
  

  

1. Introduction 

Recent studies point to the possibility that the human brain 

could create internal models (Wolpert et al. 1998). Kawato 

in (Kawato 1999) defined internal models as neural 

mechanisms that can mimic the input/output characteristics, 

or their inverses of the motor apparatus. The internal models 

could be forward models or inverse models. Forward models 

can predict sensory consequences from efference copies of 

issued motor commands. Inverse models calculate the 

necessary feedforward motor commands from desired 

trajectory information. 

The process of creating forward models starts in infants 

when they are born. The newborn, through a self exploratory 

phase of his kinematics and sensory feedback (“body 

babbling”), creates an internal model of his own kinematics 

and sensory system as described in (Rao et al. 2004). 

Roboticists, looking at biology and specifically human 

development as a source of inspiration, have begun to use 

forward models in robots. For instance, in (Sun and 

Scasellati 2005) a forward model that represents the forward 

kinematics of a manipulator was created using radial basis 

function neural networks. From the forward model they 

derived analytically the robot Jacobian that is used in a 

control law that governs the reaching task. In (Dearden and 

Demiris 2005) a mobile robot, after a babbling motor phase, 

learns a forward model based on a Bayesian neural network. 

 
Corresponding author: 
Daniel Fernando Tello Gamarra: 

e-mail:fgamarra@sssup.it 

The forward model was used by the robot in imitating 

human movements. Also in (Sturn J. et al. 2008) a forward 

model of a robot manipulator is learned using a Bayesian 

network, after a babbling phase using a monocular camera.  

Following a developmental robotics roadmap, this work 

tries to shed some light in the use of forward models for the 

visual servoing method that we intend to use for vision 

based reaching. The forward model created is used to 

estimate an initial image Jacobian that becomes an important 

factor that determines the maximum performance attainable 

in a reaching task using a well known visual servo 

controller. 

Compared with  (Sun and Scasellati 2005) our method 

also uses a Jacobian derived from a forward model. 

However, instead of being derived analytically and from a 

static forward model obtained via off-line training, our 

approach updates the forward model before each reaching 

attempt and consequently perturbs the updated forward 

model in order to obtain the image Jacobian. This strategy 

seems more biologically plausible because it uses past 

information from previous reaching attempts while avoiding 

analytical derivations of the image Jacobian. Since the 

forward model is updated online extensive motor babbling 

and offline training is avoided. ANFIS neural networks have 

been used to construct the forward models and the paper 

shows that they are able to represent with fewer rules the 

visuo-motor map and train very quickly. 

Forward models applied in Visual Servoing for a 

reaching task in the iCub Humanoid Robot 

Daniel Fernando Tello Gamarra, Lord Kenneth Pinpin, Cecilia 

Laschi and Paolo Dario 

Scuola Superiore Sant’Anna, ARTS Lab (Advanced Robotics Technology and Systems Laboratory), V.le Rinaldo Piaggio, 34-

56025 Pontedera (PI), Italy  

 

Abstract: This paper details the application of a forward model to improve a reaching task. The reaching task must be 

accomplished by a humanoid robot with 53 d.o.f. and a stereo-vision system. We have explored via simulations a new way of 

constructing and utilizing a forward model that encodes eye-hand relationships. We constructed a forward model using the 

data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the 

forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward 

model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate 

that errors are lower when the initial image Jacobian is derived from the forward model. Although this paper is one of the few 

attempts of applying visual servoing in a complete humanoid robot. 

 

Keywords: forward models, ANFIS, robotics, visual servoing, neural networks. 

 



  

The remainder of the paper is as follows. In the second 

section are described the algorithms used in this work; the 

third section explains simulations developed on the 

application of forward models, the fourth section, shows the 

general architecture for the reaching task; in the fifth section 

the method for using the forward model for the reaching is 

described; finally, conclusions are explained in the sixth 

section. 

1. Theoretical background 

1.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

     In order to set the theoretical background that is 

necessary to understand better the paper. The ANFIS is 

described. ANFIS is the neural network that we have used to 

construct the forward model.  

The ANFIS (Jang 1993) is reviewed here briefly. 

Adaptive Neuro-Fuzzy Inference Systems are Fuzzy Sugeno 

models put in the framework of adaptive systems, and are 

composed by rules of the type: 

 

Rule 1:  if   x1   is   A1   and   x2    is   B1, then 

f1 = a1x1+b1x1+c1 

Rule 2:  if   x1   is   A2   and   x2    is   B2, then 

f2 = a2x1+b2x2+c2 

 

Figure 1 illustrates the architecture of the network. In the 

first layer the degree of the membership of the input is 

computed using a Gaussian membership function: 

ib
2

1

1

iA

i

i

x c

a

µ =
  −
 +  
   

 

(1) 

Where
i

a , 
i

b  and 
i

c  are the parameters of the Gaussian 

function. The second layer calculates the firing strength (or 

weight) 
i

w of the ith rule,  

( ) ( )1 2i i iw x xµ µ=  (2) 

 

In the third layer the firing strengths are normalized with 

the sum of all rule's firing strengths: 

1 2

iw
w

w w
=

+
 (3) 

In the fourth layer the output is calculated as the product 

of the normalized firing rate and the parameters set: 

( )i i i i i if w p xw q y r= + +  (4) 

Finally in the fifth layer is calculated the overall output as 

the addition of all incoming signals, 

i ii
i

i ii

w

w
w

f
f =
∑

∑
∑

 (5) 

Training the network consists of finding suitable 

parameters for layer 1 and layer 4. Gradient descent methods 

are typically used for the non-linear parameters of layer 1 

while batch or recursive least squares are used for the linear 

parameters of layer 4 or even a combination of both. See 

(Jang 1993) for details. 

Now that the ANFIS neural network has been described, 

it is necessary to underline that the ANFIS is used to 

construct a forward model. The forward model receives as 

inputs the manipulator joints and it has as output the 

coordinates of the end-effector in the image plane. The 

forward model delivers the image Jacobian that is used in 

the visual servo control. 

1.2. Visual servoing 

When a robotic manipulator is used for making a reaching 

task; the traditional approach identifies the target in the 3-D 

space and draws a spline curve. The curve could be a 

polynomial of different degrees between the start point and 

the final point (target).  In order to get every point of the 

trajectory of the robot is used an interpolation.  

The other approach for the reaching task is visual 

servoing. Visual servoing uses vision to identify the target 

and a control law based on vision delivers every point of the 

trajectory that must follow the robot to arrive to the target. 

The servoing is a synergy of different engineering fields 

such as control, vision and robotics. In (Hutchinson et al. 

1996) we can find a survey about the methods and 

techniques used in visual servoing. The controller 

implemented in this paper is classified according to 

(Hutchinson, Hager and Corke 1996) as an Image Based 

Visual Servoing technique (IBVS) because the error is 

minimized in the image plane and not in the three 

dimensional space. If the error would be minimized in the 

three dimensional space would be necessary to reconstruct 

from the images the position of the end effector in the three 

dimensional workspace, an approach called Position Based 

Visual Servoing (PBVS). Also our servoing algorithm is 

classified in the literature as an eye-to-hand scheme, because 

the camera is not mounted in the end effector. 

The algorithm used for the visual servoing is the one 

based on (Armstrong Piepmeier et al. 1999). Piepmeier used 

a dynamic Gauss-Newton method to minimize the errors in 

the image plane. The error for a static target is defined as the 

difference of the position in the image plane of the target 
*y  

and the end-effector ( )y θ . 

( ) ( ) *
f y yθ θ= −  (6)

 
 

Figure 1 ANFIS architecture.



  

The dynamic Gauss-Newton method computes the joint 

angles iteratively. At each iteration k the angular position is 

computed as 

1

1
ˆ ˆ ˆ( ) .T T k

k k k k k k t

f
J J J f h

t
θ θ −

+

∂ 
= − + 

∂ 
 (7)

 

The term 
t

h  is a time increment and is defined 

as 1t k k
h t t −= − ; the term k t

f h

t

∂

∂
 predicts the change in the 

error function for the next iteration and ˆ
kJ  represents an 

approximation to the Jacobian in the k instant. 

( )
1

1 1 1 1
ˆ ˆ ˆ T Tk

k k k t k k

f
J J f J h h h P h h P

t
θ θ θ θλ

−

− − − −

∂ 
= + ∆ − − + 

∂ 
 

 

( )( )1

1 1 1 1

1 T T

k k k k kP P P h h P h h Pθ θ θ θλ
λ

−

− − − −= − +  (9) 

Where 0 1λ< ≤  is the forgetting factor, 

1k k
hθ θ θ −= − ,

1k k
f f f −∆ = − . Equations (8) and (9) 

define the recursive update of ˆ
kJ .

  
It is necessary to underline that this visual servoing 

control law proposed by Piepmeier can also be extended and 

applied to a case in which the target is moving and the 

camera is moving that would happen if the robot head would 

eventually move. The visual servoing strategy used here 

does not need any calibration procedure; so we avoid the 

need to calculate the extrinsic and intrinsic parameters of the 

camera and also we do not need any triangulation procedure 

for a stereo-vision system. These nice properties of the 

algorithm lead us to apply directly the algorithm to the robot.
 

2. Simulation of forward models 

In order to show how forward models could help the 

performance of a visual servoing task, simulations were 

developed in Matlab. It is worthwhile to describe briefly 

these simulations that served as a prototype of how forward 

models could be used in a reaching task.  This previous work 

is detailed in (Pinpin et al. 2008) and here we summarize  

the procedure and the results we obtained because they were 

the first step on the development of our approach and served 

as the framework of this work. 

2.1. Experimental setup 

The Robotics Toolbox of Peter Corke for Matlab (Corke 

1996) was chosen as a simulation platform. The simulated 

PUMA 560 manipulator is used in this work. For the vision 

system the Epipolar Geometry Toolbox for Matlab 

(Mariottini and Prattichizzo 2005) is used to simulate two 

fixed cameras. 

2.2. Forward model Construction 

To obtain a forward model the robot went through a 

motor babbling phase. In this exploratory phase, the angular 

positions of the robot joints and the end-effector position in 

the visual system were recorded.  

The data collected from the babbling phase is used to 

create a forward model of the robot. The forward model is 

constructed using the ANFIS toolbox of Matlab.  The input 

data is a set that includes the end effector position in the 

image and joint angles of the manipulator. The input data is 

clustered using the unsupervised clustering algorithm of the 

toolbox that uses the subclustering algorithm (Yager R. and 

D. 1994). The unsupervised clustering algorithm gives the 

initial structure of the network (number of fuzzy rules) and 

parameters (initial parameters of the gaussian membership 

functions).   

        A total of four ANFIS neural networks have been 

constructed – one ANFIS for each image feature coordinate  

(uL,vL,uR,vR). Each neural network has 9 inputs (q0, q1, q2, q3, 

q4, q5, px, py, pz). The first 6 inputs are the angular positions 

of the joints of the manipulator and the other 3 inputs are the 

coordinates of an end-effector point (with respect to the end-

effector local frame). The output of the network is an image 

coordinate (u or v) of the end-effector position (px, py, pz) in 

one of the cameras (left or right). 

2.3. Initial image Jacobian estimation 

The forward model encoded in the ANFIS networks is 

used in obtaining an estimate of the initial image Jacobian of 

the manipulator for a given joint position. To obtain the 

initial estimation of the Jacobian a virtual perturbation of the 

manipulator joints at the current position is done using the 

ANFIS networks. Each joint is individually perturbed and 

the resulting changes of the feature points are used to 

initialize the corresponding column of the image Jacobian. 

The changes in the image feature points are computed using 

the forward model instead of the cameras. That is, the joint 

angles and the coordinates of each of the five tracked points 

are inserted as inputs to our forward model. The output of 

the forward model gives the position each of the end-effector 

points in the image planes of the “robot eyes”. The robot 

virtually perturbs its visuo-motor map (forward model). This 

map is a kind of mental abstraction of how human beings 

encode a learning process. The robot, thanks to the forward 

model built with the ANFIS neural networks, has an initial 

estimate of its own dynamic visuo-motor map (image 

Jacobian)  based on its own history that can help him to 

reach a desired position. 

 



  

2.4. Forward models improve visual servoing  

The final objective of the robot is that it could reach a 

target in a specific position of its workspace. The initial 

estimate of the image Jacobian is used at the beginning of 

the visual servoing controller. 

The manipulator starts practically in a position opposed to 

the target. The number of iterations for the control loop is 

equal to 600 iterations. The robot has as initial coordinates in 

joint space [-3.0252 0.07757 -1.5126 0 0 0] radians and the 

desired position of the target in joint space coordinates is 

[0.93 0 0 0 0 0] radians. Figure 2 shows the initial position 

of the robot and the target. The other subplots of this figure 

display the representation of these points in the two cameras 

at the beginning of the reaching. Figure 3 shows the position 

of the robot when it has reached the target. 

In order to test the validity of the use of the forward 

model to estimate an initial image Jacobian a comparison 

with random image Jacobians is made. The servo-controller 

is tested with 10 different random initial image Jacobians. 

Each element of random image Jacobian (a 20 x 6 matrix) is 

initialized with values from the range [-1 1]. Figure 4 shows 

the results obtained with these random image Jacobians 

(blue curves) and the one estimated using the forward model 

(red one). This simulation shows that the error obtained with 

the initial Jacobian derived from the ANFIS forward models 

has a better performance and is matched only by two random 

Jacobians.  

3. General architecture for the robotic implementation of 

visual servoing 

Our system architecture was defined based on these 

previous results. For the iCub implementation it was not 

necessary to go through a complete motor babbling phase in 

the entire workspace as we did with the PUMA 560. Our 

main concern is to have an initial image Jacobian and we 

discovered that we could obtain good results from perturbing 

a forward model trained with very few reaching attempts. 

Even if these reaching attempts could not be successful, they 

are useful in constructing the forward model because these 

reaching attempts contain information that comes from the 

robot’s proprioceptive system in the form of encoder 

readings and information derived from the visual system. 

The forward model is constructed using ANFIS neural 

networks as in the case of the PUMA 560.   

Figure 5 shows the general architecture that is used for 

vision-based reaching. The forward model is updated and 

consequently perturbed at the beginning of the visual 

servoing loop. The next section explains the implementation 

of this method in the iCub setup.   

 

 
  

Figure 3 The Adaptive sinusoidal left subplot has the position of the 

robot at the end of the reaching.  The target is represented by the blue 

points in the left subplot (partially obscured by the end effector). The 

right top and right bottom subplots show the end-effector position 

(green circles) and the target (blue crosses). Since the robot end-

effector has reached the target the blue crosses are overlapping with 

green circles.

 

Figure 4 Comparison of servoing error performance using random image 

Jacobians (blue) and the image Jacobian estimated from the ANFIS 

forward-model (red). Each curve represents the norm of the error vector 

in pixels at each time step. 

 

 
 

Figure 2 The left subplot has the position of the robot at the beginning 

of the reaching.  The target position is represented by the blue points in 

the left subplot (feature points of the end effector at the end of 

reaching). The right top and right bottom subplots show the end-effector 

position (green circles) and the target image coordinates (blue crosses).

 



  

4. Experiments with the icub simulator 

4.1. Experimental platform setup 

4.1.1. Robotcub Platform 

The RobotCub platform is the result of a research project 

aimed to develop a robotic child (iCub) with the physical 

(height 90 cm, mass less than 23 kg and 53 of d.o.f.) and 

ultimately cognitive abilities of a 2.5 years-old human child. 

The iCub is a freely available open system which can be 

used by scientists in all cognitive disciplines from 

developmental psychology to humanoid robotics to enhance 

understanding of cognitive systems through the study of 

cognitive development. The iCub is open source and open 

hardware (mechanical and electronic design).  

One of the milestones of the RobotCub philosophy on 

cognition is the belief that manipulation plays a fundamental 

role in the development of cognitive capability. The iCub 

will test this hypothesis acting in cognitive scenarios, 

performing tasks useful for learning and interacting with the 

environment and humans. The capacity for cognitive 

development in the iCub is a fundamental difference from 

the many excellent humanoids already developed as 

mentioned in (Tsagarakis N. G. 2007). Figure 6 shows the 

robotic platform, the iCub. 

 
4.1.2. Software architecture 

YARP (Yet Another Robot Platform ) software described 

in (G. Metta 2006) and (Fitzpatrick 2008) is the middleware 

software used by the iCub humanoid robot. YARP is an 

open-source project for long-term software development for 

applications that are real time, computation-intensive, and 

involve interfacing with diverse and changing hardware. 

 YARP’s goal is to minimize the effort devoted to 

software development by facilitating code reuse and 

modularity, and so maximize research-level development 

and collaboration. In short, the main features of YARP 

include support for interprocess communication and image 

processing as well as a class hierarchy to ease code reuse 

across different hardware platforms. Also YARP facilitates 

the implementation of a distributed controller in a cluster. 

YARP is currently used and tested on Windows, Linux, 

MacOS and Solaris, which are common operating systems 

used in robotics.  

 
4.1.3. The iCub simulator 

In this stage of our research work the algorithms were 

tested in the iCub simulator that was developed by Vaddim 

Tikhanoff and is shown in Figure 7. The simulator as stated 

in (Tikhanoff V. 2008a, Tikhanoff V. 2008b) has been 

designed to reproduce, as accurately as possible, the physics 

and the dynamics of the robot and its environment. It has 

been constructed collecting data directly from the robot 

design specifications in order to achieve an exact replication 

of the iCub. This means same height, mass and d.o.f.   

The iCub simulator was created using open source 

libraries. It uses ODE (Open Dynamics Engine) for 

simulating rigid bodies and the collision detection 

algorithms to compute the physical interaction with objects. 

ODE consists of a high performance library for simulating 

rigid body dynamics using a simple C/C++ API. The iCub 

simulator also uses YARP as its software architecture. It is 

worth mentioning that as stated in (Tikhanoff V. 2008a), the 

iCub simulator is one of the few that attempts to create 3D 

dynamic robot environment capable of recreating complex 

worlds and fully based on non-proprietary open source 

libraries. 

The experiments done in this paper were tested in the 

iCub simulator. Otherwise the babbling phase would require 

  
 

Figure 5 General Architecture for a vision-based reaching using a 

forward  model.

 

 
Figure 6 ICub humanoid robot.



  

a collision detection to prevent self-collision in the robot, 

which still has not been incorporated in the robot; this issue 

is absent from a standard robot manipulator such as the 

PUMA 560 which does not have a body to collide with the 

end effector. 

 
4.1.4. The vision system 

In order to implement visual servoing we needed to 

develop a vision system that could take the images from 

both simulated cameras and segment the end effector in the 

image plane. A segmentation based on color appeared as a 

natural and simple choice; it is necessary to underline that 

the precision and the performance of the servoing is 

dependent on the quality of the features provided to the 

controller.  

The vision system module detects image features of the 

end effector (colored hand) in the image field of view. It 

uses an algorithm based on blob color detection. The hand 

color of the iCub that was originally gray was changed to 

green and violet, as can be seen in Figures 7 and 8. The 

visualblobs module that is part of the iCub open source 

software was developed by Jonas Ruesch in order to 

construct a salience map for the iCub attention system as 

 

Figure 7 ICub ODE simulator.

  

 
Figure 8 Left hand of the iCub taken from the left camera.

 

 Figure 9 View of the left camera image segmented with two detected 

blobs. 

 
Figure 10 View of the right camera image segmented with two detected 

blobs.



  

referred in (Ruesch et al. 2008) . This module was modified 

in order to segment and filter based on color. Figure 8 shows 

the image of the robot’s hand captured from the left camera, 

before applying the color segmentation and blob detection. 

Figures 9 and 10 show the blobs obtained from the 

segmented images of the left hand in both cameras. The 

images are flipped because that is the native memory format 

in which the simulator delivers the images from the 

simulated cameras and in the next step they are rotated in 

180 degrees. In order to gain some computational time the 

images were not flipped right side up. The image features 

generated for the vision algorithm are the centroids and the 

area of the blobs.  

 
4.1.5. Forward model creation 

The data collected from a single reaching attempt is used 

to create a forward model of the robot. This attempt does not 

matter if the reaching was sucessful or not. It just serves to 

create an approximation of the model of the system. ANFIS 

neural networks are used for constructing the forward model.  

    The training data is a set that includes the joint angles 

of the manipulator and the end effector features in the 

images, the features that were used were the blob centroid in 

image coordinates, and the blob’s area. Since we have two 

blobs (green and violet), we had 6 image features for each 

camera. The input data is clustered using the unsupervised 

clustering algorithm of the toolbox that uses the 

subclustering algorithm (Yager R. and D. 1994).  

A total of twelve ANFIS neural networks have been 

constructed – one ANFIS for each image feature. Each 

neural network has 7 inputs (q0, q1, q2, q3, q4, q5, q6). These 

are the angular positions of the joints of the manipulator. 

The output of the network is an image feature of the end-

effector in one of the cameras (left or right). A total of 

twelve image feature have been tracked because it has been 

seen in the simulations that as the number of image features 

is increased the robustness of the algorithm grows. 

The number of rules created as an average for the ANFIS 

neural network was 11 with a subclustering radius of 0.3. 

This subclustering parameter tunes the number of fuzzy 

rules constructed. There is a tradeoff for chosing the value of 

this parameter because if there are more rules the 

computational burden increases. The training was done 

using a hybrid method that is a combination of  back-

propagation  and recursive least square algorithms.  The 12 

ANFIS neural networks were trained just for 20 epochs. 

4.2. Reaching task results 

4.2.1. Initial Image Jacobian Estimation 

The estimated initial image Jacobian of the manipulator 

for a given joint position is obtained from the ANFIS neural 

network that represents the forward model. First the ANFIS 

networks are updated with the value of the current joint 

position and the feature vector obtained from the vision 

system. This results in an improved forward model at the 

current robot position. Then to obtain the initial estimation 

of the image Jacobian a virtual perturbation of the 

manipulator joints at the current position is done using the 

ANFIS networks as we have seen previously in the Matlab 

simulations using the PUMA robot. The changes in the end-

effector image features are computed using the forward 

model instead of the cameras. The joint angles are inserted 

as inputs to our forward model. The output of the forward 

model gives the desired image feature of the blob generated 

by the end-effector (centroids and blob areas) in the image 

planes of the cameras. 

 
4.2.2. Improved Visual Servoing Performance 

The initial estimate of the image Jacobian is used at the 

beginning of the visual servoing controller. The manipulator 

starts practically in a position opposed to the target as was 

done with the PUMA. The variation of the joint velocities of 

the manipulator has been clamped between -60 and 60 

degrees/sec. The camera frame rate for this simulation is 

fixed at 1/60 sec. The simulation time step is 0.005. The 

number of iterations for the control loop is equal to 100 

iterations. 

For the sample reaching trials shown in Figure 11 the 

robot has as initial joint coordinates [-25, 30, -10, 20, 0, 0] 

degrees and the desired position of the target in joint space 

coordinates is [-65, 10, 0, 20, 0, 0, 10] degrees . 

A comparison between the initial image Jacobians 

obtained from the forward model and random image 

Jacobians is made. The servo-controller is tested with 5 

different random initial image Jacobians. Each element of 

random image Jacobian (a 12 x 7 matrix) is initialize with 

values from the range [-1 1]. Figure 11 shows the results 

obtained with these random image Jacobians (dashed curves) 

and the one estimated using the forward model (solid 

curves). This simulation shows that the error obtained with 

the image Jacobians obtained from the forward model are 

matched in performance only by one random image 

Jacobian. We also note that some random image Jacobians 

became singular so the servoing loop did not finish.  

5. Conclusion 

This paper describes how forward models can be used in 

a reaching task using visual servoing. The method consists 

in constructing the forward model from a first reaching 

 
Figure 11 Comparison of servoing error performance using random 

image Jacobians (dashed) and the image Jacobian estimated from the 

ANFIS forward-model (solid). Each curve represents the norm of the 

error vector in pixels at each time step.

 



  

attempt and subsequently updated before succeeding 

attempts. The forward model is constructed using ANFIS 

neural networks. Perturbing the forward model to obtain an 

initial image Jacobian improves an image-based visual 

controller.  

It is interesting to note that compared to (Sun and 

Scasellati 2005) in which a robot Jacobian is constructed 

using radial-basis function neural networks and trained 

offline, our approach opens the possibility to train online the 

forward model and enrich it with every reaching attempt. 

Also for the visual servoing we are not using resolved 

motion rate control that depends on a static inverse Jacobian 

which in turn requires accurate kinematic models; instead, 

the method we used for the servoing requires an inverse 

image Jacobian that is updated with each frame using the 

Broyden update method. Thus our approach takes advantage 

of the method’s tolerance to noise and does not require 

calibration of robot kinematics or camera parameters and 

improves on it by giving it a better starting image Jacobian. 

We have demonstrated the potential use of a forward 

model similar to how humans take advantage of a sensory 

motor map constructed thorough previous reaching attempts. 

The approach that is shown here enables the robot with a 

virtual sensory-motor map encoded in a neural network 

which is perturbed to get an initial estimation of its dynamic 

visuo-motor relationship (image Jacobian) to start the 

reaching movement.  

Finally we consider our implementation as one of the few 

works in which visual servoing is applied in a humanoid 

robotic platform with a stereo-vision system. 

Acknowledgment  

This work is supported by the ROBOTCUB project (IST-

2004-004370), funded by the European Commission through 

Unit E5 “Cognitive SYSTEMS”. Also we would like to 

thank the IIT (Italian Institute of Technology) for its 

financial support to the Phd courses of the first two authors. 

References 

Wolpert DM, Miall RC and Kawato M. 1998. Internal models in 

the cerebellum. Trends in Cognitive Sciences. 2(9):338-347.  

Kawato M. 1999. Internal models for motor control and trajectory 

planning. Curr Opin Neurobiol. 9(6):718-727.  

Rao RPN, Shon AP and Meltzoff AN. 2004. Bayesian model of 

imitation in infants and robots. In: Imitation and Social 

Learning in Robots, Humans, and Animals: Behavioural, 

Social and Communicative Dimensions Cambridge: 

Cambridge University Press. 

Sun G and Scasellati B. 2005. A fast and efficient model for 

learning to reach. International Journal of  Humanoid Robotics. 

2(4):24-32.  

Dearden A and Demiris Y. Learning Forward Models for Robots. 

In. 2005 Proceedings of (International Joint Conferences of 

AI) IJCAI; Edinburgh. 

Sturn J., Plagemann C. and W.. B. 2008. Unsupervised Body 

Scheme Learning through Self-Perception. In: ICRA. 

Jang JSR. 1993. ANFIS: adaptive-network-based fuzzy inference 

system. Systems, Man and Cybernetics, IEEE Transactions on. 

23(3):665-685.  

Hutchinson S, Hager GD and Corke PI. 1996. A tutorial on visual 

servo control. Robotics and Automation, IEEE Transactions 

on. 12(5):651-670.  

Armstrong Piepmeier J, McMurray GV and Lipkin H. A dynamic 

Jacobian estimation method for uncalibrated visual servoing. 

In: GV McMurray editor. In Proceedings of the  IEEE 

International Conference on Advanced Intelligent 

Mechatronics (ASME). 

Pinpin LK, Tello Gamarra DF, Laschi C and Dario P. 2008. 

Forward Model Creation in a Six Link Manipulator. In: 

Biomedical Robotics and Biomechatronics IEEE (BioRob) 

Scottsdale-USA. 

Corke PI. 1996. A robotics toolbox for MATLAB. Robotics & 

Automation Magazine, IEEE. 3(1):24-32. Available  

Mariottini GL and Prattichizzo D. 2005. EGT for multiple view 

geometry and visual servoing: robotics vision with pinhole and 

panoramic cameras. Robotics & Automation Magazine, IEEE. 

12(4):26-39.  

Yager R. and D. F. 1994. Generation of fuzzy rules by mountain 

clustering. Journal of Intelligent and Fuzzy Systems. 2(3):209-

219.  

Tsagarakis N. G.  SG, Vernon D., Beira R., Becchi F., Righetti L., 

Santos-Victor J., Ijspeert  A.J., M.C. Carrozza and Caldwell 

C.G. 2007. Icub the design and realization of an open 

humanoid platform for cognition and neuroscience research. 

Advanced Robotics:1-25.  

G. Metta PF, L. Natale. 2006. YARP:yet another robot platform. 

International Journal on Advanced Robotics Systems(Special 

Issue on Software Development and Integration in Robotics). 

Available  

Fitzpatrick P, Metta, G., Natale, L. 2008. Towards Long-Lived 

Robot Genes. Robotics & Automation Magazine, IEEE. 

56(1):29-45.  

Tikhanoff V. FP, Metta G., Natale Lorenzo, Nori F., Cangelosi A. 

2008a. An Open-Source Simulator for Cognitive Robotics 

Research: The Prototype of the iCub Humanoid Robot 

Simulator. In: Workshop on Performance Metrics for 

Intelligent Systems, National Institute of Standards and 

Technology Washington DC-USA. 

Tikhanoff V. FP, Nori F, Natale L. Metta G. , Cangelosi A. 2008b. 

The iCub Humanoid Robot Simulator. In: IROS Workshop on 

Robot Simulators Nice, France. 

Ruesch J, Lopes M, Bernardino A, Hornstein J, Santos-Victor J and 

Pfeifer R. Multimodal saliency-based bottom-up attention a 

framework for the humanoid robot iCub. In. 2008 IEEE 

International Conference on Robotics and Automation (ICRA). 

 

 


