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1 Introduction

This Deliverable deals with sensorimotor integration, a fundamental process linking the
perceptual side of the brain with the motor one. Neuroscience of the last twenty years
progressively became aware of the fact that the traditional idea of a unidirectional flow of
information — from perception to action — is not true. Conversely, cortico-cortical connections
are bidirectional and several evidence shows that motor planning potently modify, and
sometimes filters, the incoming sensory information.

Some of the experiments here described have been carried out not only at UNIFE and
UNIUP (the more neuroscience-related teams of the RobotCub community) but also at EPFL,
SSSA, UGDIST, UNIHER, UNISAL, UNIZH, IST, all teams whose pedigree is essentially
robotics. This is, in our view, the best demonstration in favour of the efficacy of the
multidisciplinary nature of RobotCub Integrated Project.

1.1 The theoretical framework

Several lines of evidence point to a significant involvement of the motor system in
supporting processes traditionally considered as ‘high level' or cognitive, such as action
understanding, mental imagery of actions, objects perception and discrimination. The
“biologically compatibility” constraint guiding the RobotCub project forces us to study these
processes not only because of their scientific interest but also because our aim is to setup the
artefact in a way that will allow this bi-directional information flow.

A typical example of how sensorimotor integration is used by the brain in practical tasks
is provided by a population of neurons in the monkey ventral premotor cortex (mirror neurons)
that discharge both when the monkey performs a grasping action and when it observes the
same action performed by other individuals [Gallese et al. 1996]. Mirror neurons could provide
the neurophysiological basis for the capacity of primates to recognize different actions made by
other individuals: the same motor pattern which characterizes the observed action is evoked in
the observer and activates its own motor repertoire. This matching mechanism, which can be
framed within the motor theories of perception, offers the great advantage of using a repertoire
of coded actions in two ways at the same time: at the output side to act, and at the input side, to
analyse the visual percept. This matching system has also been demonstrated in humans.
Transcranial Magnetic Stimulation (TMS) of the motor cortex of subjects observing hand actions
made by the experimenter determined an enhancement of motor evoked potentials (MEPs) in
the same muscular groups that were used by the experimenter in executing those actions
[Fadiga et al. 1995]. This means that when we observe an action we utilize, as monkeys do, the
same repertoire of motor representations used to produce the same action.

A further example of the involvement of the motor system in cognitive functions is
given by motor imagery. Imagining a grasping action is a cognitive task that requires a
conscious, detailed representation of the movement. Several brain imaging studies have shown
that during motor imagery of grasping actions, premotor and inferior parietal areas are strongly
activated [Decety et al. 1994, Grafton et al. 1996]. Furthermore, Parsons et al. [1995]
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demonstrated by PET that implicit motor imagery (used to discriminate the orientation of
visually presented hands) activates premotor and posterior parietal cortex. Moreover, Sirigu et
al. [1996] showed that patients with lesions restricted to the posterior parietal cortex were
selectively impaired at estimating, through mental imagery, the time necessary to perform
differentiated finger movements. Taken together, all these results seem to contradict a sharp
distinction between an "acting brain' and a "knowing brain'.

Among the processes traditionally considered to be "high level' or cognitive, selective
attention is one of the most important. The term ‘selective attention” refers to the capability of
selecting a particular stimulus according to its physical properties, way of presentation, or
previous contingencies and instructions. After selection, the stimulus is processed and, if
convenient for the individual, acted on. A problem to solve is to understand how the sensitivity
of different sectors of space can be increased in processing visual stimuli, in order to select some
of them and discard others. The traditional view is that selective attention is controlled by a
supramodal system ‘anatomically separate from the data processing systems' ([Posner and
Petersen, 1990], p. 26). Like the sensory and motor systems, this ‘attention system' performs
operations on specific inputs. It interacts with other centers of the brain but maintains its own
identity [Posner and Petersen, 1990]. On the basis of data obtained from brain imaging
experiments [Corbetta et al. 1990, Corbetta et al. 1991, Posner et al. 1988], it has been suggested
that the attention system is not unitary but consists of at least two independent systems: a
posterior one subserving spatial attention and an anterior one devoted to attention recruitment
and control of brain areas involved in complex cognitive tasks [Posner and Dehaene 1994].

An alternative view of selective attention (that we favour) is that it derives from
mechanisms that are intrinsic to the circuits underlying perception and action. Attention is
modular, and there is no need to postulate control mechanisms anatomically separate from the
sensorimotor circuits. This account for selective attention was originally formulated for
visuospatial attention (premotor theory of attention; Rizzolatti and Camarda 1987, Rizzolatti et
al. 1987) and it is deeply rooted in the idea that space is coded in a series of parieto-frontal
circuits working in parallel and that the coordinate frame in which space is coded depends on
the motor requirements of the effectors that a given circuit controls (see Rizzolatti et al. 1994).
Given this strict link between space coding and action programming, the premotor theory of
attention postulates that spatial attention is a consequence of the activation of those same
cortical circuits and subcortical centers that are involved in the transformation of spatial
information into actions. Its main assumption is that the motor programs for acting in space,
once prepared, are not immediately executed. The condition in which action is ready but its
execution is delayed corresponds to what is introspectively called spatial attention. In this
condition, two events occur: (a) There is an increase in motor readiness to act in the direction of
the space region toward which a motor program was prepared, and (b) the processing of
stimuli coming from that same space sector is facilitated. There is no need, therefore, to
postulate an independent control system because attention derives from the same mechanisms
that generate action. Although, in principle, all the circuits responsible for spatially directed
action can influence spatial attention, there is no doubt that, in humans, the central role in
spatial attention is played by the circuits that code space for programming eye movements.
Experiments in which the relations between attention and eye movements were either indirectly
or directly tested, showed that the two mechanisms interact: Any time attention is directed to a
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target, an oculomotor program toward that target is prepared. Particularly significant in this
respect are experiments in which the relations between attention and eye movements were
directly tested [Sheliga et al. 1995a, Sheliga et al. 1995b. Sheliga and coworkers instructed
normal participants to pay attention to a given spatial location and to perform a predetermined
vertical or horizontal ocular saccade at the presentation of the imperative stimulus. The results
showed that the trajectory of ocular saccades in response to visual or acoustic imperative
stimuli deviates according to the location of attention. Moreover, the deviation increased as the
attentional task became more difficult. In a recent experiment, the role of oculomotion in
orienting of attention was investigated by dissociating perceptual from motor capabilities
[Craighero et al. 1994]. If a causal relationship links oculomotion and orienting of attention, any
constraint limiting eye movements should abolish, or at least reduce, attentional benefits in the
region of the spatial field barely reachable by the eye. On the contrary, if attention is a purely
cognitive process, then no effects are expected to arise from oculomotor constraints. Subjects
were submitted to a spatial attention orienting task, performing it in monocular vision and
having the head rotated in such a way that the eye was kept at an extreme position in the orbit.
This position limited the execution of a saccade toward the temporal hemifield, whereas it
allowed saccadic execution toward the nasal hemifield. Results showed that orienting of
attention was normal in the nasal but not in the temporal hemifield, indicating that eyes and
attention show a common limit stop.

Whereas in primates eye movements are certainly the most important mechanism for
selecting stimuli, there are also circumstances (e.g., stimuli presented very close to the face or
stimuli appearing in the visual periphery) in which eye movements are not crucial for selecting
stimuli in space. In these circumstances, spatial attention should depend on circuits other than
those related to eye movements. In the frame of premotor theory of attention, Craighero and
colleagues [2004] assumed that allocation of attention to a graspable object is a consequence of
preparing a grasping movement to that same object. The authors predicted that, when a specific
grasping movement was activated, there would be both: (i) increase in the motor readiness to
execute that movement and, (ii) facilitation in visually process graspable objects whose intrinsic
properties are congruent with the prepared grasping. In an experiment designed to investigate
this hypothesis, normal subjects were required to grasp a bar after the presentation of a visual
stimulus whose orientation was either congruent or incongruent with that of the bar. Results
supported the hypothesis. The detection of a visual object was facilitated by the preparation of a
grasping movement congruent with the object's intrinsic properties. This finding strongly
suggests that the premotor theory of attention is not limited to orienting attention to a spatial
location but can be generalized to the orienting of attention to any object that can be acted upon.

1.2 The organization of the document

In this Deliverable we describe experiments investigating the development and the
characteristics of the capability to plan, execute and recognize actions. Three are the main
experimental approaches used for this purpose: monkey electrophysiological studies based on
single neurons recordings; psychophysical studies in normals and patients (both adults and
children); brain imaging and transcranial magnetic stimulation studies in normals. The

Date: 02/10/2007

Version: No. 1.5 Page 5 of 81



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

presentation will follow the schema originally proposed in the Technical annex revision we
presented at month 12. Thus, three main stream of research will be presented: (1) Ontogenetic
cues in sensorimotor coordination; (2) Phylogenetic cues in sensorimotor coordination and (3)
Schemas in artefacts for sensorimotor coordination. The experiments described here represent
only one part of the work in progress. The final version of this Deliverable (D3.1b, to be
presented at month 30) will give a more exhaustive description of the global picture. Some final
results coming from experiments on monkey and human electrophysiology and on brain
imaging of gaze sharing will be presented as well.

2 Experimental part

2.1 Ontogenetic cues in sensorimotor
coordination

The results of these experiments come from a strict collaboration between UNIFE and
UNIUP. Together, we have identified three main different techniques to study the development
of the motor system in children (to act and to recognize actions):

1) Mu rhythm desynchronization during action observation.
2) Near infrared spectroscopy (NIRS).
3) Gaze tracking during action observation and execution

Experiments concerning point (1) are in progress and will be presented in the final
version of this Deliverable at month 30. As far as (2) is concerned, art UNIFE we are actively
collaborating at the setup of a new NIRS machine together with the Department of Physics at
the Politecnico di Milano (Italy). The final goal of the study is to use NIRS in infants, to
investigate the neural correlates of motor development (both for action execution and
understanding). Moreover, the results of some experiments on crawling carried out jointly by
EPFL and UNIUP, together with modelling of crawling studied at EPFL will be presented at the
end of this section.

2.1.1 Mapping cerebral hemodynamics of the human motor cortex by multi-channel
time-resolved near-infrared spectroscopy (UNIFE).

Introduction

Brain imaging techniques (PET and fMRI) are not usable on infants because of their
invasiveness and because their require subjects” immobility. In recent years NIRS has been
developed to non-invasively measure regional blood flow in infants. It allows detecting the
regional modifications of blood flow by spectroscopically measuring the absorbance of low-
power infrared light by regional hemoglobin concentration. In order to investigate the
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applicability of the NIRS technique in the study of cognitive functions and to verify which
method is the most suitable, we have conducted preliminary experiments on adults in
collaboration with a group of researchers from the Politecnico di Milano (Alessandro Torricelli,
Antonio Pifferi, Lorenzo Spinelli, Davide Contini), leaded by Rinaldo Cubeddu.

The problem of mapping functional activation in the human brain by optical radiation is
challenging. The diffusive nature of biological tissues prevents the discrimination of absorption
and scattering contributions by simple continuous wave techniques. Time domain techniques,
on the contrary, are able to discriminate between them and to derive absolute values for the
hemodynamic parameters in a real heterogeneous medium like the human head [1]. Moreover,
relevant studies have shown that in the time domain depth sensitivity can be improved by
simply exploiting the temporal information [2-4].

Here, we investigated the spatial resolution of a dual wavelength (690 and 820 nm)
multi-channel time-resolved system for functional NIRS in the study of the antero-posterior
extension of hand-related motor activation, and of the medio-lateral somatotopy of hand and
shoulder motor representations.

Methods

Two right handed normal subjects participated to the experiment. During a preliminary
mapping session, right hand and shoulder motor representations were assessed by using
transcranial magnetic stimulation (TMS) [5]. The experimental session was subdivided into two
tasks. The first task was aiming at investigating the antero-posterior extension of the right hand
motor representation as detected by NIRS. A specially designed probe (4 source fibers and 10
collecting bundles, source-collector relative distance [rho]=2.0 cm), was placed over the right
hand motor representation of the left hemisphere, perpendicularly to the central sulcus. The
protocol consisted of 20 s baseline, 20 s right hand motor activity (Luria’s finger tapping), and
40 s recovery. The protocol was repeated 10 times in order to increase the signal-to-noise ratio
by block averaging. The acquisition rate was 1 s.The second task was designed to test the
somatotopic representation of hand and shoulder motor representations by using a protocol
similar to that of the previous task. The probe was placed over the shoulder/hand motor
representations of the left hemisphere, along the central sulcus. The protocol consisted of 15 s
baseline, 15 s right hand finger tapping or right shoulder rotation (randomized and executed
according to visual instructions), and 30 s recovery. The protocol for each type of movement
was repeated 5 times. The acquisition rate was 1 s. The analysis was restricted to the superior
part of the probe (indicated by the yellow circle in the figure) since it was our region of interest.
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Results

TASK 1: Antero-posterior extension of the right hand motor representation

medial
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Figure 1. Blue asterisk indicates the right hand hot spot location (left hemisphere) as assessed by TMS in
the subject according to the method described by Fadiga et al. (1995). On the right side, schema of the
probe with the indication of the location of the hand hot spot.

—-HHb
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9 subsequent repetitions

contrast (uM)
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Figure 2. Deoxyhemoglobin (AHHb) and oxyhemoglobin (AO2Hb) during single trials (i.e. no block
averaging) collected by a single couple of emitters-collectors during the finger tapping task.
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Figure 3. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the
baseline (left panel) and task (right panel) experimental phases (10 times block averaging).
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Figure 4. Average (10 trials) cerebral blood oxygenation changes in each of the 16 channels during the
course of the experiment. The ordinates indicate the concentration changes of O2Hb (oxyhemoglobin, red
line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 / +1.0 mM), tHb (total
hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation, green line, ASO2 -1.5 /
+1.5 mM). Dotted lines indicate the different phases of the experiment: 20 s baseline, 20 s task, and 40 s
recovery, during time.
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TASK 2: Somatotopic representation of hand and shoulder motor representations.
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Figure 5. Blue and black asterisks indicate the right hand hot spot location (left hemisphere) and the right
shoulder hot spot location, respectively, as assessed by TMS in the subject according to the method
described by Fadiga et al. [5]. On the right side, schema of the probe with the indication of the location of
the hand and shoulder hot spot.

TASK 3: Right shoulder rotation task
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Figure 6. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the
baseline (left panel) and task (right panel) experimental phases (5 times block averaging).
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Figure 7. Average (5 trials) cerebral blood oxygenation changes in each of the 8 channels (superior part of
the probe) during the course of the experiment. The ordinates indicate the concentration changes of
O2Hb (oxyhemoglobin, red line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 /
+1.0 mM), tHb (total hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation,
green line, ASO2 -1.5 / +1.5 mM). Dotted lines indicate the different phases of the experiment: 15 s
baseline, 15 s task, and 30 s recovery, during time.

Right hand finger tapping task
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Figure 8. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the
baseline (left panel) and task (right panel) experimental phases (5 times block averaging).
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Figure 9. Average (5 trials) cerebral blood oxygenation changes in each of the 8 channels (superior part of
the probe) during the course of the experiment. The ordinates indicate the concentration changes of
O2Hb (oxyhemoglobin, red line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 /
+1.0 mM), tHb (total hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation,
green line, ASO2 -1.5 / +1.5 mM). Dotted lines indicate the different phases of the experiment: 15 s
baseline, 15 s task, and 30 s recovery, during time.

Summary of Results

Results relative to the task aiming at investigating the antero-posterior extension of the
right hand motor representation as detected by NIRS, demonstrated a focal increase of O2Hb
and the corresponding decrease of HHb in the channels placed over the hand motor
representation hot spot, determined by TMS, during the execution of a Luria’s finger tapping
with respect to a baseline acquisition. Results relative to the task designed to test the
somatotopic representation of hand and shoulder motor representations, demonstrated a
differential activation for finger and shoulder movements as detected by NIRS, when
comparing right hand finger tapping and right shoulder rotation tasks.

Conclusions

In conclusion, a multi-channel time-resolved system for functional NIRS has been
successfully employed to study hemodynamic response following motor activity in the adult
brain. In addition, the system was able to discriminate the antero-posterior extension of hand-
related motor activation and the somatotopy of hand and shoulder motor representations.
Moreover, the system used in the present study is sensitive enough to significantly determine
cortical motor activation in single trials. All these characteristics are strongly in favor of the
possibility to use this technique in infants to study the ontogenetic development of the motor
system in infants.

Date: 02/10/2007

Version: No. 1.5 Page 12 of 81



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

2.1.2 Gaze behaviour in normal and autistic children during observation of own and
others’ hand action (UNIFE+UNIUP).

The pattern of eye movements during action observation is the same as that recorded
during action execution. In both cases, the eyes anticipate the hand and reach the target well
before the arrival of the fingers. Thus, saccadic behaviour during action observation supports
the direct matching hypothesis for action recognition. We decided to study the development of
this predictive behaviour during action observation in developing infants (UNIUP) and in
children affected by Autism Spectrum Disorders (ASD) (both UNIUP and UNIFE).

It is well known that autism spectrum disorders (ASD) are characterized by deficits in
social and communicative skills. It has been proposed that the mirror-neuron system may play
a critical role in higher order cognitive processes such as imitation, theory of mind, language,
and empathy. Strikingly, these skills are among those mostly impaired in ASD individuals.
Because of this correspondence, many have suggested that individuals with ASD may have
mirror neuron system impairments, and some experimental evidence supports this
interpretation. Therefore, we decided to investigate the gaze behavior of ASD children during
execution of their own actions and during the observation of actions performed by others. We
have tracked the gaze of 8 high-functioning autistic children while they were performing a
modification of the Flanagan and Johansson paradigm, by using a version of the TOBII system
that allows the recordings also during a real action (i.e. not presented by a video clip). Five
normal children, matching patients for age and gender, have been tested as well as controls.

During action execution the agent’s eyes never follow the acting effector, but the gaze is
projected towards the end point of the action, anticipating it. More recently, it has been shown
(Flanagan and Johansson, 2004) that this pro-active behaviour manifests itself not only during
execution but also during the observation of action performed by others. Conversely, the
presentation of moving objects, not held by hand, does not evoke the pro-active gaze behaviour.
This evidence has been assumed to be a consequence of the involvement of the mirror-neuron
system. Mirror neurons become however active only when observer and agent share a similar
motor repertoire (see Rizzolatti and Craighero, 2004). It has been suggested that a fundamental
deficit in autism could be the impairment of what has been called “the theory of mind” (i.e. the
capacity to understand the intention behind the behaviour of others) (2). A full-fledged theory
of mind is achieved, however, by children at about four years of age (3), while clinical signs of
autism appear earlier, thus indicating that a more basic deficit should underlie the development
of “theory of mind” (4). In recent years, it has been suggested that this deficit could depend on a
poor development of mirror neuron system, which would be a neural precursor necessary for
the development of the theory of mind. (5). Evidence coming form EEG , MEG, TMS and brain
imaging data provided strong evidence that the mirror neuron system could be impaired in
autistic children (6-7-8-9).

Methods

We applied four tasks to a neurologically healthy population of children, and to a group
of “high-functioning” autistic children. A child with high-functioning autism fits the definition
of autism but has much better cognitive and learning abilities. These children have initial
difficulty in acquiring language but become then able to speak at a level appropriate for their
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age. Autistic children were recruited in a centre of Paediatric Neuropsychiatry in the province
of Empoli (Italy) “ASL 11”. The diagnosis had been made by means of the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al. 1989). All subjects had an intelligence quotient (IQ) >
70, as calculated with the Wechsler Intelligence Scale for Children Revised (WISC-R). A group
of 8 autistic children, 7 males and 1 female, aged 5.1 — 16.0 years (mean age: 7.1) participated to
the experiment. The mean IQ of this group was of 98.7 £ 11.6 (SD). The group of neurologically
healthy children that were used as a control, had IQ > 70 (WISC-R scale). A group of five
children aging 5.2-11.9 years, (4 male and 1 females, mean age: 6.5) participated to the
experiment. Their mean IQ was of 104.7 £ 7.7. All procedures were approved by the local ethical
committee and the parents of children gave informed written consent.

Tasks: The experiment consisted in 4 conditions (see below) with 13 repetitions each
(trials). Each trial started when the right hand of the participant was placed on the table in
correspondence of the starting point. The four different task were:

1) To grasp with their right hand a toy placed on the table and to put it into a container, located
on the table in front of them (active condition, EXE)

2) To observe the experimenter performing the same action with his right hand in front of them
(passive condition, Frontal Right Observation, FRO)

3) To observe the experimenter performing the same action with his left hand in front of them
(“specular” perspective-laterally reversed-) (passive condition, Frontal Left Observation, FLO)

4) To observe the experimenter performing the same action in lateral position: sideway to the
children (the participants saw the hand of the experimenter according to their “egocentric
perspective”) (passive condition, Lateral Observation, LO)

The experimenter and the subject were sitting at a table, one in front of each other. In
front of them there were a container and three objects-toys. During the “active-condition” the
subject was instructed to grasp the objects, one at time, and to place them into the container. In
the “passive-condition”, the participants were requested to observe the same sequence of
grasping-placing movements performed by the experimenter in front of them or in the lateral
position. The four conditions were repeated in a pseudo-random order. All the participants
performed a brief training session prior to recordings.

Experimental apparatus: During the experiment, the position of the subject’s gaze was
continuously recorded by using an eye-tracking device (Tobii, Sweden) and a video-camera. A
transparent table with two different levels was used to run the experiment. In the lower level
(behind the glass) we positioned the eye-tracking device, and in the upper plan we positioned a
transparent and removable grid for the calibration. After the calibration was done, we removed
the grid, so that the upper plan became the working space. Furthermore the hand/arm
kinematics of the action performed by both, the subjects and the experimenter, was recorded
during the whole experiment. This was done to measure the precise pattern and kinematics of
goal-directed hand grasping. Indeed, autistic children might be affected in their capacity to
efficiently plan goal-directed actions (see Mori et al. 2005). To this purpose, three infrared-
reflecting markers were fixed to the wrist/hand of the experimenter and three on the wrist/hand
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of the participants. Two markers (one on the tip of the index finger and one on the thumb) were
used to measure fingers aperture during grasping. A third marker was positioned on subject’s
wrist to measure the transport component of the hand-reaching movements. Data were
acquired by a high-speed optic tracking system (Qualysis, Sweden) which provided the
contemporary 3D position of each infrared reflecting marker, at the temporal resolution up to 1
KHz.

Data pre-processing: The use of the eye-tracker to record the gaze, required a stable
position of the head and a constant posture during the experimental session. We discarded part
of the data, because of the difficulty to achieve this stability with young children and,
particularly, with ASD children, typically presenting hyperactivity troubles, especially during
the EXE condition. The object was initially positioned on a limited area of the desk and the box
was not fixed on the table. Thus the trials were not performed on a standard space. In order to
overcome this problem, we standardize the recordings according to a 0-1 ideal space.

Results.

In the preliminary data we present here, we restricted our analysis to the movement
‘grasping the object-landing in the container” which is the most studied in the literature. After
data pre-processing and cleaning, 296 valid movements were selected. The spatial distribution
of wrist position in all four conditions was very similar between ASD and control subjects
(movement duration and peak velocity were not significantly different between conditions).
This let suppose that: 1) in FRO, FLO and LO conditions (observation) experimenter did
perform similar movement in the two groups; 2) Autistics and control subjects performed
similar movements (EXE condition). As a measure of pro-active gaze behaviour we determined
for each trial the ratio of looking time in the goal area relative to total looking time (goal and
trajectory areas) during object movement (GLT ratio). Goal area was defined as the space
regions within .20 unit from the landing zone; while trajectory areas was defined as the space
regions between .20 and .80 unit far from the landing zone. Therefore if subjects tracked the
moving target (and hand movement is constant), the expected proportion of GLT is
.20/(.60+.20)=.25. In other terms, more is the time the subject looks the target, more is her
predictive behaviour.
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By following this method, values of GLT exceeding significantly 25% ratio (p<0.005)
defines a pro-active gaze behaviour. while values below it, indicate reactive gaze behaviour.
Results are given in Table 2 and Figure 10.

Conditions | Normal ASD

EXE 0.49 £0.08* 0.47+0.06*
FRO 0.44+0.09* 0.34+0.06
FLO 0.3 +0.08 0.33 +0.07
LO 0.33+0.08 0.43+0.07

Table 2. Average GLT ratio + SEM. Asterisks indicate statistically significant pro-active gaze behaviour.

p =.024

Ratio of looking time (goal) to looking time
goal + trajectory)

EXE FRO FLO LO EXE FRO FLO LO
Normal ASD

Figure 10. Gaze performance during observation of own (EXE) and other’s (FRO, FLO, LO) actions.
Statistics (means = SEM) are based on all data points for controls (left) and ASD patients (right). Ratios of
looking time at the goal area to total looking time in both goal are shown. The horizontal line at 0.25
shows the expected ratio if subjects were tracking the moving stimuli. Pro-active behaviour (one sample
t-test for mean equal to 0.25, p<.05) is indicated with an asterisk the corresponding bars.
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In execution (EXE condition), both normal controls and ASD patients show a pro-active
gaze behaviour (f-test, p= 0.0238 and p=0.005 respectively). Conversely, during action
observation (FRO, FLO and LO conditions), different gaze behaviours have been found. In this
first phase of analysis we focus mainly on FRO condition because the higher average number of
valid trials in each subject increases the stability of the single subject measurement (more trial
we get for each subject, better estimate we get). In FRO condition, while data show a tendency
in favour of pro-active gaze behaviour for normals (p=.052), ASD patients did not behave in a
proactive way. Most importantly, while the direct comparison between EXE and FRO
conditions in normals fail in reaching significance, the same comparison for ASD patients
highlight a significant decrease in pro-active behaviour in FRO relative to EXE condition (paired
t-test, p= 0.0241). Further interesting data comes from the comparison between EXE and LO.
The statistical analysis show a tendency to the significance for normals, while ASD patient show
no difference between the proactive behaviour during execution and that during observation of
other’s actions shown in egocentric perspective (see Figure 10).

In the present experiment, we have compared gaze and hand position during both
grasping execution and grasping observation with different perspectives, in children affected or
not by ASD. Preliminary analysis indicate that normal children show the same pro-active gaze
behaviour both during execution (EXE) and during observation of grasping movement (FRO),
while ASD patient show a pro-active gaze behaviour only during execution. This evidence is in
favour of a failure of the mirror neuron system during other’s action observation in ASD
patients.
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2.1.3 Ontogeny of locomotion: measuring and modelling crawling in infants

(EPFL+UNIUP)

The neural mechanisms underlying locomotion control in humans are still not well-
known. The main brain areas involved are the spinal cord, the brainstem, the cerebellum and
the motor cortex. Recent studies show that like in other vertebrate animals, Central Pattern
Generators (CPGs) in the spinal cord play an important role in generating and modulating the
rhythmic signals underlying locomotion.

Our approach is to take inspiration from vertebrate locomotion at an abstract level and
to model CPGs as systems of coupled nonlinear oscillators. This leads to the design of systems
that can produce complex, coordinated, multidimensional rhythmic motor commands while
being initiated and modulated by simple control signals (similarly to what has been
demonstrated in decerebrated cats by Shik and colleagues in the 1960s). The CPGs produce
desired trajectories (i.e. desired angles) to the PID controllers controlling the motor torques of
the robot.

Our motivation is to take advantage of interesting properties of systems of coupled
nonlinear oscillators and their limit cycle behaviour, namely asymptotic stability (the system
returns to limit cycle after a transient perturbation), which is crucial for control the possibility to
continuously modulate the periodic patterns by a few, non rhythmic, control signals, the
produced trajectories remain smooth even if the control signals are abruptly changed, the
system supports direct integration of feedback for modulating and synchronizing the
trajectories according to sensory information (e.g. entrainment by proprioceptive signals from
the body).

This CPG-based approach should make the locomotion controller easily usable by other
control modules. Unless the crawling of the iCub requires specific limb placements, other
modules only need to tune high-level commands determining speed and direction of crawling
without having to worry about the multiple rhythmic signals that need to be sent to the
actuators.

This work has 3 parts: programmable CPG, study of infant crawling kinematics, CPG-
based crawling controller.

Programmable CPG

We developed a programmable CPG, ie. a system able to automatically
encode periodic signals into limit cycles. It allows control, modulation and robust integration of
sensory feedback during locomotion control. We applied the system for biped locomotion
control and modulation on a real robot. See our Physica D and ICRA 2006 papers, referenced
below. Note that the first and main locomotion ability of the iCub will be crawling. We studied
here biped walking because (1) we had biped walking trajectories available from Fujitsu for the
HOAP 2 robot, and (2) because the HOAP 2 robot is not well-adapted for crawling. However,
the programmable CPG offers a general method for encoding periodic trajectories into limit
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cycles and can be directly applied of the control of crawling.
Study of infant crawling kinematics

There exists very few contributions on baby crawling and most of them do only
qualitative analysis. We studied the kinematics of crawling babies, in collaboration with K.
Rosander (Uppsala University).

Subjects: Eight infants, 9 to 11 months old have been studied. They were selected as
crawlers practicing the “classic” style of locomotion using hands and knees. The parents were
asked about approximate debut for crawling. Some infants were seen twice (Table 2).

Name Birth Session1 | Body Session | Body Start of

(y/m/d) (y/m/d) mass 2(y/m/d) | mass 2 crawling

(approx.)

Emil 050611 060324 9.5kg 060509 10 kg 060309
Alva 050718 060328 7kg 060510 7.5kg 060228
Jonathan | 050613 060330 9kg 060130
Vilmer 050614 060331 10kg 060310
Matilda | 050612 060412 11kg 060304
Alvin 050719 060418 11kg 060516 12 kg 060328
Elin 050623 060419 10,5kg 060216
Oskar 050623 060508 10.5 kg 060208
Milton 050903 060523 10 kg 060514

Table 2. The subjects participating to the crawling experiment in Uppsala.

Procedure: When the parents came to the lab they were informed of the experiment and
signed a consensus form that included permission for video recording. The parents undressed
the infant and small markers were attached to the skin on places on or close to the joints (see
Table 3). Three markers were put on the spine (neck, thoracic and lumbar). A hat with three
markers (1 midsagittal, 2 coronal) was put on too. The complete list of the markers is the
following: Head, R ear, L ear, Neck spine, Thoracic spine, Lumbar spine, R shoulder, R elbow, R

Date: 02/10/2007

Version: No. 1.5 Page 19 of 81



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

wrist, L shoulder, L elbow, L wrist, R hip, R knee, R ankle, L hip, L knee, L ankle. The markers
on the wrists and knees were glued to a Velcro band. This gave stability to the critical parts that
were close to the floor during locomotion. One disadvantage was that the knee markers were
just above the joint. The remaining nine markers were attached with collars used for skin
electrodes. When all 18 markers were properly attached the infant was encouraged to crawl on
a rug (polypropylene, size 230 x 170 cm, “Arden blom” from IKEA, Sweden) on the floor. The
parent and one experimenter were sitting on the floor on opposite sides of the rug using
attractive toys to catch the infant’s attention. The second experimenter handled the
measurements and was sitting close to the rug observing the infants behaviour.

Measurements: A motion capture system (Qualisys, Sweden) with passive markers (size 5
and 10 mm ) was used in an external triggering mode. Data was collected at 240 Hz for 12 s
periods. In close synchrony with the measurement sessions, a web camera monitored the infant
during the trial. Before each experiment the system was calibrated. Five cameras were used, two
were placed at a ceiling stand and three were placed on the floor so that the whole crawling
area was covered (Figure 11). When the infant showed the intention to start crawling, the
measurement was started by the second experimenter. Each trial was set to 12 seconds. Usually,
20-40 trials per infant were registered.

Data evaluation: The markers in each file (one session of 12 s) were transformed in the
software and were identified. The identification was improved by comparing the web camera
sessions with the movements of the markers. Short (<0.x s) intervals when one marker was
hidden were interpolated using the software routines.

Results: The infants were interested and cooperative. During the trials, crawling and
movements between crawling and sitting were recorded. Totally, 97 trials were selected for
further analysis.
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Figure 11. Schematic geometry of the experimental setup as seen from above.

The most common gait is a trot-like gait in terms of the temporal relations between the
limbs. However the duration of the stance phase is much longer than the duration of the swing
phase and it appears that during the swing phase of a limb, the opposite limb moves very little,
which is very different from trot gait in most mammals.

CPG-based crawling controller

We developed a CPG able to reproduce the main features of crawling babies. To do so,
we built an oscillator in which we can independently control the duration of the descending
and ascending phases (i.e. the duration of the swing and stance phases), allowing us to shape
the signal of the CPG using very simple control signals. Then we used insights from symmetric
dynamical systems theory to design the CPG. We were able to reproduce the main features of
real crawling and the CPG was used to control a physically realistic simulation of the iCub in
Webots. Smooth modulation of the speed of the robot was also achieved. See our RSS06 paper
for more details, reference below.

Note: Though we did not use the programmable CPG for crawling, the framework we developed with
these two approaches is very similar and future work will show how to incorporate the properties of the
programmable CPG into the crawling CPG.
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Demos

We created a web page describing the crawling of the iCub and the collaboration with
Uppsala (with movies), see http://birg.epfl.ch/page63115.html. See also the following page for
our work and movies on biped locomotion control: http://birg.epfl.ch/page56604.html
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2.2 Phylogenetic cues in sensorimotor
coordination

In the framework of the phylogenetic cues in sensorimotor coordination, we are
following two different lines of research:

1) Behavioural study of action observation in monkeys.
2) Single neurons recording study of grasping in monkey premotor and primary motor cortex.

3) Single neurons recording in rats.

2.2.1 Action observation behaviour in Macaque monkeys (UNIFE).

Some authors have proposed that one-year-old infants represent actions by relating
relevant aspects of reality (action, goal-state and situational constraints) and assuming that
actions function to realize goal-states by the most efficient means available. A series of
experiments give support to this hypothesis. Indeed, the phylogeny of intentional action,
namely the ability of non-human primates to interpret the other's action could be based on the
attribution of a mental state, such as intention. In humans it is commonly held that the process
of acquisition of mind reading unfolds during the first year of life and ends up with the ability
of understanding false beliefs (i.e. to understand that other people can act by relying on beliefs
that do not correspond to the state of reality). Gergely (1995) has shown that the attribution of a
meaning to other people's actions can be independent from the ability to "mentalize". His
experiments did show that even 12 months-old infants are able to successfully represent actions
in connection with three aspects of reality (action, goal and obstacle). Such a teleological
perspective (teleological stance) stems from the kernel principle of maximal efficiency,
according to which actions are performed to achieve a planned final state as much effectively as
possible. Uller (2003) has investigated the emergence of a teleological stance from a
phylogenetic perspective by presenting chimpanzees with the experimental design that Gergley
adopted with pre-verbal children. The results showed that the more evolved non-human
primates are able to grasp the sense of a goal-oriented behaviour. In the present experiment we
aim at verifying whether similar results can be obtained with non-human primates (macaca
fascicularis and macaca nemestrina) at a lower level in the phylogeny scale. At difference with
the children and chimps experiment, though, we employed as stimuli real hand actions
performed by an experimenter in front of the monkey.

In order to verify the presence of action recognition in monkeys we applied a paradigm
very similar to that used in infants. Gaze position in monkeys was tracked during observation
of different types of actions performed by the experimenter in front of it. The experiment was
subdivided into two different sessions: a “familiarization” session and a “test” session. During
the familiarization session the experimenter overcame an obstacle with her arm in order to
reach and grasp an object. During the test session the experimenter performed two different
types of movements to grasp an object in the absence of the obstacle: “congruent” condition in
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which the trajectory of the experimenter’s arm is a normal one, and the “incongruent” condition
in which the trajectory of the arm simulates the presence of the obstacle.

More in detail, the experimental setting was as follows: Six macaque monkeys have been
properly trained to gaze different hand actions performed by an experimenter at about 50 cm
from the animal. The direction of the monkey's gaze was mapped by means of an eye-tracker
(Tobii, Sweden). The experimenter's actions was simultaneously videorecorded and digitized so
that it was possible to superimpose on it the monkey fixation points. Six short hand grasping
actions were performed by the experimenter in front of the monkey during an experimental and
a control session, respectively; the two sessions took place at 4 weeks interval. For each session,
a familiarization set was presented, consisting of a short sequence (repeated 10 times) in order
to refrain the animal from perceiving the sequence as a novelty event. After the familiarization
set, we presented 3 blocks of 4 action sequences each (situation test), in which the
familiarization scene was slightly modified. In the familiarization block of the experimental
session, the experimenter's hand was overstepping an obstacle when reaching a squeeking
object. During the first block of Test actions (non-congruent condition) we displayed the same
action with an identical (parabolic) trajectory, but in the absence of an obstacle. During the
second block of Test actions (congruent condition) we displayed the grasping action in the
absence of an obstacle being performed with a straight trajectory. The control actions presented
a familiarization set in which the same action of grasping was performed with a parabolic
trajectory, not required by the position of the obstacle (side-placed with respect of the
background). The Test conditions was identical to those selected for the experimental session.

In the infants experiment results indicated that they looked significantly longer at the
incongruent test display (old jumping approach) than at the congruent one (novel straight-line
goal-approach). The authors interpret this result as an evidence of an inference on the
correctness of action execution. From preliminary analysis, it appears that monkeys” behaviour
is very similar to that of infants, indicating that also low-level non-human primates are able to
recognize the correct way to execute an action according to the presence of situational
constraints.

Date: 02/10/2007

Version: No. 1.5 Page 24 of 81



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

2.2.2 Single neuron study of visual feedback during grasping, in monkey premotor and
primary motor cortex (UNIFE).

It is well known that the frontal cortex is strongly involved in action programming and
motor control. In addition to the primary motor cortex (area F1) there are three pairs of areas: F3
(caudal, SMA proper) and F6 (rostral, pre-SMA) lay on the mesial wall of the frontal lobe; F2
(caudal) and F7 (rostral) form the dorsal premotor cortex and F4 (caudal) and F5 (rostral) form
the ventral premotor cortex. Particularly interesting are the ventral premotor areas because of
the strong visual input they receive from the inferior parietal lobule. These inputs subserve a
series of visuomotor transformations for reaching (area F4, Fogassi et al., 1996) and grasping
(area F5, Rizzolatti et al, 1988, Murata et al., 1997). In addition, area F5 contains neurons
forming an observation/execution matching system, which maps observed actions on the
observer’s internal motor representations (mirror neurons). Electrical stimulation studies
revealed that area F5 contains extensively overlapping representations of hand and mouth
movements (Rizzolatti et al.,, 1988; Hepp-Reymond, et al., 1994). Single neurons studies have
shown that most F5 neurons code specific actions, rather than the single movements that form
them (Rizzolatti et al. 1988, Fadiga et al. 2000). It has been therefore proposed that, in area F5, a
vocabulary of goals more than a set of individual movements, is stored. Several F5 neurons, in
addition to their motor properties, respond also to visual stimuli. According to their visual
responses, two classes of visuomotor neurons can be distinguished within area F5: canonical
neurons and mirror neurons (Rizzolatti and Fadiga, 1998). Canonical neurons respond to visual
presentation of three-dimensional objects (Murata et al., 1997). About one quarter of F5 neurons
show object-related visual responses, which are, in the majority of cases, selective for objects of
certain size, shape and orientation and congruent with the motor specificity of these neurons.
They are thought to take part in a sensorimotor transformation process dedicated to select the
goal-directed action, which most properly fits to the particular physical characteristics of the to-
be-grasped object.

The mirror neurons form the second class of visuomotor neurons of area F5. This name
was coined because of their property to “reflect” with their visual response an action executed
by another individual, if the seen action is similar to that motorically coded by them (di
Pellegrino, et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996). In contrast to the canonical
neurons, mirror neurons do not respond to the mere presentation of objects. Thus, the vision of
a real action, performed by a biological agent (the experimenter or another monkey) is essential
for their activation. A mimed action, not interacting with an object, or an action executed by a
tool (e.g. pliers) are ineffective in triggering most of F5 mirror neurons. Almost all mirror
neurons show a certain degree of congruence between the effective observed and executed
action. This congruence is very strict in about one third of F5 mirror neurons. Very recently, it
has been reported that a fraction of mirror neurons, in addition to their visual response, become
also active when the monkey listens to an action-related sound (e.g. breaking of a peanut)
(Kohler et al., 2002). It is tempting therefore to conclude that mirror neurons may form a
multimodal representation of goal directed actions, possibly involved in action recognition.

Aim.
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The goal of monkey experiments was to investigate the nature of the visuomotor
coupling at the basis of the “mirror” response. Our hypothesis was that mirror discharge could
be initially generated by the observation of one’s own acting effector, seen from different
perspectives, performing repetitively the same action. We assumed that these different visual
information could be associated by the brain as “common signals”, having in common the same
motor goal. Following this learning phase, the system could become therefore capable to extract
motor invariance also during observation of actions made by others. Although the learning
process described above should mainly occur during development, we postulated that also in
adult animals some vestigial residuals of this visuomotor coupling could have resisted in F5
motor neurons (generally considered as devoid of any visual property). To investigate this
hypothesis, we programmed a series of single neuron recordings in monkey premotor area F5
while the animal was executing a grasping movement with normal and manipulated visual
information (e.g.: complete dark, brief flash of light during different phases of the movement).
As a control, primary motor cortex neurons (area F1) have been recorded too.

Methods.

To standardize the grasping movement, a specially designed apparatus has been used. It
consists of a box that was mounted at reaching distance (30 cm) in front of the monkey, with
little pieces of food hidden inside (Figure 12).

Figure 12. The experimental apparatus.

The box was covered by two doors. A more superficial one (see figure 12, center) whose
opening at distance by the experimenter signaled to the monkey the beginning of the trial, and a
second one (see figure 12, right), hosting a small plastic cube working as a handle. This plastic
cube was translucent and back-illuminated from inside the box by a red LED in order to allow
the monkey to fast reach it, also in the dark. The handle was buried inside a grove that forced
the monkey to open the door by grasping the handle only by using a precision grip. When both
thumb and index finger touched the handle, an electronic circuit (Schmitt’s trigger) gave to the
acquisition system the synchronization signal. Neuronal activity was recorded during the two
seconds following handle grasping, with one second of pre-trigger acquisition.
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In order to test the experimental hypothesis, recorded neurons were submitted to four
conditions:
a. grasping in full vision
b. grasping in dark with no hand visual feedback
c. grasping in dark with instantaneous visual feedback before contact
d. grasping in dark with instantaneous visual feedback at object contact

In the last two conditions a very brief (20 microseconds) xenon flash illuminated the
scene at two different phases of the grasping action: during hand approaching (as triggered by a
pyroelectric infrared sensor) (c) and at the moment of handle touch (d).

Results.

We have now finished to collect data in monkey electrophysiological experiments
aiming at investigating the role of visual feedback in hand action planning and execution, and
we are now analysing those of the second animal. In the analysis we performed on the first
animal, we were particularly interested in neurons showing a reduction of their activity in the
dark condition with respect to the light one. While in area F1 only about 15% of neurons satisfy
this criterion, in area F5 about 57% of the recorded neurons reduced their activity when the
grasping hand was not visible. Moreover, neurons responses were subdivided into different
epochs according to the phase of movement: Hand shaping epoch, from 250 ms before to the
touch of the target handle with both thumb and index finger (precision grip);
Touch/manipulation epoch, from handle grasping to 250 ms after (door opening). The statistical
comparison between grasping with the hand fully visible (light condition) and grasping
without hand vision (dark condition), in the two different epoch, showed that when the
modulation is negative it mainly concerns the hand shaping epoch. A further aspect of our
analysis was concerned with the effect on neuronal discharge of a brief flash of light, which
caused a sudden appearance of the acting hand. Although the dimension of our sample does
not allow drawing a conclusive picture on neurons’ behavior during flash conditions, these two
conditions were included to control for the presence of phasic modulation of activity due to
own hand vision. Few cells (about 10% of the modulated ones), showed this very specific phase-
dependent modulation.

Conclusions.

The results of monkey experiments presented in this deliverable are, in our view, of
great interest. They firstly demonstrate that within a premotor area, involved in hand action
programming and execution, there are motor neurons specifically modulated by the vision of
monkey’s own acting hand. The first important result achieved by these experiments is related
to the direction of the modulation. In contrast with area F1, F5 motor neurons are negatively
modulated by the absence of the visual hand. This reduction of the response could be, very
likely, attributed to the lack of the hand-related visual input in this condition. The second result
is that, when a negative modulation occurs, in general it involves the epoch preceding handle
touching. If one consider that prediction is strongly embedded in feed-forward control systems,
this anticipatory effect, specific for area F5, speaks in favor of a control role played by this area.
In the final version of D3.1 (month 30) these results will be further expanded on the basis of the
full dataset.
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2.2.3 Single neuron study of rat premotor cortex: are there mirror neurons too? (UNIFE)

In the framework of WP3, at UNIFE we are exploring the possibility that a mirror-
neuron system exist not only in primates but also in simpler animals such as rats, characterized
by an intense social interaction. To this purpose, we projected and realized a multi-electrode
amplifier (32 channels) and we started experiments of intracortical microstimulation and
recording in rats, in collaboration with the University of Parma (Italy) and the University of
Odessa (Ukraine).

Several lines of evidence demonstrate the existence in the primate’s premotor cortex of a
motor resonant system, the so called ‘mirror-neuron system’, firstly described in the rostral part
of monkey ventral premotor cortex (area F5). Mirror neurons discharge both when the animal
performs goal-directed hand actions and when it observes another individual performing the
same or a similar action (Rizzolatti et al. 1999; Rizzolatti et al. 1996). More recently, in the same
area, but more ventrally, mirror neurons responding to the observation of mouth actions have
been found. Most of mouth mirror neurons become active during the execution and observation
of mouth ingestive actions such as grasping, sucking or breaking food as well as of
communicative mouth actions, such as lipsmacking (Ferrari et al. 2003). Mirror neurons are not
limited to premotor cortex but have also been found in area PF of the inferior parietal lobule,
which is bidirectionally connected with area F5 (Fogassi et al. 1998). Although at the present
there are no studies in which single neurons have been recorded from the mirror-neuron areas
in humans there is, however, a rich amount of data proving that a human mirror-neuron system
does exist. Evidence comes from neurophysiological and brain-imaging studies (Buccino et al.
2001; Fadiga et al. 2005; Avikainen et al. 2002, see Rizzolatti and Craighero 2004 for a review).
This unified representation may subserve the learning of goal-directed actions during
development and the recognition of motor acts, when visually perceived.

The existence of multiple motor and premotor cortical areas that differ in some of their
properties is well known in primates, but is less clear in small animals. In rats, intracorticali
microstimulation reveals in the frontal cortex two separated motor representations of the
anterior limb (Neafsey et al. 1986) which are located in different cytoarchitectonic areas
(Rouiller et al. 1993) and receive different cortical and thalamic inputs (Wang and Kurata 1998).
Some literature data (Neafsey et al. 1986; Rouiller et al. 1993) suggest that these areas (called M1
and NMC, respectively), might be the homologues of primate’s primary motor and premotor
cortical areas. In fact, NMC seems to participate in preparation and performance of complex
coordinated movements by participating in programming and planning of movements. In
addition, reciprocal cortico-cortical connections of the rostral forelimb area (RFA) share some
pattern with the hodology of primate’s motor areas, suggesting that rat's RFA may be
considered a far precursor of primate’s supplementary/premotor cortex (Wang and Kurata
1998). However, data about the functional characteristics of premotor cortex in rats are not
numerous and, more importantly, nothing is known about the existence of motor-resonant
systems, like primates’ mirror neurons. On the other hand, rats continuously act on objects,
interact with other individuals, clean their fur or scratch their skin and, in fact, actions represent
the only way they have to manifest their desires and goals. It is therefore plausible that,
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considering their manual dexterity and their strong social behaviour, these animals possess
some mirror-like neurons in their premotor cortex.

In recent years a new paradigm of learning in small animals was developed through
observational training, in which rats repeatedly observed companion rats performing different
spatial tasks (Leggio et al. 2003). In some of these experiments animals were actually tested in
the tasks they had previously only observed. The results obtained indicate that rats can learn
complex behavioral strategies by observing some conspecifics performing the same task.
Furthermore, acquisition of the single facets that form the behavioral repertoire can be
separately studied as well as the role of particular brain areas (Petrosini et al. 2003). It's well
known the ability of rats to manipulate food as well as their capability to retrieve food also
when is attached at the end of a long string. (Molinari et al. 1990; Zhuravin and Bures 1988).
Thus, a number of such behavioral tasks can be used to investigate electrical activity in the
premotor cortex and to elucidate the role of mirror resonant system in rats in these conditions.

Considering that the development of the motor control during ontogenesis is one the
most actual problems in the neurobiology and physiology. Despite this interest, only few data
have been obtained on functional maturation of motor areas in rat pup cortex (Golikova, 1990).
The discovery of mirror neurons in rat’s premotor cortex could fundament to study ontogenetic
peculiarities of motor resonant system formation. Although extracellular single-unit recordings
in restrained, anesthetized animals have long been used in neurophysiological investigations,
more recently, modified methods of single-unit recordings in freely behaving animals have
converted this classic approach to a powerful new tool to study motor and cognitive
behaviours. Another newly developed technique, the multi-electrode single-unit recording in
freely behaving animals, is even more powerful in neural circuit studies. With this sophisticated
approach, patterns of electrical activity of individual neurons from different areas forming a
specific neural circuit can be measured simultaneously during specific behavioural events. This
method is therefore indicated to analyse changes in the spatiotemporal patterns of neuronal
activity related to goal-directed behaviours.

Methods

Behavioural paradigm and equipment: The main goal of the experiments is to record
neuronal activity in rats during hand action execution and observation. To reach this goal, we
composed our activity from two different options. The first one was dedicated to design and
build a special cage in which rats have to perform free behaviours while the neuronal electrical
activity is recorded. This cage must contain two animals, the actor and the observer and, has
been conceived in order to allow the observer to easily see the performing rat through a
transparent wall. The second task that we carried out was related to proper signals acquisition
and analysis. The cage was built with Plexiglas. Dimensions are: length=80 cm, height=45 cm
and width=40 cm. The cage is divided into three compartiments by walls made of the same
material (Fig. 13, A). The first (equal to %2 size of the cage) is for the rat from which action
observation-related neuronal electrical activity has to be registered. Taking into account the big
mass of the wires and connectors coming from the microelectrode array connecting the array to
the preamplifier and to the amplifier, we designed a special mechanical arm which holds these
wires keeping and balances their weight. The remaining space inside the cage was then divided
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into two further sectors (see Fig.13, B).

Figure 13. The cage for training and neuronal recording. A, frontal view; B, top view. The leftmost sector
shown in B contains the observing rat; the lower-right sector contains the actor rat which retrieves food

from the container visible in the separation.

The partition between these two sectors has one small window (diameter, 25 mm;
distance from the floor, 70 mm) allowing the access to a small platform attached to the
separation wall. During the experiments a piece of food is positioned on the platform, close to
the window, and the actor rat has to grasp this food with its forearm (see Fig. 14, some coloured
keys are placed on the platform to make it evident).

Figure 14. Left, the food-containing platform. Right, the cage hosting the rat #1 (left side, the “spectator’)
and #2 (right side, the ‘actor’).
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All the rats pertaining to the experimental group (Long-Evans strain) have been
previously trained to grasp the pieces of food through the window. The experiments were
performed daily from 10.00 to 12.30 a.m. after light food deprivation (food was removed from
the cage at 6.00 p.m. the day before the experiment). On average, each rat remained inside the
cage for 466 min and performed 94+13 grasping movements. The second rat (which also
underwent the same food deprivation) was looking at the conspecific from the left
compartment of the cage.

The second part of the work consisted in the setup of the recording apparatus. Utah
microelectrode array (3x3 mm array containing 36 microelectrodes, Cyberkinetics Inc.,, USA)
have been selected for the experiment (see Figure 15). The insertion of the microelectrode array
was performed in deep anaesthesia induced by i.m. ketamine by using a specially designed
pneumatic gun (Fig. 16, A) and the multipolar connector was screwed to the skull by using four
titanium screws. The operated rats were ready for the experiment after a 7 days recovery
period.

A\

Figure 16. A, the pneumatic device used to push the microelectrode array inside the cortex minimizing

tissue damages. B, the connector screwed to the skull.
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Figure 17. The preamplifiers connected to the head of the rat during recordings. Note the spiral spring

providing the necessary rigidity to the system

Electronics: A 32-channels differential amplifier (with respect to a common reference)
was designed and built at UNIFE. The data acquisition system for recording and processing
neural signals for the 32 extracellular electrodes could be easily extended up to 128 extracellular
electrodes by additional modules. Acquisition of signals is triggered by the ‘actor’ rat by means
of a specially designed TTL-trigger (Fig. 9). The acquisition starts at the moment at which the
rat touches the food. Miniature low-noise and low input bias current preamplifiers (based on
TLC 2272) were fixed on the head of the animal before experiments and connected to the
multielectrode microarray through a ICS-32 connector (Ciberkinetics, Inc.) (Fig. 17). After the
preamplification stage, the signals reach the amplifier by a thin and flexible 36-wires flat cable.
The full amplification gain has been set to x10000. The main unit containing the last-stage
amplifiers (fully battery powered), is composed of four compact 8-channel processing boards
(Fig. 18). The front-end modules amplify the signals and transmit them to a host PC system via
a National Instruments SH100100 shielded cable. A Digital Acquisition Card (PCI-6071,
National Instruments, 16-Bit, up to 1.25 MS/s, 64 analog inputs), was used to digitize the input
signals. In our configuration, 32-channels were reserved for the acquisition of signals from
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electrodes, 1 additional channel was used for the trigger and 2 channels were used as technical

references (to control the power supply voltage and current).

i

N ’.""lﬂhmm.

Figure 18. Overview of the multichannel acquisition system for single unit recordings in small animals. Left:
the main unit, with 4 boards each hosting 8 last-stage x 10,000 amplifiers. Its rightmost compartment is
reserved for the batteries. Right, upper: the shielded cable connecting amplifiers and D/A Converter
(SH100100, National Instruments). Right, middle: Digital Acquisition Card (PCI-6071E, National
Instruments). Right, lower: preamplifiers head stage (2 boards hosting each 16 preamplifiers connected to a

miniature ICS-32 male connector).

Software: The software interface we setup at UNIFE runs on a PC (Windows XP Pro)
allowing the user to configure the data processing, to visualize and to analyze the incoming
data. The graphical interface is user-friendly and is entirely written in LabView 7.0 (National
Instruments Inc.). In order to simplify the description the software package will be called here
as ‘Neuro-RAT’. The flexible digital architecture of the Neuro-RAT program allows the user to
perform a variety of different on-line and off-line analyses, from simple data streaming and
storage, to on-line filtering and spike sorting. The program contains three main parts: a)

monitoring; b) acquisition; c) analysis.
The Monitoring part is designed for real-time observation of the activity as recorded

from all the recording microelectrodes shown by colour-coding the neural activity (Fig. 19). It is
therefore capable to detect spikes in all active electrodes and, moreover, to monitor one selected

channel with different timescale. We found colour-coding rather helpful because it allows to

quickly select and display the electrodes showing the better correlation between neuronal

discharge and animal behaviour. At the same time, it helps to determine electrodes showing
Page 33 of 81
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noisy or corrupted activity. Another interface window (Fig.19, B) allows to visualize raw-signal
from 8 different electrodes user-selectable from the 64 array.
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Figure 19. The main interface windows of the Monitoring component of Neuro-RAT. Note in A the color
coded array where each position shows the activity of the corresponding microelectrode.

A schematic view of the Acquisition and Analysis component of Neuro-RAT is shown in
Fig. 20. The Analysis part of Neuro-RAT allows to separate single units from polispike
recordings and its Interface window is shown in Fig. 21.
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Figure 20. Block-diagram of Aquisition and Analysis part of Neuro-RAT program. The main menu (1)
that is at the top level of the program, allows user to initiate new records (2) and to get fast access to any
stage of the data processing (3). All other modules of the program are loop-structured and prompt the
user to execute the procedure when necessary. Dynamic links between modules and storage of critical
parameters of during PCA (Principal Components Analysis, 4) and FCM (Fuzzy C-Mean, 5) allows the
program to solve the invariance problem during Principal Component Analysis, automatically select the
features to be used in classification, to choose the best settings for clustering (new or previously
calculated for a given recording site) and to remove the noise.
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Figure 21. Interface window for the Data acquisition component of Neuro-RAT. The architecture of the
user-interface window showing polyspikes acquired during twelve trials is shown. Raw data from the
electrode and additional hardware information (i.e. trigger signals) are extracted and visualized. The
resulting peristimulus histogram of spikes occurrence (as revealed by the spike sorting module) is shown
below the rasters.

o e TR PREITE s ool rocordings B Jm Figure 22. Interface window for
s : - [ the Data Analysis component.

Top, the interactive threshold-
ing used for the spike sorting
algorithm. Bottom, the peri-
stimulus histogram built from
the spikes selected by the
thresholding procedure. Note
that this amplitude-threshold
criterion is too permissive and
pools together spikes coming
from different neurons.

To obtain in-depth spike sor-
ting, a dedicated part of Neuro-
RAT performs Fuzzy C-Mean
Classification of Principal Com-
ponents in multi-dimensional
space.
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It should be stressed that, the possibilities and functions of the Neuro-RAT software are
integrated by filters, smoothing algorithms signal and other useful math tools, implemented
available when needed.

Current state of the art and perspectives:

1) Preliminary exploration and functional characterization of rat premotor cortex by
intracortical microstimulation: done.

2) Setup of the training procedure of Long-Evans rats: done.

3) Setup of surgical implant: done.

4) Readiness of preamplifiers: 90% (a lighter cable is under construction).
5) Readiness of last-stage amplifiers — 100%.

6) Readiness of acquisition hard & software — 100%.

7) Readiness of analysis software — 90%.

The project is proceeding as expected. The extensive mapping of at least six animals will be
finished by the end of the third year of the RobotCub IP.
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2.3 Schemas for artefacts

2.3.1 Cortico-spinal (CS) excitability during interception with precision grip (UNIFE)

Interception in humans is a complex visuo-motor task that requires in few hundreds of
milliseconds to detect and process visual motion information, to estimate future position of
objects in space and time, to transform visual information into an appropriate motor action and
to trigger this action in advance, to compensate for physiological and biomechanical delays.

Despite this complexity, humans demonstrate rather good performance in interceptive
actions, especially in high-speed ball games (®~tsma & van Wieringen, 1990; McLeod, 1987)
but also in laboratory environment (Day & Lyon, 2000; Soechting & Lacquaniti, 1983). One of
the critical point is to be able to estimate the time remaining before contact (or time to contact,
TTC) in order to trigger the action at the right time. Thirty years of research in this field has led
to the proposal that humans use anticipatory mechanisms based on on-line visual information
(Lee, 1976) that can be combined with a priori implicit knowledge of the rules of physics for the
target motion (Lacquaniti, Carrozzo & Borghese, 1993; McIntyre, Zago, Berthoz & Lacquaniti,
2001). By this mean, an estimate of TTC can be updated and improved on line from object
appearance until the time at which the action must be triggered.

If the psychophysics of this mechanism is well documented, our knowledges in the
physiology of interception are rather poor. However, recent experiment in monkeys ((Merchant,
Battaglia-Mayer & Georgopoulos, 2004; Port, Kruse, Lee & Georgopoulos, 2001)) have shown
that the activity of neurons in the primary motor cortex (M1) during interception is modulated
by the stimulus parameters and especially by an estimate of TTC. At UNIFE we began a series
of experiments in order to investigate the excitability of the cortico-spinal (CS) system in
humans during the interception of a falling object and its relationship to the target parameters.
The hypothesis is that CS excitability should increase as the estimate of TTC is updated until it
reach the threshold value at which the muscular activity is triggered.

It is known that action, observation of action and internal simulation of action share
some common neural mechanisms and substrate in humans (Decety, 1996; Fadiga, Fogassi,
Pavesi & Rizzolatti, 1995; Rizzolatti & Craighero, 2004). Moreover, it has been shown that the
timing of simulated actions is similar to the timing of real actions (Decety, Jeannerod &
Prablanc, 1989) and that the temporal parameter of actions are coded in motor cortex during
action observation (Gangitano, Mottaghy & Pascual-Leone, 2001). Thus, a second aspect of the
project was then to determine if similar modulations of the CS excitability could be seen during
execution, observation and simulation of an interceptive action.

Methods
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We used transcranial magnetic stimulation (TMS), as this technique has already shown
to be relevant for testing CS excitability modulation in all these tasks (Fadiga et al., 1995; Fadiga
et al., 1999).

Figure 23. The experimental setup

To this purpose, single pulse TMS applied at different timings during the fall of the
target was used to assess the time-course of CS excitability through the amplitude of moto
evoked potentials (MEP). MEPs were recorded from the right first dorsal interosseus (FDI)
muscle while the subject try to intercept with a precision grip a bar sliding down along a
vertical bar (see Figure 23). In a first experiment, single pulse were delivered at -200 ms, 0 ms,
+100 ms and +200 ms relative to the release of the target bar. CS excitability was computed as
MEP area and compared to a baseline level recorded while subject was at rest. Four
experimental conditions have been studied: Execution, No-Go (subjects were instructed to
refrain from grasping), Simulation (motor imagery of the grasping movement triggered at the
instant of object’s fall), and Observation of others (while performing the same grasping
movement).
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Results

The results (see Fig. 24) showed clear modulation of CS excitability during Execution and
No-go but no significant modulation were found in other conditions. CS excitability started to
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Figure 24. From left to right, Z-score of MEP area in the Execution, No-go, Observation and
Simulation conditions. Asterisks signal significant (p<0.05) difference relative to baseline.

increase before target release and then slightly decrease at release to increase again until 200 ms.
However, despite we found a significant effect of ST ( one way ANOVA, F(4,52)=4.57; p<.05) on
MEP area, a Newman-Keuls post-hoc analysis demonstrated that only MEP evoked when TMS
pulse was delivered at 200 ms were significantly larger than those evoked at rest and at all other
latencies except than at time of release. In summary, CS excitability increases above baseline
between 100 and 200 ms after ball release.

During the No-go condition, we observed a general decrease of the CS excitability
relative to the Rest condition. The one way ANOVA revealed a significant effect of ST (F(4,52) =
5.8, p < 0.05) and Newman-Keuls post-hoc analysis demonstrated that MEPs evoked when
stimulation occurred at 100 and 200 ms after release were significantly smaller than the ones
evoked at other latencies and during Rest (p < 0.05) but not significantly different from each
other.

In summary of the first experiment, we found a facilitation of cortico-spinal excitability
200 ms after target release in the Execution condition whereas a global inhibition was seen
during the No-go condition, being significant from 100 ms after release. During Observation,
despite no significant modulation of MEP area relative to the Rest condition, we observe a
specific inhibition of CS system at 200 ms, that is when CS excitability increase significantly in
the Execution condition. During action simulation, no significant difference was found relative
to Rest but slight increases of CS excitability were observed at ST 0 and 200 ms relative to target
release.

The increase of CS excitability in time during the Execution condition reflects the
characteristics of interceptive task in which, in contrary to reaction time tasks, the action must
be triggered in response to an internal signal (TTC threshold) and not an external one
(stimulus). This internal signal should reach its threshold value at about 250 ms as EMG activity
began at 280 ms in average. It can be assumed that the CS excitability is rising whereas the TTC
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estimate is updated in order to be closer from motor threshold at the triggering time. On the
other hand, the decreasing CS excitability during the No-go condition is likely reflecting a
mechanism dedicated to lower the sensitivity of motor cortex to neural command triggered by
the stimulus.

Previous (submitted) data in MEG shown remarkably similar activations during
catching and a No-go condition along the dorsal visuo-motor pathways suggesting a stimulus-
rather than a task-driven processing. The absence of significant modulation in the Observation
condition could be expected as TMS pulses were applied before the action begins to be in line
with the stimulation time in the Execution condition. A second experiment with different time
of stimulation has been performed and results are under process. Finally, the absence of
modulation in the simulation condition is difficult to explain. Contribution of M1 to motor
imagery is demonstrated by some studies and not by others (see (Lotze et al., 2006)). The
observation of M1 activation during motor imagery seems to depend on methodological
considerations and our lack of results could be attributed to the difficulty to simulate the task.
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2.3.2 Robotic implementation of models of sensory-motor coordination for reaching,
grasping and tracking tasks. (SSSA, UNIZH, UNISAL)
The availability of robotic platforms with adequate levels of anthropomorphism, in the
sensory systems and in the kinematic structure, allows an experimental investigation of the
models of sensory-motor coordination in reaching and grasping.

The SSSA humanoid robot.

The SSSA humanoid robot mimics human mechanisms of perception and action, and can
implement neurophysiological models of sensory-motor coordination, for experimental
validation. The system is composed of sensors and actuators replicating some level of
anthropomorphism, in the physical structure and/or in the functionality. It is worth noting that
their specifications were defined together by roboticists and neuroscientists (Dario et al., 2005).
The platform is constituted by a 1-link trunk which supports one arm/hand system and a
neck/head system (see Fig.1). The 2-dof trunk is part of the arm (Dexter arm, by S.M. Scienzia
Machinale srl, Pisa, Italy) which has in total 8 dofs, and integrates the 4 motors of the three-
fingered hand on the forearm. The arm structure is anthropomorphic in reproducing a 2-dof
shoulder, a 1-dof elbow and a 3-dof wrist (Zollo et al., 2003). The mechanical transmission
system is realized through steel cables, which allow the 6 distal motors to be located on the first
link, which represents the trunk, by achieving low weight and low inertia for the distal joints.
The proprioceptive information for the arm 8 joints are given by a measure of the power
consumption of each joint as well as joint positions provided by incremental encoders located
on each motor. The hand is has anthropomorphic dimensions and weight (Roccella et al., 2004).
Each finger consists of 3 underactuated dofs driven by a single cable allowing flexion/extension.
A 2-dofs trapezo-metacarpal joint at the base of the palm allows thumb opposition movement
(adduction/abduction). In total the hand has 10 dofs, 6 of which are underactuated. The
perception system of the hand includes proprioceptive and exteroceptive sensory systems, and
in particular: 9 position Hall-effect sensors, 3 for each finger, one per phalanx; 4 motor encoders;
3 3D force sensor, one for each finger, embedded in the fingertips providing the three force
components of the contact; 9 ON/OFF contact sensors, 3 for each finger, one per phalanx. The
anthropomorphic robotic head has been designed on the basis of the physical structure and
performance of the human head in terms of dofs, ranges of motion, speeds and accelerations
(Dario et al., 2005). The head has a total of 7 dofs equipped with incremental encoders for
measuring the positions of all the joints as proprioceptive information: 4 dofs on the neck (1
yaw, 2 pitches at different heights, 1 roll), 1 dof for a common eye tilt movement and 2 dofs for
independent eye pan movements. The 4 dofs on the neck allow the head to perform
dorsal/ventral and right/left neck flexion movements as well as neck rotation. The 2 dofs
performing pan movement of the eye permit vergence of the two eyes, thus allowing foveation
of targets. The performance of the head allows performing human eye movements such as
smooth pursuit and saccades. The head is equipped with 2 cameras providing retina-like
images, i.e. space variant image whose resolution is higher in the centre (fovea) and degrades
towards periphery, as an imitation of images generated onto the human retina (Sandini &
Metta, 2003).
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Functional biologically-plausible models of sensory-motor mapping and of learning of
sensory-motor coordination have been implemented on different parts of the ARTS humanoid
platform. Such models have been adapted from the DIRECT (Direction to Rotation Effector
Control Transform), proposed in (Bullock et al., 1993). The implementation of these sensory-
motor coordination models on the ARTS humanoid is based on self-organizing neural networks
that learn how to coordinate motor actions with sensory feedbacks.

Figure 25. The ARTS humanoid robotic platform.

The model builds a mapping between the positions of the robot in the external space
(Cartesian space), as given by the sensory systems, and in the internal space (joint space), as
given by the proprioceptive systems. The neural networks start with few information about the
robot kinematics, like the number of DOFs and the maximum ranges of motion. During an
initial learning phase, associations are created between spatial directions of movements and
joint rotations, through random endogenous movements whose effects are detected by vision or
touch (similarly to human infants). After learning, the built associations are used to set the
proper joint rotation in order to reach a target position. This model has been implemented with
Grossberg’s outstar cells and Growing Neural Gas (GNG) Networks, as proposed by Bernd
Fritzke (Fritzke, 1994). Differently from other techniques, these networks do not have
predefined dimension nor topology and can grow, reduce, and re-configure in order to better
solve the problem they are designed and trained for. Based on this model, we developed and
experimentally validated a neurocontroller for positioning and orienting the robot hand in the
3-dimensional Cartesian space (Asuni et al., 2006; Asuni et al., 2005(b)) and a neurocontroller for
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gazing a point in the three-dimensional space, with the robot head, by controlling the neck and
eye movements (Asuni et al., 2005(a)). An adaptation of the model includes predictive control of
grasping and has been implemented on the ARTS humanoid to obtain ‘adaptable grasping’,
that is the robot was capable of looking at an object, determining the position of the hand for
grasping, and accomplish the grasping action by using the tactile perception with an expected
perception control loop (Laschi et al., 2006). An alternative biological model (Goossens & Van
Opstal, 1997) has been implemented for the coordination of the ARTS humanoid neck and eye
movements (Maini et al., 2006).

The UNIZH approach to grasping.

At UNIZH, we investigated how the shape adaptation can be taken over by
morphological computation performed by the morphology of the hand, the elasticity of the
tendons, and the deformability of the material covering the finger tips, as the hand interacts
with the shape of an object. When the hand is closed, the fingers will, because of its
anthropomorphic morphology, automatically come together. For grasping an object, a simple
control scheme, a "close" is applied. Because of the morphology of the hand, the elastic tendons,
and the deformable finger tips, the hand will automatically self-adapt to the object it is
grasping. Thus, there is no need for the agent to "know" beforehand what the shape of the to-be-
grasped object will be. The shape adaptation is taken over by morphological computation
performed by the morphology of the hand, the elasticity of the tendons, and the deformability
of the finger tips, as the hand interacts with the shape of the object. Because of this
morphological computation, control of grasping is very simple, or in other words, very little
brain power is required for grasping. (Pfeifer et al., 2006; Pfeifer et al., in press). We also
implemented a learning mechanism in order that the robotic hand can learn to grasp objects by
itself as described in WP2 Cognitive development (Gomez et al, 2005 and Gomez et al, 2006).

If the robotic hand actively manipulates an object, there are likely to be correlations in
the sensorimotor space. This "good" sensory-motor data can be exploited for perceptual
categorization, adaptation, and learning. In a previous series of studies, we have investigated
how the usage of correlation, entropy, and mutual information can be employed (a) to segment
an observed behaviour into distinct behavioural units, (b) to analyze the informational
relationship between the different components of the sensory-motor apparatus, and (c) to
identify patterns (or fingerprints) in the sensorimotor interaction between the agent and its local
environment. These methods were applied to real robots (Lungarella and Pfeifer, 2001;
teBoekhorst et al., 2003) and simulated robotic agents (Lungarella et al., 2005; Gomez et al., 2005;
Tarapore et al., 2006) and we are using them now in experiments where the robotic hand is
involved in grasping tasks (Lungarella and Gomez, in preparation).
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The UNIZH approach to Tracking.

In order to detect objects moving in the environment we have implemented 2 different
systems:

The first one is based on elementary motion detectors (EMDs) based on the well-known
elementary motion detector of the spatio-temporal correlation type (Marr, 1982), a description
of the model implemented, can be found in (lida, 2003), that successfully implemented a
biologically inspired model of the bee’s visual “odeometer” based on EMDs. The model was
used to estimate the distance traveled based on the accumulated amount of optical flow
measured by EMDs. Fig. 1c and 1d show the EMDs responding to motion.

The second one is based on the optic flow extraction. We used the generalized gradient
method based on Spatio-Temporal Filtering (Sobey and Srinivasan, 1991; Nagai et al., 1999). A
detailed explanation can be found in Fig. 2 and for an example of the performance see Fig 1b.

Figure 26. Active vision system. (a) Hardware implementation (b) the lower part consists on the left and
right images captured by the cameras, the upper part are the corresponding optical flow. The red dots are
the centroid of the motion (i.e., where the robot should gaze). (c-d) EMDs reacting to motion towards the
right side of the image (green dots) and to motion to the left direction (red dots).
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Figure 27. Optical flow extraction.
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The contribution of UNISAL to track the acting hand (UNISAL, UNIUP, UNIFE).

At UNISAL, the efforts concerning WP3 have been directed towards:

i) Development of a input tracker glove in conjunction with UNIUP looking at the
development of technology to accurately track hand actions in infants up to 24
months. This work has produced a new miniaturised wireless sensory glove able to
track the motions of the all finger and the thumb. The current work is developing the
software interface and refining the glove design for ease of use and acceptance by
the child. These refinements have been based on initial trials with children. It is
expected that a new version with testing will be completed within the next recording
period permitting the collection of real data.

ii) To permit a greater more accurate analysis than is currently available from glove
systems a new high resolution finger tracking systems has been designed and is
undergoing testing. This system has been developed based on input from UNIFE. At
this time the system has been design and tested with operational software showing
accurate 6 dof tracking (accuracy better than 0.1 mm at finger tip). With further
development this will be integrated with the work at UNIFE and UNIUP.
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Figure 28. The two hand tracking systems developed at UNISAL with UNIUP (left) and UNIFE (right).
This second tracker, in particular, associates high precision to small dimensions. The signal relative to
fingertips positions can be remotely transmitted via WiFi of Bluetooth protocols.
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iii) At the same time, UNISAL is continuing its work on the development of an
understanding of the sensory systems for legs, hips, feet and the sensory
requirements of the iCUB. The data relative to this approach will be presented in the
final version of this Deliverable 3.1 (month 30).
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2.3.3 Sensorimotor Integration of gravity models. (UGDIST)

The work for WP3 at UGDIST has proceeded along two main lines of research. We
investigated the acquisition and construction of internal models both in humans and robots. In
particular, as a starting point, we concentrated on the acquisition of models of the gravity load
during point-to-point movements: i.e. reaching. In the following we illustrate these two aspects.

Gravity models in humans

Introduction. We have designed a series of experiments with the aim of understanding
which strategy do humans use to predict the trajectories of flying objects and to catch them. A
number of different hypotheses have been proposed to explain this kind of prediction. Our
version states that humans build internal models of the dynamics of the flying object and then
use this model to intercept it. This point of view is connected with a wider theory in motor
control. In fact Mussa Ivaldi and others [2000] proved that a subject moving in a force field,
builds an internal model of that field and adopts this model to correctly adapt his movements
against the perturbing force. There are already evidences of the existence of an internal model
of gravity [McIntyre et al. 2001], [Zago et al., 2004] and a recent work by Hayhoe and others
[2005] provides further evidence of the existence of internal models of more sophisticated
dynamic properties of the environment.

Methods. Our experiments are organized as follows: the subject looks at a computer
screen and moves a magnetic tracker vertically to drive a small paddle up and down on the
right side of the screen. His task is to intercept a ball with the paddle which crosses the scene
following a parabolic path. The last part of the ball trajectory is hidden in order to force the
subject to use prediction. The subjects are divided in two groups: a test group and a control one.
To the test group are shown trials (15 blocks of trials, 65 each) in which the parabolic trajectories
of the ball are always different, yet generated by the same dynamical system. In particular the
ball moves in a force field similar to the gravitational one, characterized by a constant
acceleration. The test group is further divided in two parts, according to the direction of the
acceleration: downward versus upward direction. During the 14th block the model is suddenly
abandoned and the acceleration is randomly chosen. The control group must cope with
trajectories which are always parabolic, but which have not an underlying model: each trial
presents a different acceleration, both in modulus and direction [upward - downward].

Results. The mean error (distance between the arrival point of the ball and the
corresponding position of the paddle) recorded during the experiments are summarized in
Figure . From statistical analysis (two ways ANOVA with blocks and condition) results that the
constant acceleration case allows for better performances than the “random” case, in which the
only way to preview the arrival point of the ball is to observe its trajectory and extrapolate. This
could indicate that the subject infers the unifying characteristic of the trajectories by building an
internal dynamic model of the ball and learning its parameters.
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In addition the subjects seem to score a better performance when there is coherence
between visual and motor inputs. When the ball is subjected to a constant force field directed in
the same direction of gravity (the field felt by the subject) errors are lower, thus indicating a

strong link between action and perception. These results look promising although it is fair to be
said that they are substantially preliminary.

Mean error (distance between paddle and ball arrival point) in the three different
100 - conditions (control; test, upward direction and test, downward direction).
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Figure 29. Mean Error (distance between paddle and ball arrival point) in the three different conditions
(red = control, green = test, upward direction, blue = test, downward direction).

Gravity models in robots

During the execution of (even simple) arm movements, the effects of gravity need to be
taken into account in order to avoid undesired. Therefore, the issue of gravity compensation has
always been crucial in the field of robotics [Murray et a. 1994]. Different gravity compensation
techniques have been proposed in literature. Among these various techniques, we here focus on
model based gravity compensation, limiting our attention on arm point-to-point movements.

The main section is divided into three subsections. First, we describe a dynamical model of the
arm dynamics. Then, we show how the model can be written in a parametric way. Finally, in
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the last subsection, we show some experimental results on the how to compensate gravity on a
real robot.

Model of the arm. We model the dynamics of the arm as a fully actuated kinematic chain
with n degrees of freedom corresponding to n revolute joints. It is well known in literature that
such model can be expressed as follows:

M(9)4+C(q,d)q+g(q)=u

where q are the generalized coordinates which describe the pose of the kinematic chain, u are
the control variables (nominally the torques applied at the joints) and the quantities M, Cand g
are the inertia, Coriolis and gravitational components.

Parametric model of the arm. In this section, we describe the above dynamic equation in a
parametric way. The considered parameters are the masses, the inertias and the center of mass
positions for each of the n links which compose the controlled arm. The vector with components
represented by these parameters will be denoted p and is composed by the link masses (mo, m,
...), the link center of mass positions (cox, coy, Coz, Cix, Ciy, C1z, ...), the link lengths (lo, 1y, ...), and the
link inertia tensors (lox, loxy, Toxz, Toyy, loyz, lozz, I, Tixy, Tixz, Tiyy, Inyz, Tizz,...). Obviously, the matrices
M, C and g depend on the given vector of parameters, i.e.:

M (g, p)4+C(a,¢,p)4+9,(q, p)=u

Interestingly, it can be proven that the above parametric dynamics can be rewritten as
(see [1] for details):

M (q, p)d+C(a.d, p)d+9g,(a, p) = Z‘P,-(p)Y"(d.q,q)

for suitably chosen functions Yi and Wi. As a special case we have that the gravity term g can be
written as:

9(q, p) = Z‘P,-(p)Y"(O,O,q) = Za,—g"(q)

where o=Wi(q).Therefore, the effects of gravity on a robotic arm can always be expressed as the
linear superposition of terms gi(q) which do not depend on the dynamical properties of the
system. Interestingly enough, this observation has strong connections with the “spinal filed”
theory (see [Mussa-Ivaldi et al. 2000] and [Nori et al. 2006] for details) but these connections will
not be discussed here being out of our main focus. What is worth saying is that the gravitational
properties of the controlled system are represented by mixing coefficients a.

Experiments. We designed a set of experiments in order to test if the model:

9(a, p)=Za,-9"(q)
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agrees with the experimental data taken from the arm of our robot, James (see Figure 30). This
test is necessary since the above model is based on a set of assumptions which cannot be
completely fulfilled by a real manipulator. In this specific example the arm is four degrees of
freedom (three degrees of freedom in the shoulder and one degrees of freedom in the arm) and
given the kinematics of the arm we have J=7 and :

J g(q)

1 ~cos(ql)

2 sin(ql)cos(q2)

3 -sin(q1)sin(q2)

4 sin(q1)cos(q2)cos(q3)-cos(ql)sin(q3)

5 -sin(q1)cos(q2)sin(q3)-cos(q1)cos(q3)

6 [sin(q1)cos(q2)cos(q3)-cos(q1)sin(q3)]cos(qd)-sin(q1)sin(q2)sin(q4)
7 [-sin(q1)cos(q2)cos(q3)+cos(q1)sin(q3)]sin(q4)-sin(q1)sin(q2)cos(q4)

Practically, we can measure the value of g(q,p) at different configurations of the arm by
measuring the torques u which has to be applied at the joints in order to keep the system in the
specific configuration with zero velocity. We have:

9(q', p) =u'

where q!, @% ..., qV is a set of configurations and u' are the torques necessary to counterbalance
gravity in order to maintain the configuration qi. To verify the validity of our model we have to
check whether there exists a set of mixing coefficients ou, ao,...,a7 that satisfy the following
equations:

u'=>a;9'(q")
j=L

Obviously, given a sufficient number of measurements (u!, q’) the above equations
cannot be exactly fulfilled by real data, which are always affected by noise. Therefore, the
adopted solution was to estimate the parameters with a least squares procedure:

2
K

a =argmin .
“

=1

23

zajgj(qi)_ui

-1

and to verify the validity of the estimated parameters on new data samples. Results are shown
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in Figure . Training the model with two hundred measurements (u', @') ... (uU?*®, g*°) was

sufficient to obtain good predictive capabilities thus showing that the model is in good

agreement with the real system.

Figure 30. The picture shows our
robotic platform, James.
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Figure 31. Test of the predictive capabilities of the parametric
model. On the horizontal axis, a total of 75 different postures q',
g% ..., q°° have been considered for testing. For each of these
postures we considered the torques necessary to keep the arm at
rest (vertical axis). The blue line corresponds to the estimated
compensation; the red line instead is the measured
compensation.

Non-parametric approximation. The same data were also processed by a non-parametric
method which is based on Gaussian processes for regression, a kernel method based on
Bayesian inference. The specific algorithm is incremental and sparsifies the solution; it also
estimates the hyper-parameters of the algorithm by optimizing a specific quantity (called
marginal likelihood). We leave any further detail of the method to the reference in [Csato” et al.
2002] and only show here the result of the approximation of the gravity data from James. The

results in the following figures Figure 31 and Figure 32 show that non-parametric estimation is
efficient and it can be a good alternative to internal model acquisition. We will explore both
possibilities in the future with extensions to the full dynamical model of the robot and its links
to other sensing modalities: i.e. vision, vestibular, etc.

voltage
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prediction on joint 1
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Figure 31. Prediction for joint 1, on a random subset of the available data.
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| [ standard deviation

voltage prediction

joint 2 joint 1

Figure 32. Plot of the predicted function; the shading represents the standard deviation of the prediction.
Note how uncertainty grows toward the borders of the region where training points are not available.
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2.3.4 Sensorimotor Integration and cortical sensorimotor maps. (UNIHER)

The work at Hertfordshire has addressed the fundamental question: How can raw,
uninterpreted information from unknown sensors come to be used by a developing embodied
agent with no prior knowledge of its motor capabilities? The approach to answer this in
RobotCub is to pursue the development of artificial cortex using information theory as a means
for self-organizing sensorimotor structures grounded in experience.

In nature, cognitive structures appear to be organized in the course of evolution and also in
the course of development so as to reflect information-theoretic relations arising in the
interaction of sensors, actuators, and the environment (including the social environment).
Information distance (rather than mutual information or other measures such as Hamming
distance) appears to lead to the best structured cortex-like maps of sensorimotor variables [see
the paper below]. (For two jointly distributed random variables (e.g. two sensors), information
distance is defined as the sum of their conditional entropies d(X,Y)=H(XIY)+H(Y|X). This
satisfies the mathematical axioms for a metric, inducing a geometric structure on the agent's set
of sensorimotor variables.) Sensory fields may be constructed on the basis of information
methods [Olsson et al. 2004] and then used to autonomously discover sensorimotor laws, e.g.
optical or tactile flow and visually guided movement [Olsson et al. 2006]. The particular
environment experienced and changes in it can shape the sensorimotor maps and their
unfolding in ontogeny [Olsson et al. 2006]. Details were reported in D3.2 "Initial results of
experiments on the functional organization of the somatotopic maps and on the cortical
representation of movements (report)", and also published as [Olsson et al. 2006a].

More recent work on the informational relationships between the agent, its actions, and the
environment [see the paper below] considers a number of statistical measures to compute the
informational distance between sensors including the information metric, correlation
coefficient, Hellinger distance, Kullback-Leibler, and Jensen-Shannon divergence. The methods
are compared using the sensory reconstruction method to fund spatial positions of visual
sensors of different modalities in a sensor integration task. The results show how the
information metric together with adaptive entropy maximization captures relations not found
by the other measures for the construction of somatosensoritopic maps and the development of
cross-modal sensory integration. Moreover, these methods are extended to temporally extended
experience in WP6, where they are applied to interaction.
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2.3.5 Work done by IST on sensorimotor maps. (IST)

The IST group has been addressing the problem of learning sensory-motor maps of high
dimension robotic systems. Sensory-motor maps are the mathematical relationships between
the information coming from the sensors and the actuators of the robotic system. For instance,
one map may determine how visual perception of the robots' hand (image coordinates and
velocities) relates to robots' arm motor actions (angular positions and velocities of arm joints).

One of the biggest challenges in the analysis of high dimension systems arises from the
existence of redundancies in the motor space, e.g. several arm configurations result in the same
hand position. This is advantageous in many situations because we can use the redundant (free)
degrees of freedom to avoid obstacles, minimize energy consumption, achieve more
comfortable postures, and many others. However, conventional learning mechanisms
associating sensory to motor information may not work under these circumstances because the
sensory motor maps are no longer unambiguous. In the context of redundant systems we have
worked in the above mentioned problems. In particular we are interested in learning the
sensory-motor maps, but, at the same time, to use the redundancy to achieve secondary tasks,
such as obstacle avoidance and energy minimization. We present three approaches to deal with
this problem.

Another problem addressed in this report is related to the learning the sensory motor
maps in a way the fully the constraints existing in the joint sensory-motor data. Most existing
works to date try to learn either forward (motor-to-sensory) or inverse (sensory-to-motor)
maps, which mask some of the underlying structure in the data, mainly when there are
redundant degrees of freedom or perceptual aliasing. We propose a manifold learning method,
and associated data query and retrieve algorithms, that have the potential ability to address
these problems. We present some encouraging results on its application to simulated kinematics
and, in future work, will perform tests on real robotics platforms.

2.3.5.1 Minimum Order Sensory Motor Maps

A “Minimum Order Sensory Motor Map (SMM)” is a map that takes the desired image
configuration and the Degrees Of Redundancy (DOR) as input variables, while the non-
redundant Degrees of Freedom are viewed as outputs. Since the DORs are not frozen in this
process, they can be used to solve additional tasks or criteria. This method provides a global
solution for positioning a robot in the workspace, without the need to move in an incremental
way. We provide examples where these tasks correspond to optimization criteria that can be
solved online. We show how to learn the “Minimum Order SMM” using a local statistical
learning method. Extensive experimental results with a humanoid robot are discussed to
validate the approach, showing how to learn the Minimum Order SMM of a redundant system
and using the redundancy to accomplish auxiliary tasks.
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Mathematical Formulation

In this section we show how to define a Sensory-Motor Map that explicitly takes the DOR into
consideration, thus allowing the completion of several simultaneous tasks.

Let us define a SMM that maps a vector of control variables (n,7) to a vector of image
point features I, where n is a minimum set of degrees of freedom that spans the full output
space and r is a set of redundant degrees of freedom. Note that there are several partitions of
the input space, into redundant versus non-redundant degrees of freedom that can give this
same property. This forward model can thus be written as:

I=f(n,r)

and allows predicting the image configuration of the robot given a set of motor commands. In
many cases, we are more interested in the inverse map, i.e. computing the motor commands
that drive the robot to a desired image configuration, I. If there were an inverse
mapping (n,r) = f (1), this problem could be solved in a straight forward manner. However,
as the dimension of the input space is larger than that of the output space, there are many input
combinations that generate the same image point features. In other words, because of the DOR,
f(n, r) is not bijective and, therefore, not invertible.

We built a cost function, K, with two terms: one weighting the error in the position of the
end effector (data fitness) and another one corresponding to the weights on the control
(regularization term).

K(17,n,r) :ZHI - I*H2 +c(n,r)

This cost function expresses that we are willing to accept some error in the position if
another task can be solved at the same time, in this case control costs. Examples of control cost
criteria ¢ can be “"Comfort" (e.g. distance to joint limits), Energy minimization (e.g. the position
with lower momentum) or Minimum motion (i.e. minimize total motion from current to desired
position), posture control, amongst others.

Finding the Solution
The regularized solution can be found by minimizing the defined cost as follows:

(A, F) =arg min(i”l - I*H2 +c¢(n,r))

where I can be computed with the forward model. This formula integrates two terms: one
describing the task part and another related to posture control.

There are two important observations to this formulation. Firstly, the optimization is

Date: 02/10/2007

Version: No. 1.5 Page 57 of 81



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

done with respect to all control variables, which translates into a significant computational cost.
Secondly, the DORs are not treated as such, since they undergo exactly the same process as the
non-redundant DOFs.

The consequence of this approach is that the extra degrees of freedom are frozen from
the beginning and can no longer be used for a different purpose during execution. In a way,
redundancy is lost. Instead, in our approach, we would like to keep the redundant degrees of
freedom free for solving additional tasks online. In essence, we split the problem in two steps.
Firstly, we define a “"Minimal Order Sensory Motor Map", n = g(l,r). By taking the DORs as
input (independent variables) instead of output signals, the problem of computing the non-
redundant DOFs becomes well posed. The DORs, r, are left unconstrained and can be fixed
during runtime, when a secondary task or optimization criterion is specified.

The definition of the “"Minimum Order SMM" allows us to use the redundancy to meet
additional criteria or task-constraints, that can be changed online. The DORs can be determined
as the solution of a new optimization problem, with cost function L:

f =argmin(L(1",r))

Note that, in contrast with the previous case, this optimization is done with respect to
the redundant degrees of freedom, only. The optimization complexity is thus substantially
lower and lends itself to be used as an online process. In general, the solutions in the two cases
are not the same, because different local minima could be reached and the criteria are slightly
different.

Our approach guarantees zero prediction error, because the Minimum Order SMM
allows us to determine the values of n corresponding to the exact image position, for the
selected redundant degrees of freedom. This solution is similar to the first (regularized)
problem when A becomes large. If the Minimum Order SMM is not exact, then it will introduce
some error in the final image configuration.

Results

The following figure shows the minimization in energy obtained when holding the robot hand
in a pre-defined position.
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Figure 1 Minimization in energy obtained when holding the robot hand in a pre-defined
position (left). Motion of the joints to achieve the result.

2.3.5.2 Visual Controlled Uncalibrated Redundancy Control

Visual servoing methods provide very efficient and robust solutions to control robot motions.
They provide high accuracy for the final pose and good robustness to camera calibration and
other settings. The redundancy formulation presented in the previous section can be extended
to the Visual Servoing framework, to compute a control law that realizes a main task, while
simultaneously taking supplementary constraints into account. It can be used when the main
task does not constrain all the robot degrees of freedom (DOF). A secondary task can then be
added to meet a second objective without disturbing higher priority tasks.

The control law for the second task is computed in the within the set of motions that do
not change the primary task. This is achieved by projecting motion hypotheses into the set of
motions constituting the null space of the first task, thus leaving the first tasks unmodified. The
computation of the projection operator is based on the jacobian of the first task. This approach
involves the computation of the task jacobian, linking the evolution of the visual features to the
robot articular motion. It thus requires knowledge about the camera world and world-actuator
transformations that influence the interaction matrix (relating image and camera velocities) and
the robot jacobian (relating end-effector and joint velocities). Such transformations are usually
obtained during an offline calibration phase.

However, full system calibration (and even a coarse one) is not always possible and/or
desirable. Some robots may lack proprioceptive sensors to provide the necessary information
and some parameters may vary over time, due to malfunction, changes in mechanical parts or
modification in the camera lenses. Even when calibration information is available, the analytic
computation of the interaction matrix often requires an estimate of the depth of the tracked
features. For all these reasons, a perfect computation of the task jacobian can be very difficult or
even impossible in practice.
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Redundancy formulation for two tasks.

Let q be the articular vector of the robot. Let e1and ez be two tasks,

Ji = i—ill (i' = ]_ 2)

Their jacobian is defined by:

E)ei
é' f— = S f— J- o
i q q iq

Since the robot is controlled using its articulation velocity (, the jacobian has to be (pseudo-)
inverted. The general solution (with i =1) is:

Gg=J,/é +PRz

where Pi1 is the orthogonal projection operator on the null space of J1 and J; is the pseudo-

inverse of J1. Vector z can be used to apply a secondary command, that will not disturb ei. Here,
z is used to carry out at best a task e2. With further algebraic manipulations we have:

¢, =J,1¢ +J,Pz

By inverting this last equation, and introducing the computed z, we finally get:

q= Jfél + Pl(J2P1)+(é2 - Jz‘]fél)
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Results

We have tested several estimation methods for ] and the results are the following
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Figure 2 — Results of task sequencing. The vertical line shows the time instant when the second
task was activated.

From the results show in Figure 2 we can see that when a second task is activated there is a
small perturbation on the first task that is rapidly reduced to zero.

2.3.5.3 Joint representation of sensory-motor relations

Learning a structure jointly representing both sensory and motor information can provide
significant advantages, if such knowledge can later be used to recover any (partial) map
between perception and action. In this section we present a new approach to work with
unknown redundant systems. For this we have developed:

- An online algorithm that learns the input-output constraints of a generic smooth map
(manifold);

- A method that, given a partial set of input-output variables, provides an estimate of the
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remaining ones, using the learned constraints.

Referring to our problem, the manifold estimate can be used to obtain the direct and
inverse robot kinematics, i.e., to provide an estimate of the observed variables given an
actuation value, or, inversely, obtain the actuators position that leads to a desired observation.
This constitutes a new approach to learn forward-backward models, allowing to easily
recovering the relationship among any set of variables. The key point of our approach is to
consider the problem from an unsupervised learning point of view, where data points consist of
vectors containing both input and output variables. These vectors define a surface that can be
seen as the graphic of a function.

Consider D. to be the number of controlled — or independent — variables and D, the
number of observed variables. A point x belonging to the manifold in a D = D:+ D, dimensional
space will lie in a sub-space of dimension D.. This manifold can be represented by the implicit
function

H(x)=0

where H(x) imposes the D — D- restrictions arising from kinematics considerations. Note that the
dimension of the manifold is D. because this corresponds to the number of independent
variables. The observed variables are generic smooth, frequently non-injective functions of the
independent variables. In almost all cases these manifolds are highly nonlinear, hard to
parameterize without any a priori knowledge.

However, they are smooth and so can be approximated by local linear parameterizations
estimated from sample data. Unsupervised learning of a D.dimensional manifold in a D-
dimensional space can be interpreted as a probability density estimation problem: given a set of
(possibly corrupted with noise) sample points xi belonging to the manifold, i=1...N, estimate
the probability of a point x belonging

to the manifold, i.e.,
pH(x)=0 | x1, x2, ..., xN)

After estimating the manifold, and given a partial set of input-output variables, we can
query for an estimate of the remaining ones. Suppose data points x are divided into a query
component and an answer component, x = [xT; xTa]T, such that Dy + D. = D, where Dj is the query
dimension and D. is the answer dimension, not necessarily equal to D. and D.. The answer
component is the set x. of elements of x to be estimated given a specific value of the remaining
elements x;. For instance, for a forward kinematics problem x; corresponds to the actuation
variables, while for an inverse kinematics problem x; matches the observed variables. Note that
if the dimension of the query exceeds D., the manifold dimension, the estimation problem is
over-determined and a solution may not exist. Conversely, if the dimension of the query is
lower than D., the estimation problem is under-determined and a continuum of solutions exist
— in this case, as will be explained later, our algorithm will provide multiple answers that can
be interpreted as a sampling of that continuous solution. The M local models that describe the
learned manifold can be used to provide an estimate x. for a specific query x;. For a single
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model m, we can choose the estimate of x. to be the value that maximizes the likelihood of the
data point x given model m, i.e., that maximizes p(x|m). Maximization of this likelihood can be
achieved by minimizing the corresponding Mahalanobis distance to the center of the model m:

Ji=(x - wCix - )

The data is characterized by its first (mean o) and second order (covariance matrix C) moments.
Consider the following decomposition for the covariance matrix:

cl- qu an
Caq Caa
where Cy, Cys, Cop and Cu are, respectively, of dimensions D, x D;,

Dg x Da, Da x Dg and Da x Da. Then after some simple calculations we get the estimate

o -1

Xa (Xq) = _CaaCaq (Xq - qu) + Hy

The following experiment shows a simple example of a sensory-motor relation. We can see that

the correct relation (in blue) is accurately estimated (red lines) and that a one-to-many relation
can be recovered.

Fig. 4. Recovering the forward model embedded in the manifold. With
xg = 0.5 the six possible outcomes are successfully estimated (represented
in the figure by black asterisks).

In future work we will apply and evaluate the performance of the proposed model to data
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obtained from redundant robots with multiple degree of freedom.

4 Conclusions

This deliverable presents the current state of the art of experiments and models on sensorimotor
integration together with some demos on infants crawling modelling. This is the final version of
the Deliverable that has been provided at month 36 and includes all the contributions to
Workpackage 3 provided by RobotCub partners during the first phase of the project. As soon as
the artefact will be ready, new experiments, testing sensorimotor coordination directly on the
platform will be carried out on the basis of the current experience.
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Abstract

In embodied artificial intelligence is it of interest to study
the informational relationships between the agent, its actions,
and the environment. This paper presents a number of sta-
tistical measures to compute the informational distance be-
tween sensors including the information metric, correlation
coefficient, Hellinger distance, Kullback-Leibler, and Jensen-
Shannon divergence. The methods are compared using the
sensory reconstruction method to find spatial positions of vi-
sual sensors of different modalities in a sensor integration
task. The results show how the information metric can find
relations not found by the other measures.

Introduction

In the early 1960s H. B. Barlow suggested (Barlow, 1961)
that the visual system ol animals “knows™ about the struc-
ture of natural signals and uses this knowledge to represent
visual signals. Ever since then neuroscientists have analysed
the informational relationships between organisms and their
environment. In recent years, with the advent of embodied
artifical intelligence, there has also been an increased inter-
est in robotics and artificial intelligence to study the informa-
tional relations between the agent, its environment, and how
the actions of the agent affect its sensory input. It is believed
that this research can give us new principles and quantitative
measures which can be used to build robots that can exploit
bootstrapping (Prince et al., 2005) and continously learn, de-
velop, and adapt depending on their particular environment,
environment, and task to perform. This paper presents some
work in this area and presents a number of methods for com-
puting the distance between sensors and how these meth-
ods can be useful for sensor integration of different sensor
modalities.

The informational relationships between sensors are de-
pendent on the particular embodiment of an agent. Thus,
these relationships can be useful for the agent to learn about
its own body, the potential actions it can perform, and how
the sensors relate to its particular environment. In (Olsson
et al., 2004b) the sensory reconstruction method, first de-
scribed by Pierce and Kuipers (1997), was applied to robots

and extended by considering the informational relations be-
tween sensors, The results showed how the visual field could
be reconstructed from raw and uninterpreted sensor data and
how some symmetry of the physical body of the robot could
be found in the created sensoritopic maps. This method was
also used in (Olsson et al., 2005b) to show how a robot can
develop from no knowledge of its sensors and actuators to
perform visually guided movement.

One other aspect of the information available in an agent’s
sensors is that the particular actions of the agent can have an
impact on the nature and statistical structure of its sensoric
input. This has been studied in a number of papers since
(Lungarella and Pfeifer, 2001); see for example (Sporns and
Pegors, 2003, 2004; Lungarella et al., 2005). The results
show how saliency guided movement decreases the entropy
of the input while increasing the statistical dependencies be-
tween the sensors. The specilic environment of an agent also
limits in principle what an agent can know about the world
and the physical and informational relationships ol its sen-
sors (Olsson et al., 2004a).

Information-theoretic measures have also been used to
classify behaviour and interactions with the environment us-
ing raw and uninterpreted sensor data from the agent. In
(Tarapore et al., 2004) the statistical structure of the sensoric
input was used to fingerprint interactions and environments,
Mirza et al. (2005b) considered how the informational rela-
lionships between its sensors, as well as acluators, can be
used to build histories of interaction by classifying trajecto-
ries in the sensorimotor phase space. In (Kaplan and Hafner,
2005) the authors also considered clustering behaviours by
the informational distances between sensors by considering
configurations of matrices of information distances between
all pairs of sensors,

One important issue in this research is what measures to
use to quantify the informational relationships. In (Lun-
garellaet al., 2005) the authors present a number of methods
for quantifying informational structure in sensor and motor
data. The focus is on integration. i.e., how much information
two or more sources have in common. In this paper we fo-
cus on the opposite, i.e., how to compute how different two
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or more sources are, Following (Olsson et al., 2004b), sev-
eral papers including (Olsson et al., 2004a, 2005b,¢,a, 2006;
Mirza et al., 2005a,b; Kaplan and Hafner, 2005; Hafner and
Kaplan, 2005) have used the information distance metric
disucssed by Crutchfield (1990) to compute the informa-
tional distance between sensors, An important question the
authors have received several times in reviews of papers and
in discussions is “why the information metric?”. This is a
good question and in this paper we present a number of al-
lernative distance measures suggested by colleagues and re-
viewers as well as the information metric. To compare the
potential utility of the methods we apply them as the dis-
tance measure used in the sensory reconstruction method
(Pierce and Kuipers, 1997; Olsson et al., 2004b). In the ex-
periment the sensors of the visual field of a robot is split
into three different modalities: red. blue, and green, and the
problem is to find the relationships between sensors, includ-
ing which sensors come {rom the same pixel in the camera.
This is an example of sensor integration. The results show
how the information metric performs better in this problem
as it measures both linear as well as non-linear relationships
between sensors,

The rest of this paper is structured as follows. The next
section presents a number of methods to compute the dis-
tance between two sensors, Then a short introduction to the

sensory reconstruction method is given before the results of

the experiments are presented. The final section concludes
the paper.

Measuring the Distance Between Sensors

In this section we present a number of methods for com-
puting the distance between two sensors Sy and §,. Each
sensor can assume one of a discrete number of values (con-
linuous values are discretized) S € x at each time step ¢
where x is the alphabet of possible values. Thus, each sen-
sor can be viewed as a time series of data {S},57,... .57}
with T elements. Each sensor can also be viewed as a ran-
dom variable X drawn from a particular probability distribu-
tion py(x). where p(x) is estimated from the time series of
data. Similarly the joint probability distribution py,(x,y) is
estimated from the sensors S, and S,.

A distance measure d(X,Y) is a distance function on a
set of points, mapping pairs of points (X,Y) to non-negative
real numbers. A distance metric in the mathematical sense
also needs to satisfy the three following properties:

o d(X.Y)=d(Y,X) (Symmelry).
e d(X.Y)=0 iff Y =X (Equivalence).
o d(X.Z) <d(X.Y)+d(Y,Z). (Triangle Inequality).

If (2) fails but (1) and (3) hold, then we have a pseudo-
metric, from which one canonically obtains a metric by iden-
lifying points at distance zero from each other. This is done
here and in (Crutchfield, 1990),

‘Why can it be useful to use distance measures which are
metrics in the mathematical sense? If a space of information
sources has a metric, is it possible to use some of the tools
and terminology of geometry. It might also be useful to be
able to talk about sensors in terms of spatial relationships.
This might be of special importance if the computations are
used to actually discover some physical structure or spatial
relationships of the sensors, for example as in (Olsson et al.,
2004h), where the spatial layout of visual sensors as well as
some physical symmeltry of a robot was found by informa-
tion theoretic means,

Distance Measures

The I-norm distance used in (Pierce and Kuipers, 1997) is
different from the distance measures that follows in that it
does not take in to account the probabilites of the different
values that a sensor can take. It is normalized between 0.0
and 1.0 and is defined as

T
|
di(S0S) = 5D _ISi-S)| (M

=1
The correlation coefficient is defined as
r= ?:l(yr_g.r)(s}—gy)
\/ELI (8- 5()3\/23":1 (8, — 5_\')2

where S, and .S"_T are the mean of S, and §, respectively. The
range ol ris —1.0 < r < 1.0, where 1.0 means that they are
perfectly correlated in a linear way, 0 that they are not lin-
early correlated, and —1.0 perfectly negatively correlated.
This can be made symmetric by computing the squared cor-
relation coefficient, which is in the range 0 < e < 1.0, and
then

2

dec(Se,8y) = 1-13 .- 3)

This is still not a metric since it does not satisly the triangle
inequality (Ernst et al., 2005),

The information metric is proved to be a metric in
(Crutchfield. 1990) and is defined as the sum of two con-
ditional entropies, or formally

dipg(Se.Sy) =H(X|Y)+H(Y[X), 4)
where

H(Y[X)= =" plx.y)log, p(yx). )

XEX ey

The Kullback-Leibler divergence (Cover and Thomas,
1991) is defined as

o A3 p((X)
D(p.llpy) = gpm 8wy

(6
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where (J]ngE% =0 and p, ]ngz% = oo, The Kullback-
Leibler measure is not a metric because it is not symmetric.
[t can be made symmetric by adding two Kullback-Leibler
measures,

dgr. {5\ :—S_\'J = D{P.\ ||P_\ ) + D{P_\ ”P.\ ) (7

where p, is the probability distribution associated with sen-
sor 8y and p, with §y. This is still not a metric since it does
not satisfy the triangle inequality.

The square root of the Hellinger distance, also known as
Bhattacharya distance (Basu et al., 1997) . is a metric and is
defined as

1 —_— 2
dr(Se.8y) = ;Z (\/P\'(-‘f) - ‘\,/P\'{-VO . (8)

T xex
Finally, the Jensen-Shannon divergence, presented in
(Lin, 1991), is defined as

dys(Se.Sy) =H(mxX +my¥) —nxH(X) - myH(Y), (9)

where my, my < 0,y + 1y = 1, are the weights associated
with the sensors Sy and §y. In this paper the weights were
always my =y = 0.5, In (Endres and Schindelin, 2003) it
was proved that the Jensen-Shannon is the square of a met-
ric, i.e.. /dys is ametric, which was used in the experiments
presented in this paper.

Sensory Reconstruction Method

In the sensory reconstruction method (Pierce and Kuipers,
1997; Olsson et al., 2004b) sensoritopic maps are created
that show the informational relationships between sensors,
where sensors that are informationally related are close to
each other in the maps. The sensoritopic maps might also
reflect the real physical relations and positions of sensors.
For example, if each pixel of a camera is considered a sensor,
1s it possible to reconstruct the organization of these sensors
even though nothing about their positions is known. It is
important to note that using only the sensory reconstruction
method, only the positional relations between sensors can
be found, and nat the real physical orientation of the visual
layout. To do this requires higher level feature processing

and world knowledge or knowledge about the movement of

the agent (Olsson el al., 2004b). Figure 1 shows an example
ol a sensoritopic map for a SONY AIBO robot.

To create a sensoritopic map the value for each sensor at
each time step is saved, where in this paper each sensor is
a specific pixel in an image captured by the robot. The first
step of the method is to compute the distances between each
pair of sensors. In the paper by Pierce and Kuipers (1997)
the I-normdistance was used but after (Olssonet al., 2004b)
the information metric has been used in a number of pa-
pers. In this paper the different distance measures presented
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Figure 1: A sensoritopic map created by the sensory recon-
struction method taken from (Olsson et al., 2004b) using the
information metric. In this example there are 150 sensors,
including 100 image sensors that are labeled 1-100 to the
right in the map.

in the previous section are used. From the matrix of pair-
wise distance measurements between the sensors the dimen-
sionality of sensory data (two in this case of a visual field)
is computed and a sensoritopic map of that dimensionality
can be created, using a number of different methods such
as metric-scaling, which positions the sensors in the two di-
mensions of the metric projection. In our experiments we
have used the relaxation algorithm described by Pierce and
Kuipers (1997).

Experiment

This section describes the performed experiment and the re-
sults.

Method

In our experiments a SONY AIBO robotic dog was placed
in a sitting position on a desk in the lab. The robot only
moved its head with uniform speed using the pan and tilt
motors in eight directions: up, down, left, right, and lour
diagonal directions. Five sequences of 6000 frames each of
visual data was collected from the camera at a resolution of
88 by 72 pixels with 8 bits for each channel (red, green, blue)
at an average rate of 20 frames per second. The collected
images were downsampled (o 8 by 8 pixels using averaging.
Hach pixel of the image had one red, one green, and one
blue sensor. Thus, there is a total of 192 sensors (64 of each
modality) where the red sensors are labeled R1 — R64., the
green G| — G64, and the blue sensors Bl —B64. The sensors
labeled 1 are located at the upper left corner of the image and
64 at lower right corner. In the collected data the range of
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Me 64R 192RGB  |192ARGB
1-norm 0.06 0.32 -
(0.01) (0.01)
Correlation 0.19 0.23 0.21
coefficient (0.02) (0.03) (0.05)
[nformation 0.07 0.12 0.09
melric (0.02) (0.03) (0.03)
Kullback- 0.37 0.35 0.41
Leibler (0.03) (0.01) (0.05)
Hellinger (0.45 0.40 0.46
(0.05) (0.02) (0.04)
Jensen- 0.45 0.39 0.45
Shannon (0.04) (0.01) (0.04)

Table 1: Average distances between all pairs of correct and
reconstructed sensors using equation 10 with standard de-
viation in parentheses. The column 64R shows the average
distances for the 64 red sensors of figure 2 and 192RGB the
red. green, and blue sensors of figure 3, both using normal
binning. 192ARGB shows the results for the adaptive bin-
ning of figure 4.

the blue sensors was slightly lower than the red and green
sensors with a slightly smaller variation.

Sensaritopic maps were created from each of the five se-
quences of data by the sensory reconstruction method using
the different distance measures previously described. The
presented maps are examples but all maps created using one
particular distance measure had the same characteristics as
the ones presented here.

Results

Figure 2 shows sensoritopic maps computed with the dif-
ferent distance measures of only the red sensors R1 — R64.
First, il' we look at the maps for the Kullback-Leibler,
Hellinger, and Jensen-Shannon distance, we find no real
structure.  For the correlation coefficient distance, figure
2(b), we find that sensors that are close in the visual field
tend to be closer in the sensoritopic map, but it is not very
clear. Now, compare this to the sensoritopic maps for both
the 1-norm distance, figure 2(a). and the information metric,
2(c). Here the spatial relationships of the red sensors have
been found, with sensor R1 in the upper left corner and R64
in the lower left corner for the 1-norm distance and the R1
sensor in lower left corner for the information metric. Since
the sensory reconstruction method cannot find the true phys-
ical location of sensors but only the spatial relationships both
of these maps represent the visual field.

Up until now the term “reconstructed™ has been used in
an informal way, where a visual field is reconstructed if the
sensoritopic map and the real layout of the sensors look sim-
ilar. One way this similarity can be formally quantified is by
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Figure 2: Sensoritopic maps of the red sensors.

computing the relative distances between pairs of sensors in
the reconstrucled visual lield and the real layout of the sen-
sors. Let r; ; be the Euclidean distance between two sensors
iand j in the reconstructed map, and ¢; ; the distance be-
tween the same two sensors in the real layout, where the x
and y coordinates in both cases have been normalised into
the range [0.0,1.0]. Now the average distance between all
pairs of sensors can be compared,

) 1 \
d(r,t)= FZ |rij—Cil, (10)
if

where N is the number of sensors. This compares the relative
positions of the sensors and not the physical positions, and

d(r, ) will have a value in the range [0.0,1.0]. A distance of

zero means that the relative positions are exactly the same,
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and sensors placed at completely random positions will have
an average distance of approximately 0.52.

Table 1 shows the average distances for 10 created maps
for each of the five sets of data using equation 10. The 64R
column shows that the 1-norm and information metric have a
significantly lower average distance then the other measures,
indicating that using these two measures more accurately re-
constructs the real visual field.
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Figure 3: Sensoriopic maps of 192 sensors using uniform
binning.

Figure 3 shows sensoritopic maps for all the red, green,
and blue sensors, and column 192RGB of table | show the
corresponding average distances. This is an example of sen-
sor integration where the problem is to find what sensors
that are from the same location of the visual field, when the
only input data to the system is the raw and unstructured
data from the 192 sensors without any classification. The
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Figure 4: Sensoriopic maps of 192 sensors using entropy
maximization of the sensor data.

Hellinger map and Jensen-Shannon map both contain three
clusters, one for each modality. The Kullback-Leibler map
is divided in to four clusters. The I-norm distance shows
how structure within the modalities is present but there is no
fusion of the sensors from different modalities. The correla-
tion coefficient measure shows a similar structure but there
is some overlap between the red and the green sensors. For
the information metric, figure 3(c), the situation is differ-
ent. Here the sensors of different modalities from the same
location in the visual field are clustered together. This is
an example of autonomous sensory fusion where sensors of
different modalities are combined. A well-studied example
of this in neuroscience is the optic tectum of the rattlesnake,
where nerves from heat-sensitive organs are combined with
nerves from the eyes (Newman and Hartline, 1981).
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In (Olsson et al., 2005¢) it was shown how entropy max-
imization of the data in individual sensors might be useful
Lo find correlations between sensors of dilferent modalities.
Figure 4 shows sensoritopic maps and column 192ARGB
of table 1 the average distance computed using the same
data as before where it has been preprocessed by maximiz-
ing the entropy in each sensor using a window of 100 time
sleps (see (Olsson el al., 2005¢) for details of this method).
The 1-norm distance is not included since it is operating on
raw sensor values and not on probabilities. The Kullback-
Leibler, Hellinger. and Jensen-Shannon measures now clus-
ter the red and green together and the blue in another clus-
ter. The map of the correlation coefficient is similar, albeit
with with more structure showing the layout of the individ-
ual sensors of the different modalities, as also can be seen
in the average distance in table 1. The information metric
in figure 4(b) again shows clustering of the different modali-
ties according to their spatial location in the visual field. For
example is sensor R28 clustered together with B28 and G28.

Discussion

Why is it the case that the information metric enables the
sensory reconstruction method to find these relations be-
tween sensors of different modalities when the other mea-
sures do not? By considering the individual as well as joint
entropies ol the sensors the information metric provides a
general method for quantifying all functional relationships
between sensors, while many other methods only find some
relationships.  For example, a correlation coelficient ap-
proaching O does not imply that two variables actually are
independent (Steuer et al.. 2002).

Conclusions

For purposes of autonomous construction of the relations
among sensors in an embodied agent, in this paper we com-
pared the information metric to five other distance measures:
the 1-norm distance, the correlation coefficient, Kullback-
Leibler divergence, Hellinger distance, and the Jensen-
Shannon divergence. Among these the information metric,
I-norm distance, Hellinger distance, and the squared Jensen-
Shannon divergence are metrics in the mathematical sense.
The comparision was performed by applying the distance
measures as the distance measure used in the sensory re-
construction method. The created sensoritopic maps were
evaluated by comparing the average spatial distances of the
sensors of the reconstructed maps with the spatial distances
between the sensors of the real square layout of the sensors,

The results showed that for autonomous construction of

the relationships between sensors ol different modalties,
sensoritopic reconstruction using the information metric was
the only successful method, outperforming all the other dis-
lance measures. When using sensors [rom only one modality
the average reconstruction distance of the information met-
ric was similar to the 1-norm distance. Among the ather pro-

posed measures the correlation coefficient had a shorter av-
erage distance than the others, but still significantly greater
than the information metric. This is due to the fact that the
information metric captures general relationships between
sensors and not just linear relationships, as is the case with
many other measures.

In recent years there has been an increased interest in
studying the informational relationships between robots,
their environment, and how their actions alfect the infor-
mation available in their sensors. Here the information
metric is useful since it captures general relationships be-
tween sensors, This has, for instance, been exploited to dis-
cover optical and information flow in sensors of different
modalities (Olsson et al., 2005a, 2006), and to build “in-
lerpersonal maps™ that represent the informational relation-
ships between two agents (Hafner and Kaplan, 2005). It has
also been used to study the informational content available
to robots in environments with oriented contours (Olsson
et al., 2004a), inspired by the developmental studies of kit-
lens reared in restricted visual environments (Wiesel, 1982;
Callaway, 1998),

One possible avenue for future research is to study how
robots, just like animals, can optimize their sensory system
based on the statistics of their specific environments, as well
as the actions and embodiment of the particular robot. Here
the construction of sensoritopic maps using the information
metric can be used as a general method to find the informa-
tional relationships between the sensors and the actions of
the robot. It would also be of interest to study how a robot
actively can shape the informational relationships among its
sensors by deliberate actions.
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Abstract— In this paper, the coupling between Jacobian learn-
ing and task sequencing through the redundancy approach is
studied.

It is well known that visual servoing is robust to modeling
errors in the jacobian matrices. This justifies why jacobian
estimation does not usually degrade the system convergence.
However, we show that this is not true anymore when the
redundancy formalism is used. In this case the jacobian matrix
is also necessary to compute projection operators for task
decomposition, which is quite sensitive to errors. We show that
learning improves the servoing performance, when task sequenc-
ing is used. Conversely, sequencing improves the convergence of
learning, especially for tasks involving several degrees of freedom.
Eye-in-hand and eye-to-hand experiments have been performed
on two robots with six degrees of freedom.

I. INTRODUCTION

Visual servoing methods provide very efficient and robust
solutions to control robot motions [7]. It provides high accu-
racy for the final pose and good robustness to camera calibra-
tion and other setting parameters. The redundancy formalism
[10], [14] extends the task-function approach [16] to compute
a control law that realizes a main task, while simultaneously
taking supplementary constraints into account. It can be used
when the main task does not constrain all the robot degrees of
freedom (DOF). A secondary task can then be added to meet
a second objective without disturbing higher priority tasks.
The control law for the second task is projected into the set
of motions constituting the null space of the first task, thus
leaving the first tasks unmodified. The computation of the
projection operator is based on the jacobian of the first task.

This approach involves the computation of the task jacobian,
linking the evolution of the visual features to the robot
articular motion. It thus requires knowledge about the camera-
world and world-actuator transformations that influence the
interaction matrix (relating image and camera velocities) and
the robot jacobian (relating end-effector and joint velocities).
Such transformations are usually obtained during an offline
calibration phase.

However, full system calibration (and even a coarse one) is
not always possible and/or desirable. Some robots may lack
proprioceptive sensors to provide the necessary information
and some parameters may vary over time, due to malfunction,
changes in mechanical parts or modification in the camera
lenses. Even when calibration information is available, the

1-4244-0259-X/06/$20.00 ©2006 | EEE

analytic computation of the interaction matrix often requires
an estimate of the depth of the tracked features. For all these
reasons, a perfect computation of the task jacobian can be very
difficult or even impossible in practice.

Several methods have already been proposed to estimate
the interaction matrix, the robot jacobian or the task jacobian.
One of the first works was [6], where robust learning rule was
derived and a convergence proof given. This method is based
on the Broyden update rule, well known from optimization
theory [5] and has been widely used in robotic applications
with visual control. In [8], it was used for visually-guided
grasping. Ad hoc task sequencing was used in [3] to separate
the reaching phase and the grasping phase. Another object-
grasping task is presented in [12], where the estimation
algorithm is used to provide an approximation of a highly
non-linear mapping, using several local linear models. An error
function for the jacobian approximation is defined. By min-
imizing this function with a Newton method, a time-varying
system is obtained. This work was applied to both eye-in-
hand and eye-to-hand systems with moving targets [15]. It was
also suggested to learn the inverse jacobian directly, instead
of the jacobian [9], although only an offline formulation was
proposed in that work. A complete discussion about adaptive
identification methods for slowly varying parameters is pre-
sented in [2]. It also presents a new method to improve the
robustness of parameter identification, by combining directions
with new information with those where the information had
been lost and had to be recovered.

All these works are only focused in the jacobian estimation
itself. It is well known that visual servoing offers a high level
of robustness to jacobian errors. As a consequence, learning
the jacobian usually provides satisfactory results. However,
when computing the control law for a set of tasks using the
redundancy formalism, the jacobian is also used to compute
a projection operator. As will be shown in this paper, this
computation is not robust at all, and the highest priority
task may be strongly disturbed by the projector estimation
errors. Learning the jacobian for a redundancy-based servo
scheme turns out to be more demanding than for single-
task scheme and has to be studied with care, which is one of
the scope of this paper.

In [13] a solution was presented to stack redundant tasks
on top of the others, until all degrees of freedom of the robot
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are constrained, and the desired pose is reached. It is based
on a generalization of the redundancy approach to several
tasks [17].

In this work, we apply the sequencing method to coarsely
calibrated systems. Hence, errors in the jacobian will cause
errors in the computation of the projection operators, dis-
turbing higher priority tasks. To overcome this problem, we
use the disturbance itself as an error signal used to improve
the jacobian online. We compare several estimation methods,
in order to access their quality in terms of real-parameter
estimation and online behavior of the system.

Our results show that it is possible to estimate the jacobian
online, in the context of task sequencing for visual servoing. In
addition, the learning stability is greatly improved by the task
sequencing approach. Hence, task sequencing and learning
are intertwined, mutually constrained processes that bring
additional performance and flexibility to the control of
complex robotic systems, when calibration information is
unavailable or highly uncertain.

In Section Il the stack of tasks structure used to sequence
redundant tasks is defined, together with a control law that
maintains all the tasks. Section Ill recalls several jacobian
estimation methods, that are discussed in the experiments.
Several sets of experiments have been realized to support our
conclusions using two different six DOF robots (Section 1V).

Il. VISUAL SERVOING USING A STACK OF TASKS
In this section, we recall how to sequence redundant tasks
and to maintain the tasks already achieved [13].
A. Redundancy formalism for two tasks

Let g be the articular vector of the robot. Let e; and e be

two tasks, J; = 8‘31 (7 = 1, 2) their jacobian, defined by:

- 8ei
= 24
Since the robot is controlled using its articular velocity g, (1)
has to be inverted. The general solution (with ¢+ = 1) is:

q=Jiq )

€;

q = er'l + P]_Z (2)

where P is the orthogonal projection operator on the null
space of J; and J; is the pseudo-inverse of J;. Vector z can
be used to apply a secondary command, that will not disturb
e;. Here, z is used to carry out at best a task es. Introducing
(2) in (1) (with i = 2) gives:

éz = Jsze'l + J2P1Z (3)

By inverting this last equation, and introducing the computed
z in (2), we finally get:

G=1J{€1+P1(J2P1)" (62 — J2J€r) 4

Since P, is Hermitian and idempotent (it is a projection
operator), (4) can be written:

. . Tt
q:erl +J2 €2 (5)

where J, = J,P; is the limited jacobian of the task e, giving
the available range for the secondary task to be performed
without affecting the first task, and é; = €5 — Jsze’l is
the secondary task function, after subtracting the part J>J €;
already accomplished by the first task. A very good intuitive
explanation of this equation is given in [1].

B. Extending the redundancy formalism for several tasks

Let (e1,J1) ... (en,Jn) be n tasks so that Task e; should
not disturb task e; if ¢ > j. A recursive extension of (5) is
proposed in [17]:

G = Qi1 + (JiPA ) (6 — Tidioq) (€)

where P# is the projector onto the null-space of the aug-
mented Jacobian J;A = (J1,...J;). The recursion is initial-
ized by §o = 0. The robot velocity is q = .

Using this recursive equation directly, a projector has to
be computed on each step of the computation. A recursive
formula for the computation of the projector is proposed in
[1]. We recall this equation here

PA=PA, -1 J; %

where J~l = JiPﬁl is the limited jacobian of the task i. The
recursion is initialized by P3 = I (identity matrix).

The control law is finally obtained by setting an exponential
decrease for each task:

Vi = 1.n, € = —/\iei (8)

where the parameters )\; are used to tune the convergence
speed of each task.

In this control law, two matrices have to be learned: J; and
P#. Since P2 can be computed from J;, we will learn only
the jacobian and then compute the projection operator from it.
In this sense, the two matrices are learned. The effect of the
learning can be considered from two different points of view:
convergence of a task while the jacobian is learned online and
the disturbances caused upon higher priority tasks due to the
effect of learning the projection operator.

C. Application to visual servoing

In this article, we propose an implementation of this control
law using visual servoing. The task functions e; used in the
remainder of the text are computed from visual features:

e =S; — S} 9

where s; is the current value of the visual features for task e;
and s; their desired value.

The interaction matrix L, related to s; is defined so that
s; = Lg, v, where v is the camera kinematic screw. From (9),
it is clear that the interaction matrix L, and the task jacobian
J; are linked by the relation:

Ji = Lg,Jq (10)

where the matrix J4 denotes the robot jacobian (v = Jqq).
In the following section we will see several methods that can
be used to learn the jacobian matrix.
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I11. JACOBIAN ESTIMATION METHODS

A large amount of information is required to recompute
the jacobian at each iteration. As presented just above, the
jacobians can be divided in two parts: the articular jacobian
Jq. and the interaction matrix Ls (see (10)). The articular
jacobian can only be computed if the full arm-eye calibration
is available. Instead, the interaction matrices require some
3D parameters of the observed object. This can be estimated
using pose computation (if the object model is available)
or using homographies [4] between the image and relevant
scene planes. In this last case, the scale parameters cannot be
estimated, and the object depth has to be fixed a priori or
estimated using other methods. All these parameters can lead
to errors in the computation of the interaction matrix.

Different approaches can be used to estimate the tasks
jacobians. Learning the task jacobian, Jj, is quite difficult,
due to the numerous non-linear terms involved in its analytical
form. The experiments have proved the extreme difficulty in
obtaining a good estimation of J;. In [12], a mixture of several
linear models was described to tackle this problem.

Instead of trying to estimate J;, we have chosen to use an
approximation of the articular jacobian, Jq, computed from
coarse robot calibration data. Then, since an approximation of
v can be computed, only the matrices Lg, need to be estimated.
Furthermore, estimating Lg, will allow to “absorb” some of
the errors in Jq, caused by the coarse robot calibration. This
solution is also able to take into account the uncertainties in
the target model, yielding better results, even when using a
properly calibrated robot, as it will be shown in Section 1V-B.
In the following sub-sections, we present the methods used in
the experiments to learn the jacobian.

A. Broyden Update

The first work presented for jacobian estimation in visual
servoing was [6]. This method is based on the Broyden update
rule. The Jacobian estimation is given by:

Ae — J(t)Ax) AxT
AxTAx

After observing some image motion, Ae, caused by a motor
command Ax, the Jacobian is updated directly, with « defining
the update speed. This method has several positive aspects:
low memory usage because only the last observation is used;
low computational cost and a single parameter to be tuned.
When the motions are too small, this computation may become
unstable. One solution consists in including a regularization
term in the denominator to prevent singularities. Alternatively,
the learning can simply be switched off, whenever the motion
falls below a certain threshold.

In practice, it can be used to compute offline an estimation
of the jacobian from a set of simple motions. Or the estimation
of the jacobian can be updated online, using at the first
iteration the result of the offline learning or an estimation of
the analytical jacobian.

j@+1):ju)+a( (11)

B. Correlation

A different approach can be made with least squares esti-
mation [2]. Considering the cost function [ as:

t
[=) ~7""(Ae—JAx)"(Ae — JAX)
=0
The minimization off-line gives the usual least squares solu-
tion:
J=QR"

where Q and R are:

t
> AT Al Ax;

Q =
i=0
t

R = ) MAx]Ax;
=0

or in an online formulation;

Q = \Q+Ae Ax,
R = )R+ Ax, Ax,

Like the Broyden update, the correlation learning can be
used offline or online. However, it can not be used to update an
approximation of the analytical jacobian since the two matrices
Q and R are required. In practice, it is difficult to start the
learning online without any offline training. In the experiment,
a short offline training composed of some simple motions has
always been used to initialize the online learning.

(12)

C. Direct-Inverse

Learning the jacobian boils down to minimizing the predic-
tion error of the image velocities. Yet, for control purposes,
we need the inverse map J, that corresponds to the “recon-
struction” of the robot joint velocities from image velocities.
Thus, in [9], it was suggested that one should learn the inverse
Jacobian directly, instead of the Jacobian. The cost function
becomes:

t
1=) ~7""(Ax — HAe)" (Ax — HAe)
=0

where H = J*. This cost function can be seen as a recon-
struction error, as opposed to the prediction error used before.
The main advantage is that we no longer need to invert the
Jacobian for computing the control law. An additional benefit
is that the least-squares fitting requires the inversion of a
smaller, possibly better conditioned, information matrix, R.
This is particularly relevant for the task sequencing approach
whereby the (sub-)task dimension is much smaller than the
control space.

Using the online formulation (12) it is possible to propose
an online version of the direct-inverse learning method. In
the experiment, both the offline and the online version of the
method were used. As for the classical correlation method, the
online learning can not be initialized from an analytical value
of the jacobian, and requires thus a short offline training.
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IV. EXPERIMENTS AND RESULTS

In this section we present results comparing the quality of
tasks sequencing using several methods of jacobian estimation.
Two robots with different kinematics and servoing architec-
tures were used for the experiments. We first describe quickly
the selected visual features used for the experiments. Four
representative experiments are then presented in detail.

A. Visual features for vision-based control

In order to have a better and easier control over the robot
trajectory, approximately decoupled tasks were chosen. We
have used visual features derived from the image moments.
To simplify the image processing as we mainly focus on the
control part, we have used a simple white-points-on-black-
board target as shown Fig 1. The first task eg - centering -
is based on the position of the center of gravity of the four
points. The second task ez - zooming - uses the area of the
object in the image to control the range between the robot and
the target. The third task e, - Z-rotation - rotates the camera
around the optical axis, so that the object will be correctly
oriented in the image. It uses the orientation of the object
in the image, which can be obtained from the second order
moments. The last task er - perspective correction - uses third
order moments to decouple v, from w, and v, from w,. The
reader is invited to refer to [18] for more details.

B. Results

The three first experiments were realized with the robot
Baltazar. Baltazar is an anthropomorphic robotic torso [11]
equipped with a six DOF arm, an eleven DOF hand and
a four DOF head. In the presented experiments, the target
was attached to the robot hand. An eye-to-hand visual servo
was used to position the hand parallel to the eye image
plane, centered at a distance of 20cm. This robot has a high
payload/weight ratio causing some elasticities, its motors are
equipped with position sensors but the lack of an home sensor
causes some errors if a precise calibration is needed. The
camera is coarsely calibrated and for the experiments a 4.5mm
lens had to be used. Figure 1 presents the robot and the
initial and final hand position. The total motion is about 30cm
corresponding to a maximum joint translation of 90 dg.

The first experiment includes a comparison of the estimation
methods presented in Section IlIl. The second experiment
shows that it is possible to correct the robot (coarse) calibration
by learning only the interaction matrix when realizing a full
sequencing. The third experiment is a first step to show
(experimentally) that the trajectory obtained when applying
a sequencing control law provides a very good dataset for
learning. The last experiment was realized on an accurately
calibrated robot (see Section IV-F). It shows that a small
uncertainty can result in a big perturbation, and that the online
estimation is able to provide a nearly perfect behavior.

C. Experiment 1 - online learning

In this first experiment, the stack has two tasks: centering
(eg) and Z-rotation (e,). The goal consists in testing how the

Fig. 1.

Initial and final position. Top: outside view, Down: camera view

jacobian estimation errors influence the task sequencing, due to
errors introduced in the projection operator. When the jacobian
of the first task is mis-estimated, the centering is lost with the
activation of the second task. When the error increases, the
target moves further away from the image center, and could
even leave the image if the disturbance is too strong (which
results of course in the visual servoing failure).

Figure 2 presents the evolution of the error for the first
task using analytic/offline learning versus online estimation
methods. Figure 3 shows the result for the second (rotation)
task. Offline learning relies on simple motions of the arm,
done during approximately 250 iterations. Online learning was
carried out at every frame.

As can be seen in Fig. 2, analytic or offline learning are
worse, in terms of having a larger perturbation and longer
convergence times. The perturbation is very important and it
can not be reduced before the secondary task completion.

On the opposit, online estimation methods lead to much
better results, outperforming the results with the analytical
jacobian. Although a large disturbance appears when the
second task is added, it is quickly reduced afterward. For
online estimation, the amplitude of the perturbation ranged
from 20 to 30 pixels. Broyden and Correlation methods were
able to eliminate the error after 30 iterations. The maximal
perturbation is equivalent to the one obtained with analytic
computation, but the duration is much shorter.

The online Direct-inverse method was unable to reduce the
error as fast as the two other methods or the analytic version,
whatever the tuning realized. The advantage of directly mini-
mizing the reconstruction errors instead of the prediction error
does not appear significant in this setting. Indeed, to compute
the projection it is necessary to have the direct map and the
result, in the end, is worst.

It is also interesting to see that the task-error convergence
is very similar for all methods (for Task eg, Fig. 2 before
Iteration 50, and for Task e,,, Fig. 3). This emphasizes that the
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Fig. 2. Temporal evolution of the image error during servoing using offline
(top) or online (bottom) learning methods. The vertical line shows the time
instant where the second task started.

Fig. 3. Convergence rates for the second task (rotation) while trying to keep
the centering at zero (refer to Figure 2). Due to robustness to jacobian error,
the convergences are the same for all the tasks.

reduction of the perturbation is not made at the cost of worse
convergence. The convergence is very robust to jacobian error,
since all the task convergences are the same. It is nevertheless
not true for the projection operator estimation, which is very
sensitive and requires an accurate estimation.

Finally, we can note from several experiments starting from
different initial positions and using different tasks that the
online Correlation method produced better results in sense of
perturbation amplitude, perturbation average and perturbation-
correction time, when properly tuned. However, it is not as
robust to gain-tuning as the Broyden approach that could solve
the task in all situations with the same parameters settings
(note the Broyden performances for offline learning).

D. Experiment 2 - generalization to more tasks

To verify that the method it is possible to learn all tasks, a
complete sequence was done, consisting in: centering, zoom-
ing, Z-rotation and perspective. All online learning methods
have been able to achieve the sequencing. The lowest pertur-
bations were obtained using the Correlation method. Figure
4 cares the results of this method (on the bottom) with the
analytical one (on the top). The vertical lines represent the
time instant where a new task is added to the stack, after
all the tasks already in the stack have converged to zero. It is
interesting to see that in a badly calibrated system, the learning
scheme vyields better results than using the analytic solution,
in terms of convergence speed, amplitude and average of the
perturbations.

E. Experiment 3 - better learning through task sequencing

A very important point was to note that learning improves
the sequencing quality by reducing convergence time and the
size of the perturbations. At the same time, the sequencing
generates more efficient trajectories for learning. This exper-
iment tests the hypothesis that learning four simpler tasks in
sequence is easier than learning four tasks at the same time.

We compared the learning when running the robot under
three different control laws. During the first run, task sequenc-
ing was used, in the same way as in previous experiments. In
the second trial, all tasks are active at the same time. In other
words, the same formalism is used but every task is active from
the beginning, as opposed to starting a new task only after all
the previous ones are completed. The last trial consisted on
classical visual servoing, using only one single task of full
rank. The condition number of the full-rank jacobian matrix
was then estimated at each iteration. When a sequencing was
used, the jacobians of all tasks were piled up and the overall
condition number evaluated.

For Correlation and Direct-inverse methods, the condition
number was the same for the three experiments. For these
learning methods, the sequencing does not improve the learn-
ing.

On the opposite, the hypothesis has turned out to be correct
when using Broyden algorithm. Figure 5 shows that for the
Broyden method, the condition number of the matrices are
much worse for the full task and convergence cannot be
attained.
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Fig. 4. Results for a sequence of four tasks. Top: Analytic method. Bottom:
Correlation. The vertical line shows the time instant where a new task is added
in the stack. Due to calibration errors, the analytical solution is not able to
ensure the stack priorities. When a perturbation appears, it is not corrected
until the active task has converged. The online estimation is able to quickly

correct the perturbations. The perturbation average is thus much lower. The
perturbation amplitudes are also lower.

F. Experiment 4 - calibrated robot

The last experiment was realized with an industrial robot.
This robot is a six-DOF eye-in-hand robot with a very low
payload/weight ratio. It has position and home sensors and its
high repeatability allows to do a very precise calibration. Full,
accurate calibration is available and the articular jacobian is
no longer an approximation. However, the depth of the target
is unknown and must be estimated to compute the correct
jacobians. Mis-estimating depth induces scale errors in the
interaction matrices.

The experiments consist in a sequencing of the four tasks.
The tasks were introduced in the same order as before, at fixed
time for a better comparison (eg at t = 0, e, at t = 150, ez
at t = 60, and er at ¢ = 110). For each experiment, we
vary the method used to compute the interaction matrix. The
evolution of the perturbation norm is shown on Fig. 6 for each

estimation scheme. The complete results are detailed for the
Broyden method in Fig. 7.
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Fig. 5. Condition-number evolution of the estimated interaction matrix during
the servo. The matrix is learned from three different trajectories. The first one
is a sequencing as done above (first experiment). The second uses the stack of
task (control law (??)), but all the tasks were activated at the same time at the
first iteration (that is to say, no task sequencing). The last one is obtained from
a classical visual servoing using a six-DOF task composed of all the visual
features (third experiment). The matrix learned from a classical servo has a
very large condition number. It increases until the servo becomes impossible.
The learning realized from sequencing provides a properly conditioned matrix.

The first test (“current”) shows that a perfect behavior is
obtained when all the required knowledge is available. Depth
was estimated with a pose computation algorithm, using the
object geometric model and camera calibration. In the second
trial (“misestimated”), depth was mis-estimated by a factor of
2. In the third experiment (“desired”), the interaction matrices
were computed at the desired position using the desired depth.
As can be shown on the top of Fig. 6, inaccuracies in the
projection operators introduce large perturbations.

In a second set of experiments presented on the bottom of
Fig. 6, we analyze the use of estimated jacobian matrices. The
first two trials use both the online and offline versions of the
Correlation. The third one starts with the analytical matrix,
that is updated with the Broyden rules. These methods are
compared with the same analytic version (“curent”) as before.

Figure 6 shows the perturbations for each estimation
scheme. As expected, the use of the “perfect” analytical
solution leads to better results than the versions with estimated
jacobians. However, the use of an estimation of the jacobian
matrix (such as the matrix computed at the desired value, or
from a misestimated depth parameter) produces large pertur-
bations during a long time. It is also true when used the results

of some offline learning. On the opposite, the use of online
estimations always outperforms approximations the analytical
jacobian. The best behavior is obtained with the Broyden
algorithm, using the true interaction matrix as initialization.
It provides a robust and fast online estimation without the
need of a first offline learning.

Finally, Fig. 7 shows the results using the Broyden method.
We can note that the perturbation amplitudes are very small
(almost invisible) for all tasks. They are also quickly reduced.
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Fig. 6.  Perturbation norm (i.e. norm of the error of the tasks already
completed) during the positioning. Top: results obtained with the true jacobian
(“current”) and two approximate versions where the depth is misestimated by a
factor of 2 or set to the desired value in the goal position. Bottom: comparison
of the true jacobian version (“current”) with learned jacobians (Correlation
offline and online) and Broyden. Approximations in the analytic solution (on
the top) can generate disturbance that are reduced using a learning scheme
(on the bottom).
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Fig. 7. Correcting a depth mis-estimation by an online estimation of the
interaction matrix. Results for a sequence of four tasks sequencing on the full-
calibrated robot Afma6. The jacobian estimation method is Broyden, using the
analytical solution as an initialization of the learning.

V. CONCLUSION

In this paper several learning methods have been tested for
jacobian estimation in task sequencing. The tested methods
were Broyden method, Correlation method and Direct-inverse
method. The Direct-inverse method was adapted to have an
online update rule. All methods were able to learn the jacobian
and accomplish the sequence of tasks, both in eye-in-hand and
eye-to-hand configuration.

Of course, if all the necessary knowledge is present (that is
if the system is perfectly modeled and calibrated), the control
scheme using the analytical jacobian performs better than any
learning-based scheme. However, as soon as some errors or
misestimations appear in the model, the performances of the
analytical solution become lower while the learning improves
the quality of the servo. If the calibration is not accurate, the
learning methods perform always better.

When comparing the learning schemes, an online update of
the jacobian produces better results than an offline learning
when considering the number of iterations required to nullify
the perturbation, and also when considering the perturbation
amplitude. In terms of comparison, the best estimation was
obtained using the Correlation method. But it requires a tuning
and a training step. Another very interesting solution is to use
the analytical approximation of the jacobian to initialize the
Broyden online learning. This solution is very robust, it does
not require any tuning, and can perform all the tasks with
the same parameters. Moreover, it does not require any offline
learning phase.

It was verified that learning improves the task sequencing
by reducing the perturbations. It was also shown that the
sequencing helps the learning by estimating a mixture of
smaller subtasks successively. The condition number of the
obtained jacobian, and the stability of the global system
(control+learning) are more satisfactory.
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Abstract— Humanoid robots are routinely engaged in tasks
requiring the coordination between multiple degrees of freedom
and sensory inputs, often achieved through the use of sensory-
motor maps (SMMs).

Most of the times, humanoid robots have more degrees of
freedom (DOFs) available than those necessary to solve specific
tasks. Notwithstanding, the majority of approaches for learning
these SMMs do not take that into account. At most, the redundant
degrees of freedom (degrees of redundancy, DOR) are ‘“frozen”
with some auxiliary criteria or heuristic rule.

We present a solution to the problem of learning the for-
ward/backward model, when the map is not injective, as in
redundant robots. We propose the use of a “Minimum order
SMM?” that takes the desired image configuration and the DORs
as input variables, while the non-redundant DOF's are viewed as
outputs. Since the DORs are not frozen in this process, they can
be used to solve additional tasks or criteria. This method provides
a global solution for positioning a robot in the workspace, without
the need to move in an incremental way. We provide examples
where these tasks correspond to optimization criteria that can
be solved online.

We show how to learn the “Minimum Order SMM” using a
local statistical learning method. Extensive experimental results
with a humanoid robot are discussed to validate the approach,
showing how to learn the Minimum Order SMM of a redundant
system and using the redundancy to accomplish auxiliary tasks.

I. INTRODUCTION

Humanoid robots must routinely coordinate the head and the
arm. For this purpose, the robot must have a way to predict
what will happen in the world if some action is made (forward
model), and what action can change the world in a pre-defined
manner (backward model). Usually, the correspondence be-
tween perception and action is called a Sensory-Motor Map
(SMM) and it can be interpreted in terms of forward/inverse
kinematics of robotic manipulators jointly with a camera. In
this work, the SMM is used to predict the image resulting from
the robot moving the arm to a certain posture, or the inverse
association, by determining which motor command causes the
arm to reach a specified appearance.

Quite often, humanoid robots have more degrees of freedom
than those strictly necessary to accomplish a certain task. For
example, Figure 1 shows several positions of an humanoid
robot, where the wrist position is always the same, but the
posture of the arm changes. In terms of input-output map,
this redundancy translates into the fact that several different

1-4244-0259-X/06/$20.00 ©2006 | EEE

inputs yield the same observation or output. If the backward
model is obtained by inverting the forward model, this causes
a problem, because the function is no longer invertible. Also,
if it is desired to learn the inverse model common algorithms
will fail because the dataset is incoherent. Hence, to learn this
map for a redundant systems requires the adoption of some
extra assumptions. However, this strategy effectively “freezes”
the redundant degrees of freedom, that can no longer be used
for any additional task.

L |
Fig. 1. Redundancy of the robotic system, the 3D position of the wrist is
the same but the arm configuration is different

This work presents a solution for learning perception-action
maps when redundant degrees of freedom exist (also known
as degrees of redundancy, DOR). As we do not restrict the
output of the system at learning time, the extra degrees of
freedom stay free for online selection, and so they can be
used to fulfill a secondary task or to meet an additional
criterion or constraint, like e.g energy minimization. For this
we propose the use of a “Reduced order SMM” that takes
the image configuration and DORs as input variables, and the
non-redundant DOFs as outputs.

We also present a methodology for estimating the ‘“Reduced
Order SMM” automatically. As the map should be differen-
tiable, the function fitting method for estimating the map must
be chosen carefully. We choose a local learning method with
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differentiable kernels [1], [2].

Several applications have already been proposed, using the
SMM perspective. A neural-network architecture was used in
[3] to coordinate a binocular head with a three-DOF arm in a
reaching task. As the open loop motion can have some error,
this work also included some error correction methods by
executing a closed loop visual servoing.

Correspondences between perception and action can also
relate dynamic properties. In [4], a statistical learning method
is used to learn an inverse kinematic function for an highly
redundant humanoid robot, engaged in imitation tasks. In
this case, a map from positions and velocities is related to
image velocities, enabling the robot to repeat arm gestures.
The trajectories for learning are hand-coded trajectories, the
authors comment that this approach solves the problem of
robot singularities, because only seen motions are learned, and
so no infinite velocities appear.

The robot jacobian matrix [5] is very often used for control
purposes. This matrix relates the cartesian velocity of the end-
effector with the corresponding joint velocities. To move in
a desired position the inverse jacobian should be evaluated.
Some other methods can be used to do this inversion when
the jacobian is not square [6]. A well known approach is the
damped least-squares, where the inversion is made jointly with
an energy minimization [7], originally introduced to solve the
problem of controlling robots near singularities.

With redundant robots, the extra degrees of freedom can
be used to solve other task, provided that the corresponding
motion is done along a direction in the null space of the
main motion, this is called the redundancy formalism as
proposed in [8], [9]. Several criteria can be used to choose this
secondary task. This formalism is very well described in [10]
for humanoid animations. In humanoids, several conflicting
constraints may frequently occur, like the position of the
hands, feet and head in a dance posture. With the redundancy
formalism these constraints can be dealt with. In a similar
application to ours, the work of [11] presents a robot under
visual control, where redundancy is used to obtain better
trajectories in a visual servoing task.

We can find examples in the literature on work done
in closed kinematic chains. Modeling the musculo-skeletal
human system [12] requires some constraints, because the
muscles only work by contraction, which must be taken
into account when computing the solution. Other works have
dealt with planning in humanoid robots. A system able to
decompose the forces in order to act both the task domain,
but also and independently in the robot posture is presented
in [13].

Some methods have already been proposed to estimate the
interaction or the jacobian matrix of robots. One of the first
works was [14], where a very robust learning rule was derived
and a convergence proof given. This method is based on the
Broyden update rule already known from optimization theory
[15]. It has been widely used in real robotic applications based
on visual control. In [16], it was used for a grasping task
guided by visual servoing. As the jacobian depends strongly on

the current position, it must be evaluated at each time instant.
For object-grasping task in [17] an estimation algorithm is
used to provide an approximation of this highly non-linear
mapping using several local linear models.

Our approach is different from these approaches in several

ways:

o Includes visual information in the loop

o No knowledge about the system kinematics is needed.
The sensory-motor map is learned with a self-exploration
phase.

o The map is global and not a local approximation. This
means that we can go directly to a position in an open-
loop fashion if we want.

o Several criteria can be used as secondary task without
having to learn a new map.

This paper is organized as follows: Section II describes the
use of statistical learning methods in redundant robots. Sec-
tion IIT shows how to use local regression methods to learn the
partial backward model. Section IV is devoted to experiments
done with a humanoid torso with 10 DOF, that evaluates the
quality of our approach. Finally some conclusions and future
work are done. As an annex, we have the deduction of the
jacobian of the local learning method.

II. SENSORY-MOTOR COORDINATION WITH CONTROL
OPTIMIZATION

In this section we show how to define a Sensory-Motor Map
that explicitly takes the DOR into consideration, thus allowing
the completion of several simultaneous tasks.

Let us define a SMM that maps a vector of control variables
(n,r) to a vector of image point features Z, where n is
a minimum set of degrees of freedom that spans the full
output space and r is a set of redundant degrees of freedom.
Note that there are several partitions of the input space, into
redundant versus non-redundant degrees of freedom, that can
give this same property. It is possible to find automatically
the redundancy by analyzing the correlation matrix for the
jacobian estimation [18]. This forward model can thus be
written as:

Z=f(n,r)

and allows to predict the image configuration of the robot
given a set of motor commands.

In many cases, we are more interested in the inverse map,
i.e. computing the motor commands that drive the robot to
a desired image configuration, Z. If there were an inverse
mapping (n,r) = f~(Z), this problem could be solved in
a straight forward manner. However, as the dimension of the
input space is larger than that of the output space, there are
many input combinations that generate the same image point
features. In other words, because of the DOR, f(n,r) is not
bijective and, therefore, not invertible.

Fig. 1 shows an example of redundancy, where, for this
robot the 3D position of the wrist is controlled with 4 DOFs,
thus remaining one DOR.
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To put the problem in another perspective, we can say that
finding the robot joint angles to move the arm to a desired
image configuration Z is an ill-posed problem when the arm
has redundant degrees of freedom, [19], because multiple
solutions exist.

One approach to solve ill-posed problems, [20], [21], con-
sists in using additional constraints that restrain the set of
admissible solutions, in such a way that the solution sought
becomes unique in this reduced solution space. In our case, this
corresponds to recast the original problem to that of moving
the robot to a desired image position Z* while, at the same
time, minimizing some auxiliary criterion, c(n, 7).

We built a cost function, C, with two terms: one weighting
the error in the position of the end effector (data fitness)
and another one corresponding to the weights on the control
(regularization term).

K(T* n,r) =T =T + ¢(n,7) (1)

This cost function expresses that we are willing to accept
some error in the position if another task can be solved at
the same time, in this case control costs. Examples of control
cost criteria ¢ can be “Comfort” (e.g. distance to joint limits),
Energy minimization (e.g. the position with lower momentum)
or Minimum motion (i.e. minimize total motion from current
to desired position), posture control, amongst others.

The regularized solution can be found by minimizing the
cost defined in Equation (1), as follows:

(, 7) = arg min ()\ [ c(n,r)) 2)

where Z can be computed with the forward model Z = f(n, ).
Similarly to [13], this formula integrates two terms: one
describing the task part and another related to posture control.

There are two important observations to this formulation.
Firstly, the optimization is done with respect to all control
variables, which translates into a significant computational
cost. Secondly, the DORs are not treated as such, since they
undergo exactly the same process as the non-redundant DOFs.

The consequence of this approach is that the extra degrees
of freedom are frozen from the beginning and can no longer
be used for a different purpose during execution. In a way,
redundancy is lost.

Instead, in our approach, we would like to keep the re-
dundant degrees of freedom free for solving additional tasks
online. In essence, we split the problem in two steps. Firstly,
we define a “Minimal Order Sensory Motor Map”, ¢g(Z,r),
that relates n and (Z,7):

n=yg(Zr) 3)

By taking the DORs as input (independent variables) instead
of output signals, the problem of computing the non-redundant
DOFs becomes well posed. The DORs, r, are left uncon-
strained and can be fixed during runtime, when a secondary
task or optimization criterion is specified.

The definition of the “Minimum Order SMM” allows us
to use the redundancy to meet additional criteria or task-
constraints, that can be changed online. The DORs can be

determined as the solution of a new optimization problem,
with cost function L:

7 = argminL(Z,r) 4)
The optimization is done with a gradient-descendant method
with following update step:

rie1 =1 — V. L(Z,T)

Note that, in contrast with the previous case, this optimiza-
tion is done with respect to the redundant degrees of freedom,
only. The optimization complexity is thus substantially lower
and lends itself to be used as an online process. In general, the
solutions in the two cases are not the same, because different
local minima could be reached and the criteria are slightly
different.

Our approach guarantees zero prediction error, because the
Minimum Order SMM allows us to determine the values of n
corresponding to the exact image position, for the selected
redundant degrees of freedom. This solution is similar to
the first (regularized) problem when A becomes large. If the
Minimum Order SMM is not exact, then it will introduce some
error in the final image configuration.

For clarity, we summarize the final algorithm.

1) Select the desired image configuration, Z*

2) Select and initial motor command (n, )

3) Select the secondary task optimization criterion

4) Solve the optimization of Equation (4) for r and use g(.)
to compute n.

5) Move the arm to the obtained solution, (n,r)

6) Observe Z and possibly adjust the function g(Z,n)

7) If some extra precision is needed, go to 4

There are several important differences in our approach
whem compared to other methods based on the robot Jacobian.
The Minimum Order SMM provides directly the goal position
corresponding to the desired redundant joint position. It is
then possible to move the robot directly (i.e. in an open-
loop fashion) to the goal position, avoiding incremental steps.
The posture optimization is done iteratively with the previous
update rule. Therefore, the motion goes along the optimization
path or directly to the convergence point. This is the case
because no visual feedback is necessary to the algorithm. If
extra precision is needed, then a visual feedback loop needs
to be added.

An example, where the secondary goal is to maintain the
control variables as near zero as possible, is presented next:

L) = |l +|r|?
= g, I+ II)* )

Differentiating this cost function yields:

ag(I’r)g(I7 r)+ 7“)

VTE(I7 7") =2 (87’

The derivation of W

is presented as an appendix.
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We have seen how the introduction of the Minimum Or-
der SMM allows us to use the system redundancy to solve
additional tasks online, as opposed to freezing the DORs in
a regularized solution to the initial ill-posed problem. In the
next section, we will see how to estimate the Minimum Order
SMM ¢(Z,n) online.

III. LEARNING THE MINIMUM ORDER SMM THROUGH
LocAL REGRESSION

In the previous section we have seen how to partition the
redundant and non-redundant degrees of freedom to build a
Minimum Order SMM, ¢(Z, r) that allows for the computation
of the non-redundant DOFs leaving the DORs unconstrained.
We will now see how such a map can be estimated online.
Without loss of generality, let us assume that we want to
estimate the following non-linear function:

y=f(x) (6)

Since we have little information about this function, the
usual approach consists in approximating f(z) by a set of
models that are good local approximations of the original
global non-linear function, [1].

In this work, f(z) will be approximated by a mixture
of models that are locally linear. Obviously, a single linear
approximation would fail to provide the desired degree of
accuracy. Each local model has a “confidence” region, the
kernel K;, the mixture of all models yields the approximation:

M
Zj:l KjB]Tx
y= f((ﬂ) ~ M
Z_j:l Kj

for some regression matrices, B; to be estimated. The
choice of the kernel shapes [2] leads to different properties
of the approximating function. We have adopted a Gaussian
kernel with mean y and variance W':

1
K; =Kw, (1, ) = ——=
3= K (3 0) = oy ©
Let us assume for the moment that the number and the
parameters of each Kernel are known in advance. Each model
will be fitted by minimizing the following criteria:

—(@—p3) "W (2 —p5) (7)

t
B = i =) Ny — BT 2112
y argrrgnZ;A j ||y, x,” (8)
where K; weights points according to the kernel measure and
A provides a time forgetting factor. The model can be estimated

by:

B=QR" ©)
with
t .
Q = Y NTVKw(uzi)y =
=1
t .
R = > MKy (pzi)a] (10)

i=1

An advantage of writing these terms in this way is the
possibility of defining an online estimator:

Qi = AQi-1+ Kw(p, )yl =

Ry = ARy + Kw(p,x)zf (11)

Finally, at runtime when an input sample is present, the
output will be evaluated as a combination of each model B;
weighted by Kj:

M N
Zj:l K]BJTIL'
M
23:1 K;

If the kernels are C° and have an infinite support, this function
is guaranteed to be Y. If the kernels are differentiable, the
function will be C! .

The final point to discuss is related to the Kernel functions
Kw (p, ). How many kernels should be used and what should
the parameters of each kernel be? The number of kernels can
be is iteratively increased during training. When the distance
between a new data sample and its nearest kernel exceeds a
certain threshold, a new kernel is created with center (x) in
this point. The shape of the kernels (the covariance matrix)
can be automatically updated choosing, e.g., a measure of
reconstruction quality [22], [23].

Other formulations have already been proposed. The Locally
Weighted Projection Regression method, proposed in [24], is
linear with the number of samples and every new sample can
be added easily. As the method is not capable of extrapolating,
the work space must be well covered in the training set. Other
implementations keep several samples in memory without
estimating any explicit models. The prediction is produced
online by weighting the points in memory with some kernel
functions.

y= (12)

IV. EXPERIMENTAL RESULTS

Several experiments were done with a real robot to assess
the quality of the algorithms and the ability to learn the pro-
posed SMM online. The experimental setup was the Baltazar
humanoid robot torso [25], consisting of a 4 DOF head, a
6 DOF arm and a 10 DOF under-actuated hand. The image
features consist on the image position of the wrist, and we
want to position the wrist in the the image. This task requires
only two degrees of freedom. The non-redundant DOFs are
the shoulder adduction/abduction and flexion/extension. The
shoulder axis rotation and elbow flexion/extension are consid-
ered as redundant degrees of freedom.

A. Evaluation of the learning method

The first experiment is designed to validate the learning
of the Minimum order SMM. The map associates the image
position of the robot hand and the DOR to the non-redundant
DOFs.

During learning, the head remains in a fixed position and
observes the robot hand. The arm is moved to several randomly
selected positions. The range of movement of each joint is
in the order of 0.557rad. Once, the robot wrist attains one
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such position, it remains fixed while different solution for the
inverse kinematics are used. This is possible due to the redun-
dancy of this robot’s kinematics, when four degrees of freedom
are used for a positioning task. Another redundancy exists
because, with the use of a single camera, depth information is
lost. Hence, for a 2 DOF task we have 4 DOF available.
Fig. 2 shows the evolution of joint angles during this period
of auto-observation and learning. It also shows the image
position of the robot wrist where, due to elasticity in the robot
joints, oscillations occur when the acceleration is high.

| | I I i i |
0 200 400 600 800 1000 1200 1400 1600 1800
sample

1501

100

I I I I
150 200 250 300 350 400 450 500 550

Fig. 2. Dataset for the real robot experiments. The top figure shows the
temporal evolution of the joint angles (joint position in radian vs sample
number), the bottom presents the trajectories in the image (pixel coordinates),
where oscillation is caused by elasticity in the robot joints.

Fig. 3 shows the quality of the SMM estimation, as de-
scribed in Section III. The top plots show the true and
estimated non-redundant joint angles, which are in good
agreement. The histogram and cumulative distribution of the
error are shown in the bottom plots, for 2000 data points. For
both non-redundant joints less than 10% of the points have an
error bigger than 0.05 rad.

These results show that the online estimation method pre-
sented in Section III provides a good approximation to the
original Minimum order SMM. The next set of experiments
show how to define a secondary task based on an energy min-
imization criterion, to drive the robot to the desired position,
while meeting this secondary goal.

joint position (rad)

i i i i i I i
(] 200 400 600 800 1000 1200 1400 1600 1800
sample

Joint position (rad)

i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800
e

number of points.

[
012 0.14

701 X:0.04181 B
Y:0.027

-Hos

number of points

f /\/\/\m | /\/r/\/L
0.08 0.1 0.12 0.

006 X
absolute error (rad)

i
o 002 004

14

Fig. 3. These figures show the prediction error for (non-redundant) Joint 1
and Joint 2. The absolute error histogram and the cumulative distribution are
also shown. Almost 90% of the samples have an error below 0.05 rad

, see measure in the figures.
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B. Sensory-motor coordination for redundant robots

For a given desired image position and an initial position of
the redundant degrees of freedom, our goal is to reach a certain
image position, while satisfying a secondary criterion (task).
This is obtained through the following optimization problem,
as defined earlier:

2 2
L= ln = pall”+lIr = pll

that aims to maximize the distance to joint limits, correspond-
ing to a comfort criterion.

It is worth stressing that the optimization process relies on
the estimated Minimum order SMM, as described before. Fig.
4 presents the evolution of the cost function [, for each iteration
of the Newton method. It also presents the trajectory of all 4
(redundant and non-redundant) robot joints. We can see that,
for this case, the maximum for one joint was 0.5 rad.

I I I I I
0 50 100 150 200 250 300 350 400
steps

Fig. 4. Convergence rate and evolution of the position for the real robot as a
function of the optimization step. It is interesting to see that one joint moved
0.5 rad and the final error in the image corresponds to 0.03 rad.

The final error in the image was as small as 0.03 rad, and
most it is due to elasticity in the robot joints. Fig. 5 shows the
robot view of the hand for an intuition for this error (about
the size of the target). Due to the redundancy in the arm, it
would be possible to fixate the target while changing the arm
posture.

Al £

Robot view. We can see the arm, hand and the target being tracked

Fig. 5.

V. CONCLUSIONS / FUTURE WORK

We have addressed the problem of estimating Sensory
Motor Maps in redundant systems, which is often the case
of humanoid robots. As a consequence of redundancy, the
inverse map cannot be estimated since the forward model is
not bijective.

For a given task, we started by partitioning the robot
degrees of freedom in redundant and non-redundant DOFs.
Then, we defined a “Minimum order SMM” that takes as
the input general image configurations and redundant degrees
of freedom. This partial backward model can be used to
determine the configuration for the non-redundant degrees of
freedom and can be used for control. Using the “Minimum
order SMM”, the redundant degrees of freedom are available
to meet additional online constraints, arising from secondary
tasks or criteria.

A noteworthy observation is that this method is not incre-
mental, in the sense of requiring small steps toward the final
goal. It gives directly the goal position so that the robot can
be moved directly there. However, the optimization leads to
several steps being used for the secondary goal, in this case
the posture optimization.

The Minimum Order SMM is learned with a local learning
method. Experimental results done in an humanoid torso with
10 degrees of freedom were presented, illustrating both the
ability to learn the Minimum order SMM and how it can be
used for specific tasks.

A large workspace was used of about 40degrees for
each joint, a small reconstruction error was achieved, about
2.5degrees. For the optimization one joint could “travel”
90 degrees to be able to reduce the cost function by 40%,
with a corresponding error in the image of only 1.5 degrees
(about the same size of the target).

In the future we plan to investigate automatic methods for
the division between redundant and non-redundant degrees of
freedom. One possible direction of research can go a similar
path as the one presented in [18]. The use of more degrees of
freedom will be necessary to deal with more complex image
features (e.g. position and orientation), a binocular head and
changing head positions.

As a final comment, we would like to stress that learning
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inverse maps for redundant robots is a frequent need in

humanoid robotics, and that the proposed method is simple,

computationally efficient and well suited for online learning.
APPENDIX

A. Derivative of Local learning method

If redundant degrees of freedom are to be chosen with some
extra criterion, it is important to evaluate the derivative of the
prediction function. The prediction of the chosen local learning
method is given by:

M
S KBl
M
Zj:l K;

Now we want to evaluate its derivative as a function of the
inputs %:

:[]:

83/ 6KJ T (9Kl T
o3 (Gt k) B 2GS KT
with k= S0 = W,z — u;)K;
After some computations, we have:
il Z 0K; «TB; +ZBK —dk (13)
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