal that interacts with the
motivational dynamics. Given that the robot’s ac-
tions can in some way affect the behaviour of the
partner (e.g. bark excitedly when an internal vari-
able reached maximum), then the interaction history
could be used as part of a full interaction.

The motivational system used is specific to the
peekaboo scenario, and while it potentially gives
useful insights into motivational dynamics for other
scenarios, is not generally applicable. Additionally
it is clear that the system is overly sensitive with
high motivational value being reached very easily
through a wide range of interactions. As an alter-
native it would be useful to explore the balance be-
tween novelty and mastery drives as in, for example
(Oudeyer et al., 2005), as the basis of a more gen-
eral motivation system. Moreover, basing novelty
and mastery directly on the structure of the experi-
ence space as it develops through interaction would
ground these notions in the sensorimotor history of
the agent.

Finally, we conclude that the architecture is able
to direct future action of an agent based on previous
experience and that the horizon length of experience
plays an important role in the types of interaction
that can be engaged. The experimental results sup-
port the hypothesis that horizon length needs to be
of a similar scale to that of the interaction in ques-
tion, and thus should be determined, at least in part,
by the types of interaction that will take place. The
action selection architecture is however extremely
limited and simplistic and this combined with the
short experiment lengths and the over-sensitive mo-
tivational system suggests various directions for im-
provement.
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C: Horizon 32, run no. 5/6
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D: Horizon 64, run no. 5/6
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E: Horizon 16, run no. 4/6
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F: Horizon 32, run no. 3/6

Figure 3: Motivational dynamics and actions for selected 2 minute interaction sequences of different horizon lengths.

Graphs show when face is seen (black bars at bottom), the values of the key internal variables, m and d, and the action

taken at the top (Note: action 0 - “do nothing”, is not shown for clarity). A: Peekaboo. Horizon size 8. Dynamics

during an extended peekaboo sequence. B: Random action selection resulting in high m and d. Although the action

selection is random, it is possible to get periods of high value. C: Emergent behaviour resulting in high m and d.

Horizon size 32. Dynamics generate high value when face is intermittently lost when the waving paw returns to hit

the hind knee and jogs the robot. D: Irregular response to regular actions. Horizon size 64. The regular hiding of the

head does not always result in high value, this maybe because the face is not detected during the period that the head

points forward. E: Repeated sequence. Horizon size 16. Sequence of peekaboo repeated after the head is recentred.

F: Peekaboo not inevitable. Horizon size 32. Here although the head is hidden twice, the peekaboo dynamics are not

inevitable and coordinated action is necessary for continued high motivation.



Appendix A - Motivational Dynamics

Firstly, the agent possesses a binary meta-sensor f that is
a result of processing the visual sensors (image) to locate a
generalised human face shape in the image, if one exists9.
This is smoothed to remove short gaps (< 50ms).

Secondly, the desire to see a face is given by d (constrained
in the range [0,1]) and increases when there is no face seen at
a rate determined by how often a face has been seen recently
(actually by feedback from m described below). The desire
decays otherwise. See equation 2.

Finally, the overall motivation m, also constrained in the
range [0,1] and increases when f = 1 determined by the desire
to see a face d. In the absence of desire d, when a face is seen
m tends to a constant value set by Cmax. When no face is
seen, m decays at rate δ3. See equation 3.

∆d =

(
α1m− δ1(1−m)d if f = 0,

−δ2d if f = 1.
(2)

∆m =

(
−δ3m if f = 0,

α2d+ β(Cmax −m) if f = 1.

d,m constrained such that d,m ∈ [0, 1]

(3)

The parameters of the dynamics equations are shown below
along with the values used in the experiments. These values
were chosen by trial and error.

α1 rate of increase of d based on m 0.12
α2 rate of increase of m based on d 0.12

Cmax value that m tends to after long periods of
f = 1

0.25

β rate that m tends to Cmax 0.02
δ1 rate of decay of d when no face is seen 0.05
δ2 rate of decay of d when a face is seen 0.05
δ3 rate of decay of m when no face is seen 0.05
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Perception of Robot Smiles and Dimensions for Human-Robot
Interaction Design

Mike Blow, Kerstin Dautenhahn, Andrew Appleby, Chrystopher L. Nehaniv, David C. Lee

Abstract— As robots enter everyday life and start to in-
teract with ordinary people the question of their appearance
becomes increasingly important. Our perception of a robot can
be strongly influenced by its facial appearance. Synthesizing
relevant ideas from narrative art design, the psychology of
face recognition, and recent HRI studies into robot faces, we
discuss effects of the uncanny valley and the use oficonicity
and its relationship to the self-other perceptive divide, as well
as abstractnessand realism, classifying existing designs along
these dimensions. A new expressive HRI research robot called
KASPAR is introduced and the results of a preliminary study
on human perceptions of robot expressions are discussed.

I. M OTIVATIONS

It is an exciting time in robotics. Personal service robots,
so long the science fiction dream, are becoming reality and
are for sale to general consumers. Currently their uses are
limited, but capabilities are improving, costs are coming
down and sales are growing. In addition robots are finding
a new place in society as toys, artificial pets [20], security
guards, teachers [10], tour guides [24] and in search and
rescue. They are finding use in areas as diverse as autism
therapy [22], space exploration and research into cognition
and biological systems [23].

A. RobotCub

One such research project that we are involved in at
Hertfordshire is RobotCub, a multinational European project
to build a humanoid child-size robot for use in embodied cog-
nitive development research [23]. The RobotCub consortium
consists of 11 core partners from Europe with collaborators
in America and Japan, and the institutions involved are each
working on specific areas of the robot design, engineering,
developmental psychology and human-robot interaction. The
software APIs and hardware plans will be published under
open-source licenses, with the aim of creating a community
using a common platform for robotic and cognitive research.

B. Designing Robots for Users

A previous study of people’s expectations of a robot com-
panion indicated that a large proportion of the participants in
the test were in favour of a robot companion, especially one
that could communicate in a human-like way [6]. Human-like
behaviour and appearance were also considered important,
but less so than human-like communication. In terms of role

This work was conducted within the EU Integrated Project RobotCub
(“Robotic Open-architecture Technology for Cognition, Understanding, and
Behaviours”) and was funded by the European Commission through Unit
E5 (Cognition) of FP6-IST under Contract FP6-004370.
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robots were seen by the majority as suitable for personal
assistant duties carrying out household tasks. Child care or
friendship roles were seen as less suitable.

Existing human-human interaction studies are a good
starting point for HRI research, but can only be treated as
such. Robots are not people, and not all insights and results
will remain valid for HRI scenarios. So given that the nature
of the interaction between humans and robots is likely to be
different from that between two humans, or between humans
and most current consumer technology, there are many open
questions. Most importantly for the general acceptance of
robots, what appearance and modalities of communication
are optimal for the majority of non-technical users? Will
people find a machine with a human appearance or that
interacts in a human-like manner engaging or frightening? If
a face is humanoid, what level of realism is optimal? What
role could timing in communication [25] and the movement
and timing of interactive behaviour (kinesics[21], [1]) play?

II. CONSIDERING DESIGN

A. The Extended Uncanny Valley

The effect of the aesthetic design of a robot is an area that
has often been neglected, and only in visual science fiction
media or recently with the advent of commercial household
robots has it been paid much attention. A notable exception
is the ‘uncanny valley’ proposed by Masahiro Mori in the
late 1970’s [17], [5]. Mori proposed that the acceptance of
a humanoid robot increases as realism increases. However
there comes a point where, as the robot approaches perfect
realism, the effect becomes instead very disturbing and
acceptance plunges, because the robot starts to look not quite
human or at worst like a moving corpse (Fig. 1). In theory the
realism of both appearance and movement can give rise to
this effect, with movement evoking the stronger response. It
is possible that there may also be ‘behavioural uncanniness’
affecting perception of a robot during social interaction
and governed by (among other things) the appropriateness
and timing of its reponses to social cues. However little
empirical data exists to support Mori’s theory and opinions
vary as to the strength of the effect and its longevity - our
initial observations with KASPAR (section III) indicated that
people soon became habituated to the robot and that feelings
of uncanniness decreased rapidly with time and experience.
See [15], [14] for recent work on the uncanny valley by
MacDorman.



Fig. 1. Mori’s uncanny valley hypothesis.

B. Managing Perceptions

DiSalvo et al. performed a study into how facial features
and dimensions affect the perception of robot heads as
human-like [7]. Factors that increased the perceived human-
ness of a robot head were a ‘portrait’ aspect ratio (i.e. the
head is taller than it is wide), the presence of multiple facial
features and specifically the presence of nose, mouth and
eyelids. Heads with a landscape aspect ratio and minimal
features were seen as robotic. They suggest that robot head
design should balance three considerations: ‘human-ness’
(for intuitive social interaction), ‘robot-ness’ (to manage
expectations of the robot’s cognitive abilities) and ‘product-
ness’ (so the human sees the robot as an appliance). The idea
of designing a robot to be perceived as a consumer item is
noteworthy for the fact that people’sa priori knowledge of
electronic appliances can be utilised in avoiding the uncanny
valley; the implication is that the robot is non-threatening
and under the user’s control. To fulfill their design criteria
they present six suggestions: a robot should have a wide
head, features that dominate the face, detailed eyes, four or
more features, skin or some kind of covering and an organic,
curved form.

C. Faces

Faces help humans to communicate, regulate interaction,
display (or betray) our emotions, elicit protective instincts,
attract others, and give clues about our health. Several studies
have been carried out into the attractiveness of human faces,
suggesting that symmetry, youthfulness and skin condition
[9] are all factors. Famously Langlois and Roggman [12]
proposed that an average face - that is, a composite face made
up of the arithmetic mean of several individuals’ features -is
fundamentally amd maximally attractive (although there are
claims to the contrary, see [19]), and that attractiveness has
a social effect on the way we judge and treat others [11].

Human infants seem to have a preference for faces, and
it appears that even newborns possess an ‘innate’ ability
to spot basic facial features, such as a pair of round blobs
situated over a horizontal line which is characteristic of two
eyes located above a mouth. It has been debated whether
this is due to special face recognition capability or sensory-
based preference based on preferences for general perceptual
features and broad visual cues and properties of figures such
as symmetry, rounded contours etc. which form the basis

Fig. 2. The design space of faces in comics and narrative art (modified
from [16]).

for learning to recognize faces [8]. The nature and devel-
opment of face recognition in humans is still controversial.
Interestingly, while the baby develops, its preference for
certain perceptual features changes until a system develops
that allows it to rapidly recognize familar human faces.
Evidence suggests that exposure to faces in the first few years
of life provides the necessary input to the developing face
recognition system, e.g. [18]. The specific nature of the face
stimuli during the first year of life appears to impact the
development of the face processing system. While young
infants (up to about 6 months of age) can discriminate
among a variety of faces belonging to different species or
races, children at around 9 months (and likewise adults)
demonstrate a face-representation system that has become
more restricted to familiar faces. The social environment,
i.e. the ‘kinds of faces’ an infant is exposed to influences
the child’s preferences for certain faces and abilities to
discriminate among them. Not only time of exposure, but
also other factors, including emotional saliency, are likely to
influence the tuning of the face recognition systems towards
more precision [18].

D. The Design Space of Faces

In his bookUnderstanding Comics[16], Scott McCloud
introduces a triangular design space for cartoon faces
(Fig. 2). The left apex isrealistic, i.e. a perfect representation
of reality, for example a photograph, or realistic art such as
that by Ingres. Travelling to the right faces become more
iconic, that is, the details of the face are stripped away
to emphasise the expressive features; emoticons such as:)
are a perfect example in the 21st century zeitgeist. The
simplification has two effects. Firstly it allows us to amplify
the meaning of the face, and to concentrate on the message
rather than the medium. Secondly the moreiconic a face
appears the more people it can represent. Dautenhahn points
out that iconography can aid the believability of a cartoon
character [4]. We are more likely to identify with Charlie
Brown than we are with Marilyn Monroe, as a realistic
or known face can only represent a limited set of people
whereas the iconic representation has a much broader range
- to the extent of allowing us to project some of ourselves
onto the character. Towards the top apex representations



Fig. 3. Robot faces mapped into McCloud’s design space.1. Dalek (( c©the British Broadcasting Corporation/Terry Nation), 2. R2D2, fictional robot fromStar Wars( c©Lucas Film Ltd.), 3. DB (c©ATR
Institute Kyoto), 4. MIT Humanoid Face Project (c©MIT), 5. Kismet ( c©MIT/Cynthia Breazeal), 6. Infanoid (c©Hideki Kozima), 7. Nuvo companion robot (c©ZMP Inc.), 8. HOAP-2 (c©Fujitsu Automation), 9. Minerva tour-guide robot
( c©Carnegie Mellon University), 10. Toshiba partner robot (c©Toshiba), 11. QRIO (c©Sony), 12. ASIMO (c©Honda), 13. K-Bot, extremely realistic 24 DOF head built by David Hanson (c©Human Emulation Robotics), 14. Repliee-Q1 (c©Osaka
University/Kokoro Inc.), 15. False Maria, fictional robot from Fritz Lang’s 1927 filmMetropolis, 16. C3PO, fictional robot fromStar Wars( c©Lucas Film Ltd.), 17. WE-4R robot (c©WASEDA University), 18. AIBO robotic dog (c©Sony), 19.
Keepon, minimal DOF HRI robot (c©Hideki Kozima), 20. Papero household robot (c©NEC)

becomeabstract, where the focus of attention moves from
the meaning of the representation to the representation itself.
Examples in art would be (to a degree) Picasso’s cubist
portraits or the art of Mondrian.

E. Robot Faces in the Design Space

We can use this design space, and the accumulated knowl-
edge of comics artists, to inform the appearance of our
robots. Fig. 3 shows some robot faces and their (subjective)
places on the design triangle. Most are ‘real-life’ robots
although several fictional robots have been included, as
functionality has no bearing on our classification in this
context. At the three extremes are NEC’s Papero (iconic), a
small companion robot which is relatively simple and cheap
to make and allows easy user-identification; Hanson’s K-bot
(realistic), complex and theoretically deep in the uncanny
valley but allowing a large amount of expressive feedback,
and a Dalek (abstract), potentially difficult to identify with
but not as susceptible to the uncanny valley due to its non-
human appearance.

Of course the design space only addresses the static ap-
pearance of the robot. The nature of most robot faces is that
they encompass a set of temporal behaviours which greatly
affect our perception of them. An extension of McCloud’s
design space to investigate behavioural aspects would be
a worthwhile study, specifically how a robot’s behaviour
affects its perception as iconic, realistic or abstract, and the
effect of social behaviour on the uncanny valley and user
identification with the robot.

F. The Robot as an Extension of Self?

As one moves in the design space of the faces from
realism towards iconicity, a human is more likely to identify
themselves with the face due to the decrease in specific
features, and the distinction betweenother andself becomes
less and less pronounced. Could this idea be useful in robot
design? If a robot is to be designed to extend the human’s
abilities or carry out tasks on their behalf, iconic features
may possibly allow the user to more easily project their own
identity onto the robot. In contrast, realistic face designs
will be seen objectively as ‘someone else’, andabstract
designs often as ‘something else’. In this case the interaction
partner’s identification with the robot will be discouraged
by the non-iconic nature of the design. Some robot roles
(such as security guards) might benefit from reinforcing this
perception. While the idea of the robot as an extension of
self remains speculative at this point, future work in this area
needs to shed more light on these issues.

III. K ASPAR

Fig. 4 shows KASPAR (K inesics And Synchronisation
in PersonalAssistantRobotics). KASPAR is a child-sized
robot which acts as a platform for HRI studies, using mainly
expressions and gestures to interact with a human. The robot
is a work-in-progress but when finished will comprise a static
body with an 8 DOF head and two 6 DOF arms. Important
features of KASPAR are minimal design, the inclusion of
eyelids, and aesthetic consistency of the face (which is why
eyebrows were not implemented; any mechanism to actuate
them would have protruded through the skin).



Fig. 4. KASPAR, HRI research robot.

A. Design Motivations and Rationale

Part of Hertfordshire’s input in the early stages of the
RobotCub project was to suggest design motivations that
would help produce a useful platform for HRI studies, and
which also formed the basis of the design rationale for
KASPAR. These were that there should be consistency of ap-
pearance and complexity between the head, body and hands
to aid natural interaction, and also between the appearance
and the capabilities of the robot to govern the human’s
expectations. It was also suggested that minimal expressive
features should be included and that they should be used to
create the impression of autonomy by (for example) allowing
joint attention or expressing emotional state.

The overall hardware costs of KASPAR are in the range
of a desktop PC, and by keeping the complexity and DOFs
to a minimum we aim to reduce building and maintainance
costs while still creating a robot capable of a wide range of
behaviours. The goal in this case is not perfect realism, but
optimal realism for rich interaction.

B. Face Design

The face design echoes the overall rationale, in that it
aims to approximate the appearance and movements of
the human face without venturing into ultra-realism. Fig. 5
shows the approximate position of KASPAR on the design
space of robot faces. The decision to position the face
somewhat in the iconic direction was made with a two-
fold purpose. We have seen that emphasis on the features
used for communication allows the robot to present facial
feedback clearly, by allowing the interaction partner to focus
on the message more than the medium. Furthermore a
reduction in detail de-personalises the face and allows us
to project our own ideas on it and make it, at least partially,
what we want it to be. These are both potentially desirable
features for a robot in HRI scenarios. Note, however, that
the emphasis on the communicative features is achieved not
by using discrete, exaggerated versions (which is the case
with robots such as Feelix [3] and Kismet [2]), but by
reducing the distracting effect of other details of the face.
KASPAR’s expressions are not as unambiguously defined as
those of Kismet or Feelix, but initial observations indicate

Fig. 5. KASPAR on the design space of robots.

that surprisingly subtle changes in expression can be effective
(see experimmental results, section IV).

KASPAR’s skin (a resuscitation doll mask) is only fixed
at the ears and nose, and allows the face to be pulled into
some fairly natural-looking expressions as the actuation of
the mask in one place tends to slightly deform other areas;
for instance, a smile also pushes up the cheeks and narrows
the eyes. In humans this is typically considered an ‘honest’
smile compared to one which moves only the mouth [1].

C. Design Specifics

Requirements and Strategy.KASPAR’s design was in-
formed by initial studies of existing robot heads and by
the application of ideas from McCloud’s design space. The
design requirements were: (1) Minimal design, yet expressive
enough for HRI, (2) capacity to displayautonomy, (3)
capacity to displayundirectedand directed attention. (4)
iconicity, (5) capacity to accept “projected” expressionswith
change of view angle (a requirement that was inspired by
this ability in traditional Japanese noh masks [13]), and (6)
human-like appearance.

Metal rods are used to transmit servo movement to the
required part of the face or head. In addition to CMOS
cameras in the eyes, micro-switches will be incorporated in
the hands to provide simple tactile feedback and microphones
added to the head.

D. Potential Uses

KASPAR can be used to study a variety of research issues
relevant to HRI such as interaction dynamics, gesture cre-
ation and recognition, joint attention, communication through
imitation and the use of expressions. The addition of arms
will allow a range of interaction games to be played.

IV. SMILE EXPERIMENT

The first study to be undertaken with KASPAR investi-
gated people’s perception of the robot’s expression. Such
an experiment was considered necessary in order to provide
baseline results that will inform future experiments where
KASPAR’s expressions will be used in regulating interaction
dynamics with people. For this purpose, a simple experiment



was created to investigate what bearing the speed and con-
tinuity of a transition from one expression to another might
have on the perception of a robot. Our expectations were
that:
(1) Static expressions of a smile will be judged less appealing
by subjects than expressions with dynamic transitions from
a neutral expression.
(2) Dynamic expressions with transitions at natural speed
will be judged more appealing than those with abrupt tran-
sitions.
(3) The larger the smile, the better will subjects recognize
the expression of ’happiness’.

As this experiment investigates the use of movement in
robot perception it can only be partially related to the idea
of the design space which only concerns static images.

A. Methodology

Four degrees of smile were programmed into KASPAR
and recorded on video with a plain static background.
These were neutral (i.e. no smile, and the ‘default’ starting
condition for all other expressions), and small, medium and
large smiles (Fig. 6). Ten videos were created of 6 seconds
duration each, showing:
1) The neutral face with no transition (static) as a control
condition.
2) Small medium and large smiles with no transition (static).
3) Small, medium and large smiles with a natural transition
(one that takes up to 2 seconds from neutral to smile).
4) Small, medium and large smiles with a sudden transition,
created by editing the video to cut abruptly from neutral to
finished smile with no intermediate stage.
It is important to note that the three sizes of the smiles
remained consistent across all videos, and that only the tran-
sitions varied. A website was created which, after gathering
consent and some minimal demographic data, presented all
the videos twice in a random order. For each video the
subject was asked to rate how happy, and how appealing, the
robot’s smile looked on a scale of 1-5, where 5 is maximal.
Ratings of ‘happiness’ were expected to reflect how success-
ful the robot’s design conveyed this expression. As perceived
‘happiness’ could simply be interpreted as ‘the amount of
smile’, we were also interested in how the robot would be
regarded by subjects both visually and behaviourally and thus
chose the term ‘appealing’ in an attempt to communicate the
idea of this subjective judgement. All results were stored in
a database for later analysis.

B. Results

Results from 51 subjects were obtained, from the UK,
Norway, Sweden, Netherlands, Germany, Austria, Poland,
Spain, Portugal and Italy. The subjects ranged in age between
23 and 58, 21% were female and almost all worked in a
variety of academic and administration roles in universities.

1) ‘Happiness’ Rating:Fig. 7 shows the mean responses
(average standard deviation = 0.94) to the question ‘On a
scale of 1-5, how HAPPY does this robot’s smile look?’
for each video. For the small and medium smiles, those with

Fig. 6. The four experimental expressions, clockwise from top left: neutral,
small, medium and large smiles.

transitions (4-9) are perceived as marginally happier thanthe
corresponding static smiles (1-3). For the more obvious large
smile, the static version is seen as happiest followed by the
natural and sudden transition versions. It is interesting that
there is such a distinct classification, especially betweenthe
small and medium smiles, as at first glance the difference
between them is quite subtle.

0     1     2    3     4     5     6     7     8     9

Fig. 7. Perceived ’happiness’ responses. 0 = neutral, 1 = small static, 2 =
medium static, 3 = large static, 4 = small NT, 5 = medium NT, 6 = large
NT, 7 = small ST, 8 = medium ST, 9 = large ST. NT = natural transition,
ST = sudden transition. Average standard deviation = 0.94.

2) ‘Appeal’ Rating: Fig. 8 shows the mean responses (av-
erage standard deviation = 1) to the question ‘On a scale of 1-
5, how APPEALING does this robot’s smile look?’ for each
video. Here the clear winners are the natural transitions (4-
6). In each of the small, medium and large cases the natural
transition smile is rated higher than either the corresponding
static or sudden transition options. Interestingly the large
smile with a natural transition (6) is the most appealing of
all the large smiles (in fact the most appealing of all the
expressions), and yet the large smile with a sudden transition



(9) is the least. This suggests that realism or time taken to
attain an expression might be a crucial factor in how the
robot is perceived by human subjects.

0     1     2    3     4     5     6     7     8     9

Fig. 8. Perceived ’appeal’ responses. 0 = neutral, 1 = small static, 2 =
medium static, 3 = large static, 4 = small NT, 5 = medium NT, 6 = large
NT, 7 = small ST, 8 = medium ST, 9 = large ST. NT = natural transition,
ST = sudden transition. Average standard deviation = 1.

Two of our hypotheses are supported by the results -
natural transitions are seen as more appealing than sudden
ones (hypothesis 2), and the larger the smile the greater
the judgement of ‘happiness’ (hypothesis 3). However hy-
pothesis 1 is only partially supported; smiles with a natural
transition are seen as more appealing than static ones, but
those with a sudden transition are not. We would suggest
that in the latter case the inconsistency between appearance
(fairly natural) and behaviour (unnatural) causes a negative
response.

V. CONCLUSIONS

In this paper we focussed on design issues of robot faces
integrating findings from psychological studies, work on
narrative art design, and recent HRI studies. Consideration
of these design issues strongly influenced our creation of
a minimally expressive humanoid face, part of the robot
KASPAR. Dimensions of face design were discussed with
aims to help researchers and designers understand and exploit
some ideas synthesizing those of artists, roboticists, and
psychologists that pertain to human perception of robot
faces in HRI. Expressions with a natural transition time are
experimentally shown to be seen as more appealing than
static ones or those with a sudden transition. Whether the
preferred style of expression is one which has natural timing
in any context or is merely one consistent with the overall
aesthetic of the robot is an open question. Although these
results are specific to KASPAR it is clear that robot design
affects peoples’ perceptions in significant ways and these
results suggest that aesthetic/behavioural consistency and the
temporal element in HRI are worthy of further investigation.
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ABSTRACT
This paper presents a proof-of-concept of a robot that is
adapting its behaviour on-line, during interactions with a
human according to detected play styles. The study is part
of the AuRoRa project which investigates how robots may
be used to help children with autism to overcome some of
their impairments in social interactions. The paper mo-
tivates why adaptation is a very desirable feature of au-
tonomous robots in human-robot interaction scenarios in
general, and in autism therapy in particular. Two differ-
ent play styles namely ‘strong’ and ‘gentle’ are investigated
experimentally. The model relies on Self-Organizing Maps
and on Fast Fourier Transform to preprocess the sensor data.
First experiments were carried out which discuss the perfor-
mance of the model. Related work on adaptation in socially
assistive and therapeutic work are surveyed. In future work,
with typically developing and autistic children, the concrete
choice of the robot’s behaviours will be tailored towards the
childrens interests and abilities.

Keywords
Interaction styles, adaptation in interaction, behaviour clas-
sification

1. INTRODUCTION
This study is part of the AuRoRa project [1], an ongoing
long-term project which investigates the potential use of
robots to help children with autism to overcome some of
their impairments in social interactions [7].

Children with autism have impairments in communication,
social and imagination skills. Autism is a spectrum disorder
and children have very different abilities and skills. In our
perspective, any robotic mediated therapy therefore needs
to consider the individual nature of child-robot interactions.
One constraint is to make sure that the interaction between
children and the robot will be ‘playful’ for the children (we

need to consider here the notion of playfulness as it applies
in autism, cf. section 2.2 below). The advantage of making
the child interact with a robotic platform is to reduce the
complexity of the interaction and creating a predictable en-
vironment for play to begin with, so that it can be easier
for the child to feel at ease during the interaction in order
to experience and understand better the interactions taking
place. The premise of our work is that, progressively, the
complexity of the environment can be increased if the child
is making sufficient progress.

One stream of research in the Aurora project is focusing on
the potential role of the robot as a mediator, i.e. as a salient
object that helps children to interact with other children or
adults [14, 15, 16] . In the other stream of research we focus
on the robot as an autonomous toy. Here, a main objective
in our research is for the robot to be able to recognize on-line
the type of interaction induced by the child so that the robot
can adapt to the interaction in order to behave more appro-
priately to the child’s specific abilities and needs. At first
step towards this goal, the robot should be able to maintain
‘appropriate’ (i.e. intermediate, balanced) levels of interac-
tion, e.g. not too strong and not too weak. Note, we consider
the child’s abilities as they are expressed through interaction
with the robot, resulting in different play styles. The child’s
therapeutic needs in this context are not addressed directly,
but only indirectly by encouraging therapeutically relevant
interactive behaviour involving touch [7]. The present pa-
per presents a proof-of-concept of a robot that is adapting
its behaviour on-line during interactions with the children
according to detected play styles. Specifically, we show an
Aibo robot that can classify specific child-robot interactions
on-line, using self-organizing maps. We demonstrate how
the robot can adapt its behaviour on-line to the child (i.e.
to the interaction). Importantly, this work goes beyond pre-
liminary work that classified and characterized interactions
off-line, i.e. after the interactions had taken place [17, 18,
19] .

The remainder of the paper is structured as follows. Section
2 explains more precisely the motivation of this research.
Section 3 characterizes the classification process. The imple-
mentation of the algorithm is described in section 4. Section
5 describes preliminary trials. Related work is discussed in
more detail in section 6. Conclusions and future work close
the paper.



2. MOTIVATION
2.1 Autism
Autism refers to autistic spectrum disorders which can ap-
pear at many different degrees and refer to different skills
and abilities. The main impairments highlighted by the Na-
tional Autistic Society are:

Impaired social interaction: Difficulties to make a sense
of a relationship with others, difficulties to guess or even
understand what the other’s intentions, feelings and mental
states are.

Impaired social communication: Difficulties with verbal
and non-verbal communication (for example, difficulties to
understand facial gestures).

Impaired imagination: Difficulties to have imaginative
play, for example.

As a consequence of the above impairments, children often
choose a world of repetitive patterns (e.g. they often play
in a repetitive way).

2.2 Play
There is no precise definition about play, mostly because
many fields are involved. This multidisciplinarity also re-
sults in the coexistence of various classifications of play.
Among them, a classification given by Boucher [4, 5] is par-
ticularly relevant for our study in the sense that it merges
the notion of exploration with the idea of social interaction.

Play is a vehicle for learning [6]. Through certain kinds
of play, children can construct some understanding, in the
sense of active construction of meaning. Play can thus de-
velop skills in many fields: logical memory and abstract
thought, communication skills and social skills. Moreover,
it is a medium for self expression.

Children with autism have a relative potential for play but
they often encounter obstacles, the causes of which are still
not clear. These impairments (among them, impairments in
socio emotional inter-subjectivity, in joint attention and in
Theory of Mind) impair interactions in general and, more
specifically, imply a lack of spontaneous and social reci-
procity during play. These three impairments, in addition
to the potential deficits in higher order representation may
explain the difficulties encountered in pretend play. The dis-
ability in perceiving the coherence of categories and concepts
can also be a reason why autistic children perceive objects
in their parts and not as the whole which is part of a weak
central coherence theory.

As a result, to facilitate autistic children’s play with a robot,
it is necessary to focus on the interaction, because interac-
tion is decisive in the process of learning through play. If
the robot is able to identify on-line the way a child interacts
with the robot, then it can adapt to it more accurately. The
adaptation should lead to a level of interaction encouraging
the child to continue playing, and it should lead to robot’s
behaviours that are more appropriate to the current child’s
needs. For example, the robot should be able to detect force-
ful interaction and regulate the interaction so that the child
is still engaged in the interaction but without signs of force.

From this point of view, the process of adaptation would
become bidirectional: firstly the robot adapts to the child
and secondly, the robot may influence the child’s behaviour
in return.

3. CLASSIFICATION OF INTERACTION
People are used to describing an interaction verbally, by ob-
serving and listening to what constitutes the interaction. In
a natural context we evaluate interaction subjectively, which
means we usually don’t use any objective measure to decide
if e.g. an interaction is gentle or strong, repetitive or non
repetitive etc. Instead, we use our own human senses and
we may use as well our previous experience from similar in-
teractions to classify and evaluate any interaction we are
involved in. The challenge in this study is to classify the
interaction objectively (i.e. automatically) from the robot’s
point of view. The interface between the child and the robot
(Aibo robot) are the different sensors of the robot. This im-
plies that we can use these quantitative measurements to
evaluate, analyze and classify any interaction. Our initial
idea was to run some experiments by playing with an Aibo
robot according to a predefined interaction type, thus col-
lecting all the sensor data necessary for the later analysis
in order to see if and how it could be possible to match
subjective human description of interaction with quantita-
tive data. To simplify the problem, we decided to classify
the interaction into two classes only: Gentle and Strong.
An interaction is classified as ‘gentle’ if the participant is
touching the robot gently, without signs of force. Note, this
may also include an interaction with a child not or almost
not touching the robot. On the contrary, if the participant
touches the robot with signs of force, then the interaction is
classified as ‘strong’.

For such a classification, what is important is how a par-
ticipant touches the Aibo and not which part of the robot
the participant is touching. Consequently, the sensors which
will contribute to the input data for the classification will be
regarded as one global variable. This is possible by normal-
izing the input data values (repartitions into 10 bins) and
computing the sum of these normalized data.

Moreover, in this first approach we wanted the classification
process to be as independent from the robot’s behaviour as
possible. That is why we only focussed on sensors which are
(almost) not influenced by the Aibo’s motion and sounds it
emits but are at the same time determined by an interaction
with a child. Therefore, we considered as input sensors for
the analysis only sensors corresponding to the touch of the
head (1 sensor), the touch of the chin (1 sensor) and the
touch of the back (3 sensors).

3.1 Analysis of temporal data
We conducted some preliminary experiments to get sensor
data to analyze during the explorative phase of the study.
The experimental setup was a participant interacting with
an Aibo for around five minutes, who was asked to play
during the whole session in the same way (either gently or
strongly). In total, we did 6 runs, 3 with ‘gentle interaction’
and 3 with ‘strong interaction’. The experiment involved
two different adult participants, one person did one run with
‘gentle’ interaction and one with ‘strong’ interaction and the
other participant did the other 4 runs. The idea of having



two different participants was initially to decrease the risk
of having a classification depending on the person interact-
ing with the robot, however, one of the participants ended
up doing most of the experiments. Note, this particular ex-
periment is preliminary in nature, future work will involve
a larger number of participants and experimental runs.

We analyzed the changes over time of the sum of the five
external sensor data distributed into bins. Differences ap-
peared clearly: when graphically displayed, temporal data
from ‘Gentle interaction’ trials were made of many ‘blobs’
(see Fig. 1), while temporal data from ‘Strong interaction’
trials were mainly made of ‘peaks’ (see Fig. 2). Only one run
with strong interaction was showing more confusing results
but it was also because the participant was not interacting
purely strongly during this run. We therefore excluded the
results of this run for the further analysis. Given the visu-
ally different patterns, methods for automatic classification
were investigated.
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Figure 1: Gentle interaction: typical ‘blobs’ in tem-
poral data.

0

5

10

15

20

25

1 51 101 151 201 251 301 351 401 451 501 551 601

time (time steps)

am
pl

itu
de

 (
su

m
 o

f b
in

s)

 

Figure 2: Strong interaction: typical ‘peaks’ in tem-
poral data

3.2 Fast Fourier Transform
Since the temporal data from ‘Gentle interaction’ trials were
made of a lot of blobs, while temporal data from ‘Strong
interaction’ trials were mainly made of peaks it became in-
teresting to focus on the frequency spectrum which would
exhibit clear differences: for gentle interaction, there would
be higher magnitudes for lower frequency and it would be
the contrary for strong interaction. Moreover we wanted the
method to be able to not distinguish similar patterns ex-
hibited at different time steps: the method should be shift
invariant.

Both these reasons made us select the Fourier Transform as
a further step in our analysis [9]. Fourier transform is an
invertible function which has, among other properties, the
property of being shift invariant, and which decomposes a

function into a continuous spectrum of its frequency com-
ponents. Several variants coexists; among them the Fourier
Transform for discrete signals and the Fast Fourier Trans-
form which is also for discrete signals but has a complexity
of O(n · ln n) instead of O(n2) for the discrete Fourier Trans-
form.

3.3 Self-Organizing Map
In a next step of the study, we wanted to automate the
classification of the interaction properly, so that differences
observed by eye on the magnitude of the FFT could be re-
flected in the quantitative analysis. Since we had no a priori
information on the topology of the data, we decided to use
a method which only requires poor or no a priori knowledge
of the present problem and also allowed the model to learn
from the data and generalize. Therefore we decided to use
Artificial Neural Networks and more specifically the Self Or-
ganizing Map (SOM) which provides a topology preserving
mapping from high dimensional space to map units.

SOM relies on unsupervised, competitive learning. A spe-
cific weight, from the same dimension as the input data, is
attached to each neuron (node) of the network. Each node
is connected to the adjacent ones according to a neighbor-
hood rule which influences the topology of the map. The
SOM is made of two phases: the training phase during which
weights of the nodes are updated and the mapping phase,
during which the classification or categorization of data can
be made [12].

Training phase. First of all the network is initialized (ei-
ther by random initialization, by initial samples, or through
linear initialization). This process defines initial weight vec-
tors, one for each node of the network. Then, input data
are presented one by one to the network (random selection).
For each input data, the distance is measured according to
a predefined metric between the input vector and each node
of the network. The node minimizing the distance is called
the Best Matching Unit (BMU). Afterwards, the weights are
updated according to the following equation [3] :

w′

j = wj + ǫ(t) · hrs · (v − wj) j = 1, ..., ‖K‖ where

• wj is the weight for the node j
• w′

j is the updated weight for the node j
• ‖K‖ is the size of neighbourhood K(wi(v)) for the win-

ner node wi(v).

• hrs = exp(
−d(r,wi(v))

2)

σ(t)2
) ∀r ∈ K(wi(v))

• ǫ and σ are monotonic decreasing functions of time.

By simplifying, we can say that time being static, the closer
a node is from the BMU, the more it will learn; and globally,
the network will learn less and less when time is growing.
The presentation of the entire set of input data constitutes
what we call an ‘epoch’. A training phase can result from
the succession of many epochs.

Mapping phase. Once the network has been trained, it
can be used for classifying (categorizing) data from the same
space as the input data used for the training phase. A data
from the latter space will be presented to the nodes suc-
cessively. The node activated is the node corresponding to
the BMU with regards to the same metric as used for the
training phase.



3.4 Whole process of classification
The whole process of classification of interaction styles can
be synthesized as follows: globally, temporal sensor data
will be preprocessed to be used in the process of classifi-
cation. The preprocessing results in a computation of the
magnitude of the FFT algorithm which itself uses prepro-
cessing of temporal data to consider the input sensors data
as a whole global variable (see Fig. 3). The training phase
of the SOM is made off-line (see Fig. 4) while the mapping
phase and its coresponding preprocessing are made on-line
(see Fig. 5).
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Figure 3: Data Preprocessing for FFT
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Figure 5: Unit process of classification and adapta-
tion to the interaction style

4. IMPLEMENTATION
4.1 Communication process
The robot used in this study is the Sony Aibo ERS-7. Its
control programming is achieved using URBI (Universal Real-
Time Behaviour Interface) [2]. Sensor/motor data are trans-
mitted through a wireless LAN to a laptop. The Aibo sends
current states of its sensors every 32ms. The laptop ana-
lyzes periodically the sensor data, classifying on-line the in-
teraction correspondingly and sending the information back
to the Aibo which then changes its behaviour accordingly.
The process of classification of the interaction is written in
Java.

4.2 Parameters for the process of classification
and adaptation

We needed vectors of sufficient dimension to get a good re-
sult for the SOM. Experimentally, we got good results by
using an input vector of dimension 512 (it had to be a power
of 2 due to the FFT algorithm we were using). Input vec-
tors for the SOM were therefore of dimension 512 and each
component of the vector was respectively the magnitude of
the component of the vector resulting from the FFT. The
network had a rectangular topology and was made of 10*10
nodes. We used random initialization and 5 epochs for the
training which was made off-line.

However, once the training phase had been finished, all the
behaviour classification was made on-line, the FFT algo-
rithm being computed on-line as well as the activation of
nodes for the SOM. But since this process was time consum-
ing, and since the magnitude of the Fourier transform did
not change significantly over a few time steps, we decided to
set a frequency which would be more suitable. Experimen-
tally it was found that updating the magnitude on the FFT
once in 120 updates of the sensor data was efficient. After
every update of the interaction state through the classifica-
tion, the Aibo got informed of the result in order to adapt
its own behaviour on-line. Note, future work will consider
to run the classification on-board the robot. For monitor-
ing and practicality purposes the use of the laptop seemed
appropriate.

5. VALIDATION OF THE MODEL
5.1 Validation of the topology of the SOM map
We did two different trainings, each of them with a random
intialization. We then characterized the nodes of each of the
network according to the following rules: a node activated
only by data from Gentle interaction is called ‘gentle node’;
a node activated only by data from Strong interaction is
called ‘strong node’; a node activated by both data is called
‘hybrid node’; a node never activated is called a ‘null node’.

We analyzed the topological repartition of gentle nodes on
the one hand and of strong nodes on the other hand, and
looked at the ratio of hybrid nodes and the ratio of null
nodes. For having a performant and coherent classification
of the interaction, a necessary condition is that the SOM
map clearly distinguishes topologically two regions, one cor-
responding to the ‘gentle’ nodes and the second regrouping
the ‘strong’ nodes. Moreover, the proportion of hybrid and
null nodes should be very low compared to the proportion
of gentle and strong nodes so that there are not two many
cases in which the Aibo will not be able to ‘decide’ between
strong and gentle interaction. Besides, hybrid nodes should
be mostly on the border or next to the border between gentle
and strong regions (by opposition to any of the inner part of
the regions): this would correspond to a smooth transition
between the two regions.

The SOM maps give both good results (see Fig. 6 which
provides a graph of the first map). For each of them, the
number of hybrid nodes is respectively 9 and 7 out of 100,
while the number of null nodes is respectively 1 and 0. For
the first map, all the hybrid nodes are on the border. For
the second map, 3 hybrid nodes are not directly on the bor-



der but 2 of them are first neighbours of border nodes and
the third on is second neighbour. This corresponds to a
smoother transition between the two regions.

 

   

 

       

Figure 6: Map of a SOM. legend : white for ‘gentle’

node, black for ‘strong’ node, stripes for ‘hybrid’ node, blobs

for ‘null’ node

5.2 Validation of the on-line classification and
the on-line adaptation of the robot

The model is accurate if it satisfies the following constraints:

• A gentle interaction does not activate a strong node
but activates one of the three other kinds of nodes; a
strong interaction does not activate a gentle node but
activates one of the three other kinds of nodes.

• The classification can be made on-line.
• The Aibo detects a change of the class of interaction

and classifies the new interaction accurately (with an
eventual short delay).

• The Aibo can adapt its behaviour on-line with respect
to the kind of interaction recognized.

To test these different constraints we did various experi-
ments with a human playing with the Aibo robot. The set
of Aibo’s possible behaviors remained the same in all the
experiments: it was standing and waiting for at least one of
its five external sensors to be activated. Whenever one of
the latter sensors was activated, it started a) wagging the
tail if it had detected a gentle interaction, or b) barked if
it had detected a strong interaction. The rationale behind
this choice was as follows: as described above, in child-robot
play we want the robot to be able to maintain an interme-
diate level of interaction, not too strong, not too gentle. In
this work, barking was used as a representative behaviour
that might induce a human to ‘back off’, thus calming the
interaction. Wagging the tail was used as an indicator to
encourage interaction. Note, in future work with typically
developing and autistic children the concrete choice of these
behaviours will be tailored towards the children’s interests
and abilities.

If the Aibo had detected a middle interaction (corresponding
to an activation of either null or hybrid node on the SOM
map), its current reaction to tactile stimuli remained the
same. Its initial state corresponded to a gentle interaction.

We ensured that the succession of interaction levels detected
by the robot and the corresponding node activated on the
SOM map were stored in a file. According to the experi-
ment, the participant had to play either gently or strongly,
or alternating gentle and strong interactions. The partici-
pant had to maintain the same level of interaction until the
Aibo had classified and adapted to this level.

Each time the participant changed her way of interacting
with the robot, the time at which it happened was stored
as well as the time at which the Aibo adapted its behavior
accordingly.

Note, future work will cope with more frequent changes in
play style, since child users will not be instructed how to
play.

Experiment 1.
In this experiment, we wanted to ensure the Aibo was able
to recognize each type of interaction and keep recognizing it
for the whole duration of the interaction.

This experiment consisted of two runs of three minutes each.
The participant interacted with the Aibo on a gentle level
of interaction only during the first run and on a strong level
of interaction only during the second run. For each run,
42 updates of the classification of the interaction happened
with no errors in the classification. Actually, during the
‘gentle’ interaction, 39 times the winner node of the SOM
was a ‘gentle’ one, 3 times it was a ‘hybrid or null’ one and
it was never a ‘strong’ one. In the same way, during ‘strong’
interaction, 41 times the winner node of the SOM was a
‘strong’ one, once it was a ‘hybrid or null’ one and it was
never a ‘gentle’ one.

Experiment 2.
In this experiment, we tested the capacity of the Aibo to
adapt its behaviour in a changing interaction. The partici-
pant was asked to interact gently and strongly with no con-
straints on the changes of the interaction styles. The only
constraint was to touch quite regularly the five tactile sen-
sors. The purpose of the experiment was to test the Aibo’s
capability of adaptation over time involving all five tactile
sensors. We did one run that lasted around eight minutes.
The Aibo adapted correctly to the interaction (see Fig. 7)
but with a certain delay (which was comprised between 10s
and 19s). Fig. 7 compares the Aibo’s behaviour transitions
(as a consequence of adaptation) to the changes in the par-
ticipant’s behaviour scored subjectively.
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Figure 7: Example of the dynamics of the robot’s
adaptation to the interaction: The first graph represents

the subjective interaction level over time; the second graph

shows the robot’s accurate adaptation with a delay. On the

y-axis, 1 stands for ‘Strong’ and 0 for ‘Gentle’



Experiment 3.
Since autistic children sometimes play in a repetitive way, it
is very likely that some of them will continue touching the
same sensor. We therefore needed to test our model in this
special case and also especially because the Aibo’s sensors
involved in the interaction were different in nature: while
the sensor on top of the head and the three sensors on the
back returned values that could all vary continuously from
a minimum value to a maximum value (analogical sensors),
the chin sensor value could be either zero or one (numeric
or boolean sensor) which means that its equivalent after
repartition into bins is either 0 or bin 9.

We conducted five trials. For each of them the participant
had to touch only one sensor, respectively the chin sensor,
the head sensor, the back sensor on the front, the back sensor
in the middle and the back sensor on the back. For each
trial, the participant could change the level of interaction
(from gentle to strong, from strong to gentle) whenever she
wanted. Results showed that the Aibo adapted correctly to
the interaction for trials focussing on the head and the three
back sensors while there were some surprising results for the
trial focusing on the chin sensor. We observed two kinds of
possible errors in the adaptation: a) The Aibo was not able
to detect a gentle interaction within 1 minute (1 minute is a
long time compared to the average time of adaptation to a
new interaction level), or b) The Aibo had detected a gentle
interaction for a very short time (around 4 seconds), the
participant was keeping interacting subjectively gently but
the Aibo started barking, which means it appeared to her
the interaction had become strong. This situation happened
when the subjective gentle interaction was done in a way
that the chin sensor was still activated (the Aibo wagged
its tail). As explained above, the chin sensor can take only
two values which are 0 or 1, which means, after repartition
into bins, that value 1 (activation of the chin sensor) will
correspond to a very high value (bin 9), even if the activation
is done quite gently, (but with a sufficient pressure).

Moreover, our model for classifying data takes mainly two
factors into account: a) the relative magnitude of the fre-
quencies of the Fast Fourier Transform of one vector of sen-
sor data exhibit which frequencies are predominant, which
is directly linked to the rhythm of the interaction (e.g du-
ration of touch of sensors, periodicity of touch of the robot
on any of her five sensors etc.); b) the FFT respects the lin-
ear property. Consequently, if the chin sensor gets activated
very often, even with quite gentle touch, then a lot of high
values will constitute the input vector and the result of the
classification may be affected.

This shows a limitation of our model: the model should
be used with caution when integrating boolean sensors. If,
for example, there is only one boolean sensor in five and
there is a good repartition of activation of sensors, then the
classification will work well. But if the boolean sensor is
activated too often, it might lead to a wrong classification.
Note, it also seems impossible to delimit precisely the border
between strong and gentle interaction subjectively.

Experiment 4.
In the present experiment, we decided to avoid the risk of
having errors induced by the boolean sensor; consequently,

the participant had to respect the constraint of not touch-
ing the chin sensor, but she could touch all the four other
sensors. The participant could change from one level of in-
teraction to another (gentle, strong) whenever she wanted
but she tried to vary the duration of time between the time
the Aibo adapted to the current interaction and the time
she changed the interaction afterwards.

The idea was to check experimentally that the delay of adap-
tation was not directly influenced by the rhythm of changes
in the subjective interaction. This idea is linked to the fact
that we use a finite vector of data to classify the interaction,
which means, we take into account only a limited history of
the interaction. And since this vector is updated like the
process of a sliding window with a stationary length, the
duration necessary to classify the interaction should belong
to a very short interval of data.

The experiment lasted around seven minutes, alternating
longer period for changes in behavior and shorter period
for changes. The longest duration of an interaction was 50
seconds, the shortest was 17 seconds. Fig. 8. represents on
the x-axis the duration of a level of interaction and on the
y-axis the delay of the adaptation to the next interaction
level (e.g. length of gentle interaction and delay to adapt
to the next kind of interaction which will be strong). The
graph shows that there is no linear relationship between the
period of changes in behavior and the delay for adaptation.
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Figure 8: Experiment4 : delay in the process of classifica-

tion and adaptation and corresponding duration of previous

interaction style

6. RELATED WORK
6.1 Educational and therapeutic applications

of human-robot interaction
Long-term (therapeutic) studies with Paro. Two stud-
ies using the seal robot Paro are particularly relevant for our
study since they show that specific everyday life situations
exists in which human-robot interaction can have a posi-
tive effect on well being of human beings and can even be a
significiant factor of performance in therapy. The first long-
term study was focusing on elderly people [22], introducing
Paro into their everyday life in order to analyse the impacts
on their global well being. Paro was introduced daily in
two institutions for elderly people, one for 20 minutes every
day over 6 weeks and the second one for 1 hour every day
over more than one year. Elderly people were free to inter-
act with Paro. Results show that the interaction with Paro
improved the mood state of the participants and made the



elderly people more active and more communicative with
each other and with the caregivers as well.

The second study [13] designed engaging rehabilitation ac-
tivities that combine physical and cognitive rehabilitation.
This experiment lasted three months with a weekly occur-
rence. The participant was a child with severe cognitive and
physical delays. The Paro robot was introduced in the Bo-
bath protocol which is a method used for the rehabilitation
of physical functional skills. Results showed that the inter-
action of the child with Paro seemed to have strengthened
the efficacy of the Bobath protocol.

Involving quantitative data in the diagnosis of autism.
The goal of this research [20, 21] is to impact the diagnosis of
autism by providing the possibility to use quantitative and
objective measurements of social responses. Measurements
are done through both passive observation (through sensors
which record and interpret data during standard clinical
evaluations) and structured interactions with autonomous
robots. Three criteria are mainly analyzed to distinguish
typically developed children from autistic children: gaze pat-
terns, position in the room and vocal prosody. The analysis
of gaze tracking is now an integral part of the clinical evalu-
ation. It relies on linear discriminant analysis of autistic and
gaze patterns. A pilot study with this analysis has shown
that autistic children don’t share the same visual strategy as
typically developed children and also among themselves. In
this study, Scassellati exhibits a very nice application of the
analysis of the interaction. He managed to qualify quantita-
tively criteria of typical human-human interaction through
passive sensors and human-robot interaction analysis.

Long-term study on human-robot interaction in the
context of dancing. This study [24, 23] aims at find-
ing principles for realizing long-term interaction between a
human and a robot. Tanaka et al. decided to run a long-
term study with children and the robot QRIO, in a con-
text relevant and frequent during childhood: dancing. This
study focussed on the off-line analysis of the interaction,
both qualitatively and quantitatively. On the one hand, the
study analysed children’s behaviour and showed that chil-
dren tend to adapt their behaviour to the robot over time;
e.g. they tend to know the robot is weak and tend progres-
sively to treat QRIO softly. On the other hand, the study
points out basic units as requirements for long-term inter-
action, respectively “sympathy” between human and robot
and “variation’ in the interaction style.

6.2 Classification of Human-Robot interaction
Different approaches have been used to classify human-robot
interaction. More recent ones focus on the use of quantita-
tive data for the characterisation of the interaction.

Links between subjective analysis and quantitative
data. Kanda et al. [10] provide an interesting study re-
garding correlations between subjective evaluation (gener-
ally through questionnaires) and quantitative data collected
during human-robot interaction. The experimental setup in-
cludes a participant interacting with a Robovie robot. Both
are equipped with markers and infrared sources are placed
in the environment. Through this setup, it is possible to
collect, during the interaction, quantitative data character-

izing indirectly body movements of both the robot and the
subject. After the interaction phase, the individual is asked
to specify the interaction subjectively according to some cri-
teria which have been defined during a previous study [11].
The comparison between objective and subjective evalua-
tion of the interaction indicates correlations between both
analyses. In this study, Kanda et al. showed the possibility
of characterizing quantitatively styles of interaction. Note,
analysis of the data is off-line (i.e after the interactions have
taken place) and the subjective description of the interaction
focusses on the robot’s behaviour only.

Salter et al. [17] adopt a different approach to show simi-
larities between objective quantitative data and subjective
description of behaviour to specify human-robot interaction.
Contrary to Kanda et al.’s study, Salter et al. focus more on
the participant’s (a child in this study) personality during
the interaction rather than on the robot’s behaviour and
appearance. The subjective evaluation of the children’s per-
sonality takes place before the interactive phase whereby
relatives of the child choose one trait of personality among
a predefined list, which best corresponded to the child. The
interactive phase is made of dyadic child-robot interaction
with a mobile robot called Pekee (Wany Robotics); Off-
line clustering analysis of the data show similarities between
subjective evaluation and quantitative analysis: a) children
which are considered to have the same trait of personality
(among the proposed list) show also similar behaviours to-
wards Pekee, and b) children with the same traits of person-
ality tend to activate the same sensors on the robots (same
patterns of touch).

Towards quantitative sensor analysis of the interac-
tion. In a further study, Salter et al. [19] enumerate a list
of possible states for a mobile robot called Roball and show
that it is possible to define each of the states through sensor
data analysis only. The four different states are: ‘alone’,
‘interacting’, ‘carrying’ and ‘spinning‘. The sensor analysis
relies on off-line temporal analysis of the sensor data and a
‘manual’ classification through visual analysis of the sensor
data which is not automated.

Automated classification and adaptation. In recent
work on an adaptive playground, Derakhshan et al. [8] ap-
plied techniques known from robotics, artificial intelligence
and multimedia to playgrounds. Their aim was to enable a
computerized playground to adapt to children’s behaviour in
such a way that these children feel encouraged to play. The
playground is made of specific tiles and a computer is used
to store and process the data When a child is playing, input
is provided through tactile sensors on the tiles. By adopting
a multi-agent system approach of BDI (Belief Desire In-
tention) in combination with artificial neural networks tech-
niques (with supervised training) the system learns to rec-
ognize various behaviours for either a single child or a group
of children playing. Afterwards, the system can identify
and adapt autonomously while children are playing. This
study is very relevant to our work because it exhibits a dif-
ferent approach to solve the notion of on-line classification
and adaptation in a context of human-computer interaction.
Our study takes a different perspective though; our model
aims at enabling the robotic platform to adapt its own be-
haviour to the interaction style, in order to a) encourage the



child to continue playing, but also b) to enable the robot to
influence the child’s behavior to reach a specific interaction
level. Note, b) is our future goal and only first steps have
been taken into this direction.

7. CONCLUSION AND FUTURE WORK
This paper provided a proof of concept of on-line behaviour
classification and adaptation of a robot’s behaviour accord-
ing to human-robot interaction styles. Experiments have
shown that with our proposed model of classification a) the
Aibo is able to classify a dyadic human-robot interaction it
is involved in on-line, and b) it can adapt to the interac-
tion by changing its own behaviour and thus changing the
interaction with the subject.

The experiments highlighted also some limitations of the
model, particularly concerning the involvement of boolean
sensors in the process of collecting data. Moreover, a future
step in the implementation will investigate running the al-
gorithm on-board and will focus on an optimisation of the
delay in the update of the classification of the interaction
styles as well.

Concerning the process of the Aibo changing its own be-
haviour, more investigations needs to be done to define more
accurately the different relevant behaviours for the context
of child-robot interaction and more specifically for the Au-
RoRa project, i.e. in a therapeutic context involving autis-
tic children. As already mentioned above, in future work
with typically developped and autistic children, the concrete
choice of these behaviours will be tailored towards the chil-
drens interests and abilities.

It is hoped that this study represents a step forward in the
investigation of ‘child’s play’ with robots, involving both
autistic and typically developing children.
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