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Abstract 
 

Human infants learn how to develop sensory-motor coordination in their first years of 
life. Sensory-motor coordination involves different stages. Considering the use of a 
hand for tasks as reaching and grasping, the infant develops his capabilities by 
achieving different levels of motor control. First, he has to learn how to control his 
own arm in order to approach the hand close the object. Then, he has to grasp the 
object. When we use our digits to manipulate objects the applied fingertip forces and 
torques tangential to the grip surfaces are a result of complex muscle activity.  
In this work we investigate the generation of internal models for reaching and 
grasping. We use bio-inspired techniques, to make a robot able to develop capabilities 
to reach and grasp objects itself, as human beings do. We believe that taking 
inspiration from the human system may help in developing a highly capable robotic 
controller, this robot being in turn an interesting platform for neuroscientists to test 
hypotheses on movement generation. As it was demonstrated in previous works [1] 
and [2]. 
In order to develop this architecture we implemented different modules. The sensory 
motor map is condensed in a forward model of the kinematics of the robot. The 
forward model is found through a neural network that exploits information that comes 
from the clustering topology in a data distribution. The neural network used is an 
Adaptive Neuro-Fuzzy Inference System (ANFIS).  
The results obtained for the calculation of a forward model, the vision system and the  
servocontroller module as part of our architecture for the reaching are described. 
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1.­Introduction 
 
 
In this work we implemented a model that makes the humanoid platform iCub able to 
self-compute its internal models in order to perform a correct reaching of objects with its 
arms. 
In our architecture the robot uses the vision module in order to detect the position of its 
end-effector (i.e. its hand). This, together with the arm encoder information, will be the 
input of the neural network. 
The general scheme of our architecture is described in Figure 1. This architecture 
involves different modules to be developed. The first module is the forward model that 
has been calculated using a neural network.  
Once the forward model is calculated, the model is used to estimate an initial Jacobian 
that is necessary to implement for the servo controller. The servo controller needs a 
vision system that will give the feedback necessary while the arm is approaching to the 
target. The servocontroller will send the commands that are necessary to move the joints 
of the arm to accomplish the task.  
 
 

 
 

Figure 1. General Platform for the reaching based on a forward model 
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2.­Forward Model Module 
 
This deliverable presents the results in simulation to obtain the forward model in the 
robot arm. The forward model will be obtained after a phase of babbling in which we 
captured joint and end-effector information. The end-effector information comes from the 
vision system. This information is processed for the ANFIS neural network in order to 
obtain the Arm forward model. 
 
In Figure 2 we can see a general scheme for the motor babbling phase. It has been used 
the ANFIS as the neural network for the simulation. The ANFIS is initialized with a 
clustering algorithm. The ANFIS is trained with data that comes from a simulated robot. 
In the next sections are described the mathematical tools, procedure and results obtained 
to calculate a forward model of a robotic arm in simulation.  
 

 
 

Figure 2. Calculus of the Forward model (sensory motor map) using the ANFIS 
 

3.­Adaptive Neuro Fuzzy Inference System (ANFIS)  
 
We review briefly the ANFIS [3] that is the neural network that we employed to calculate 
the forward model. It is used a two input example. Adaptive Neuro-Fuzzy Inference 
Systems are Fuzzy Sugeno models put in the framework of adaptive systems, a fuzzy 
Sugeno type is composed by rules of the type: 
 

Rule 1: if   x1   is   A1   and   x2    is   B1, 
then     f1  = a1x1+b1x1+c1 

 
 

Rule 2: if   x1   is   A2   and   x2    is   B2, 
then     f2  = a2x1+b2x2+c2 
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The architecture of the network is illustrated in figure 3. In the first layer the degree of 
the membership of the input is computed using as a membership function a Gaussian: 
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where ia , ib  and  ic  are the parameters of the Gaussian function. 
 
 

 
                                   Figure 3.ANFIS architecture 
 
 
The second layer calculates the firing strength (or weight) iw   of the -ith rule:  
 

( ) ( )21 xxw
ii BAi µµ=  

 
In the third layer the firing strengths are normalized with the sum of all rule's firing 
strengths: 

21 ww
w

w i
i +
=

 
 

In the fourth layer the output is calculated as the product of the normalized firing rate and 
the parameters set: 
 

)( iiiiii ryqxpwfw ++=  
 

Finally, in the fifth layer is calculated the overall output as the addition of all incoming 
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For the training of the network to make the output match the desired values, different 
methods as the gradient descendent rule, the least square error or an algorithm that could 
be a hybrid of the two methods can be applied. 
 
 

4.­ Forward Model Creation 
 
The data collected from the babbling phase is used to create a forward model of the robot. 
Figure 4 shows how the forward model is constructed using the ANFIS toolbox of 
Matlab.  The input data is a set that includes the end effector position in the image and 
joint angles of the manipulator. The input data is clusterized using the unsupervised 
clustering algorithm of the toolbox that uses the subclustering algorithm [4]. The 
unsupervised clustering algorithm gives the initial estructure of the network (number of 
fuzzy rules and parameters for the initialization of the membership functions).  

 
Figure 4  Construction of the forward model using an ANFIS-based methodology 
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A total of four ANFIS neural networks have been constructed – one ANFIS for each 
image feature coordinate  (uL,vL,uR,vR). Each neural network has 9 inputs (q0, q1, q2, q3, 
q4, q5, px, py, pz). The first 6 inputs are the angular positions of the joints of the 
manipulator and the other 3 inputs are the coordinates of an end-effector point (with 
respect to the end-effector local frame). The output of the network is an image coordinate 
(u or v) of the end-effector position (px, py, pz) in one of the cameras (left or right). A total 
of five feature points have been tracked because it has been seen in the simulations that as 
the number of tracked points is increased the robustness of the algorithm grows. 
 

 

5.-Vision Module 
 
 

The vision module receives the images from the two cameras mounted on the 
iCub head. It is responsible of processing these images in order to obtain the relevant 
information about the object to be grasped. These are: shape, dimension, orientation, and 
position within the 3D surrounding environment (this is accomplished by triangulating 
the information received from the binocular vision and the head and neck encoders). In 
our particular case we made our experiments by using a ball of different colors as object 
of interest. 

In order to detect the ball, and all its features, we implemented a simple but 
efficient image processing algorithm. We detect the ball by means of a color filter. The 
pixels of the ball are detected by setting color thresholds for the pixels belonging to the 
ball. We implemented a technique that creates a database for all the possible colors. Each 
color (detected with an image of interest) is represented with the HSV representation by 
its histogram evaluated within the image it owns to. Then, our application for the iCub 
loads the correspondent color representation from this database at runtime.  
Once the ball pixels are identified, the image is converted into a binary image with ball 
pixels set to '1'. The binary image contains not only the blob relative to the ball, but also 
other smaller blobs caused by color variation in the image. For the identification of the 
blob corresponding to the ball, we use a connected components algorithm. We assume 
the largest blob is the ball, so we look for the blob with the largest area. Subsequently we 
proceeded by applying the algorithm by Maini [5], to the found blob, in order to detect all 
the parameters of the curve that describes the boundary of the blob. This is a new 
interesting LS technique, the Enhanced Least-Square Fitting of Ellipses (EDFE), that has 
been developed recently, and it was proposed in [5]. It is a LS procedure that improves 
the work described in [6]. In this work, Fitzgibbon et al. developed a direct computational 
method (i.e. B2AC) based on the algebraic distance with a quadratic constrain. This new 
approach overcomes the state of the art by solving the problems of numerical instability 
that can produce completely wrong results, such as infinite or complex solutions, not 
reported in the original work [6]. 
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We tested our algorithms by using the icub simulator. We used the iCub ODE 
simulator present in the iCub repository. Moreover, we slightly modified the simulator in 
order to create different scenarios for our experiments (such as by changing the color of 
the ball, by removing the table, etc.). In Fig. 5a and 5b an example of the ball detection 
algorithm output is shown. In Fig. 5a the input to the left camera is presented, i.e. the 
experimental scenario, while in Fig. 5a output of the algorithm is presented, These 
images are the input image as seen by the robot with the egocentric view (5a) and the 
same image with the superimposition of an ellipse, drawn by using the characteristic 
parameters obtained by computing the EDFE.  
 
 

          
                                        
                                        Fig. 5a                                                                            Fig. 5b            

 
Fig. 5 The input image, as seen by the robot with the egocentric  

view (2a) and the same image with the superimposition of an ellipse, drawn by using the characteristic 
parameters obtained by computing the EDFE. 

 
 

In addition, we implemented a tracking algorithm that directly commands the 
head of the robot, in order to be able to reconstruct the target object position (in terms of 
its centroid) by triangulating the information of the neck and head encoders (see Fig. 6).  
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Fig. 6 An example of triangulation of an object. Once the object has been detected by the cameras and tracked, 
it is possible to evaluate its 3D position in the surrounding space geometrically, by knowing the encoders 

position of the head and the neck of the robotic platform (in this case we refer to a humanoid robot).  
 
 
This will be fundamental for computing the Sensory-Motor maps, as will be explained in 
the next section In Fig. 7 a print screen is depicted, that shows an operative situation in 
which the simulator tracked the ball. The iCub program we implemented the position of 
the ball (which is the target to be grasped in this case), in terms of cartesian position. We 
adopted the same system reference as the simulator, in order to be fully compatible with 
the measures and the signs adopted in the virtual environment1. This allowed us not only 
an easier implementation of the software, but also to test easily our tracking algorithm by 
simulating different scenarios, i.e. by putting the ball in different positions (under the 
table, as in Fig. 5 or on the floor, as in Fig. 7).  
 
 
                                                 
1 The reference system is centered on the floor plane, at the center of the pole that sustains the robot. The x axis evolves 
along the front of the robot, the y axis runs along the left of the robot, and the z axis evolves along its height. 
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Fig. 7 A screenshot depicting the moment in which the simulated robot tracked the position of the ball in the 3D 
surrounding environment. Therefore, our program uses the encoders information to triangulate the position of 

the centroid of the object within the simulated space.  
 
 
Again, this is a test for using this software for testing our algorithms for the sensory-
motor maps generation. In fact, with the simulator it is possible to test our neural 
networks that generate the internal models for the sensory-motor maps without having the 
hardware iCub platform in the laboratory. Clearly, the simulator information is not 
exhaustive, but it is a good approximation for the software debug before using it on the 
rear robot, which can be extremely dangerous in case of wrong movements, due to the 
elevate torque of its motors. 
 

6.­The Servocontroler Module 
 
In order to accomplish successfully the reaching task it is followed a classical 
servocontroller approach in which we have defined as a control law: 
 

 
 

The angle theta represents the joint angles of the robot. The new theta joint estimated 
angle is obtained from the previous estimated theta angle plus the inverse Jacobian 
estimation. The error is derived from the end-effector estimated position in the image and 



D 3.5 Robotic Implementation of models of sensory-motor coordination 
 for reaching and grasping tasks 

 
 
 

Monday, April 28, 2008 Page 

the target position in the image. 
In figure 8 is shown the initial position of the robot and the target. The other subplots 

of this figure display the representation of these points in the two cameras at the 
beginning of the reaching. Figure 9 shows the position of the robot when it has reached 
the target. Finally figure 10 shows the error obtained with the servocontroller and the 
convergence of this error.  These results were obtained using the robotics toolbox for 
Matlab of Corke [7]. 
 
 

 
 
Figure 8. The left subplot has the position of the robot at the beginning of the reaching.  
The target position is represented by the blue points in the left subplot (feature points of 
the end effector at the end of reaching). The right top and right bottom subplots show the 
end-effector position (green circles) and the target image coordinates (blue crosses).

  
 

 
Figure 9. The left subplot has the position of the robot at the end of the reaching.  The 
target is represented by the blue points in the left subplot (partially obscured by the end 
effector). The right top and right bottom subplots show the end-effector position (green 
circles) and the target (blue crosses). Since the robot end-effector has reached the target 
the blue crosses are overlapping with green circles. 
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Figure 10. Error obtained with the servocontroller. 

7.­Discussion 
 
We have demonstrated in this deliverable how through a babbling motor phase similar to 
a self exploratory “babbling body” process developed by infants a forward model is 
constructed. The forward model is constructed using ANFIS neural networks. The 
forward model created serves to initialize optimally the image Jacobian that is used in the 
image-based visual servoing controller for a reaching task. 
We have used for the first time in a robotics application a new algorithm: The EDFE for 
image processing, and a new way in which a forward model can be used. The forward 
model calculated for the ANFIS network and trained with data derived after a babbling 
phase in the 6 link robotic manipulator. With reference to the vision module we 
implemented the EDFE pattern recognition algorithm, which allows more precision in the 
recognition of object that can be assumed as particular cases of elliptical sections. 
The method described here to find a forward model can be used with any robotic 
manipulator. The method through neural networks finds a relation between the joints of 
the manipulator and the position of the end-effector in the image space (image Jacobian). 
We are currently working to optimize the trajectories of the end-effector using the 
forward model. The forward model is used in biological systems as a predictor as is 
stated by [8] and [9]. This characteristic is being used in our future work to deal with 
constraints as obstacle avoidance during the trajectory or some singularities due to the 
redundancy. 
The forward model module and servocontroller module are being translated to the YARP 
architecture. We are integrating these different modules some of them developed in 
Matlab and others in the iCub ODE simulator to make all of them run in the YARP 
platform. 
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