
International Journal of Advanced Robotic Systems, Vol. 3, No. 1 (2006)
ISSN 1729-8806, pp. 043-048 043

YARP: Yet Another Robot Platform

Giorgio Metta*; Paul Fitzpatrick** & Lorenzo Natale*,**
* LIRA-Lab, DIST, University of Genova Genova, Italy
** MIT CSAIL Cambridge, Massachusetts, USA
Corresponding author: Lorenzo Natale, nat@liralab.it

Abstract: We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons
from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to
infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level
development and collaboration. Humanoid robotics is a “bleeding edge” field of research, with constant flux in
sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe
the main problems we faced and the solutions we adopted. In short, the main features of YARP include support
for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different
hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common
operating systems used in robotics.
Keywords: software platform, interprocess communication, humanoid robotics

1. Introduction

YARP is written by and for researchers in humanoid
robotics, who find themselves with a complicated pile of
hardware to control and with an equally complicated pile
of software. Achieving visual, auditory, and tactile
perception while performing elaborate motor control in
realtime requires a lot of processor cycles. The only
practical way to get those cycles at the moment is to have
a cluster of computers. Every year the capabilities of an
individual machine grows, but so also do our demands –
humanoid robots stretch the limits of current technology,
and are likely to do so for the foreseeable future.
Moreover, software easily becomes entangled with the
hardware on which it runs and the devices that it
controls. This limits modularity and code reuse which, in
turn, complicates software development and
maintainability. In the last few years we have been
developing a software platform to ease these tasks and
improve the software quality on our robot platforms. We
want to reduce the effort devoted to infrastructure-level
programming to increase the time spent doing research-
level programming. At the same time, we would like to
have stable robot platforms to work with. Today YARP is
a platform for long-term software development for
applications that are real-time, computation-intensive,
and involve interfacing with diverse and changing
hardware. It is successfully used on several platforms
(Aryananda, L. and Weber, J., 2004; Beltran, C. and
Sandini, G., 2005; Breazeal, C.F. and Scassellati, B., 1999;
Brooks, R.A. et al., 1999; Edsinger-Gonzales, A. and
Weber, J., 2004; Natale, L., 2004; Torres-Jara, E. et al.,
2005) in our research laboratories (see Table 1).

Robot Laboratory Size OS
Babybot LIRA-Lab 13/21/50 Win32/QNX6
Eurobot LIRA-Lab 11/NA/NA Win32/QNX6
RobotCub LIRA-Lab 3/NA/NA Win32
Obrero MIT-CSAIL 7/14/30 Linux/OSX
Mertz MIT-CSAIL 5/NA/NA Linux/OSX

Domo MIT-CSAIL 6/NA/NA Linux

COG MIT-AILab 32/50/75 Linux/QNX4

Kismet MIT-AILab 12/NA/NA Linux/Win32/QNX4
Table 1. Robots using YARP. To give an idea of the
complexity of the systems, in the third column we
provide the number of CPUs and the maximum number
of processes and ports employed (when available).

We begin the paper by summarizing the lessons we have
learned over the years while working on various robots,
some of which are software engineering commonplaces
and some of which are more specific to long-term robotic
research. The bulk of the paper discusses the
communication model supported by YARP. We then
briefly mention other components of the library, in
particular image processing and device drivers.

2. Motivation

Let us now introduce YARP by describing the high-level
lessons we have learned and applied within it.
One processor is never enough. Designing a robot control
system as a set of processes running on a set of computers
is a good way to work. It minimizes time spent wrestling
with code optimization, rewriting other people’s code,
and maximizes time spent actually doing research. The
heart of YARP is a communications mechanism to make

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

044

writing and running such processes as easy as possible.
Even where mobility is required this is not a limiting
factor if tethers or wireless communication are acceptable.
Modularity. Code is better maintained and reused if it is
organized in small processes, each one performing a
simple task. In a cluster of computers some processes are
bound to specific machines (usually when they require a
particular hardware device), but most of the time they
can run on any of the available computers. With YARP it
is easy to write processes that are location independent
and that can run on different machines without code
changes. This allows us to move processes across the
cluster at runtime to redistribute the computational load
on the CPUs or to recover from a hardware failure. YARP
does not contain any means of automatically allocating
processes as in some approaches like GRID
(http://www.grid.org). We deliberately assign this task to
the developer. The rationale is that: i) the link between
hardware and corresponding control software is subject
to constraints understood by the developer, but
cumbersome to encode, particularly in a continually
changing research environment, and ii) in a
heterogeneous network of processors, faster processors
might need to be allocated differently from slower
processors. The final behavior is that of a sort of “soft
real-time” parallel computation cluster without the more
demanding requirements of a real-time operating system.
Minimal interference. As long as enough resources are
available, the addition of new components should
minimally interfere with existing processes. This is
important, since often the actual performance of a robot
controller depends on the timing of various signals.
While this is not strictly guaranteed by the YARP
infrastructure, the problem is in practice alleviated
computationally by allowing the inclusion of more
processors to the network, and from the communication
point of view by the buffer policy (see Section 5.).
Stopping hurts. It is a commonplace that human cycles
are much, more expensive than machine cycles. In
robotics the human cost of stopping and restarting a
process can be very high. For example, that process may
interface with some custom hardware which requires a
physical reset. There may be other dependent processes
that need to be restarted in turn, and other dependent
hardware. YARP does its part to minimize dependencies
between processes. Communication channels between
processes can come and go without process restarts. A
process that is killed or dies unexpectedly does not
require processes to which it connects to be restarted.
This also simplifies cooperation between people, as it
minimizes the need to synchronize development on
different parts of the system.
Humility helps. Over time, software for a sophisticated
robot needs to aggregate code written by many different
people in many different contexts. Doubtless that code
will have dependencies on various communication,
image processing, and other libraries. Even the operating

system on which the software is developed can pose
similar constraints. This is especially true with code that
relies heavily on the services offered by the operating
system (such as communication, scheduling,
synchronization primitives, and device driver interfaces).
Any component that tries to place itself “in control” and
has strong constraints on what dependencies are
permissible will not be tolerated for long. It certainly
cannot co-exist with another component with the same
assumption of “dominance”. Although YARP offers
support for communication, image processing,
interfacing to hardware etc., it is written with an open
world mindset. We do not assume it will be the only
library used, and endeavor to be as friendly to other
libraries as possible. YARP allows interconnecting many
modules seamlessly without subscribing to any specific
programming style, language interface, or demanding
specifications as for instance in CORBA (Vinoski, S., 1997)
or DCOM (http://www.microsoft.com). Such systems,
although far more powerful than YARP, require a much
tighter link between the general algorithmic code and the
communication layer. We have taken a more lightweight
approach: YARP is a plain library linked to user-level
code that can be used directly by instantiating
appropriate classes. Finally, other programming
languages can access YARP as well, provided they can
link and call C++ code. We have successfully used YARP
from within Matlab, Python and L (Brooks, R., 1990).
Exploit diversity. Different operating systems offer
different features. Sometimes it is easier to write code to
perform a given task on one OS as opposed to another.
This can happen for example if device drivers for a given
board are provided only on a specific platform or if an
algorithm is available open source on another. We
decided to reduce the dependencies with the operating
system. For this we use ACE (Huston, S.D. et al., 2003), an
open source library providing a framework for
concurrent programming across a very wide range of
operating systems. YARP inherits the portability of ACE
and has indeed been used and tested on Windows, Linux,
QNX 6, and Mac OSX.

3. Communication

Communication in YARP follows the Observer pattern
(Gamma, E. et al., 1995). The state of special Port objects
can be delivered to any number of observers, in any
number of processes distributed across any number of
machines. YARP manages these connections in a way that
insulates the observed from the observer and, just as
importantly, insulates observers from each other. For
example, if one observer reads a data source slowly and
infrequently, this does not force other observers to slow
down. In YARP, a port is an active object managing
multiple connections for a given unit of data either as
input or output (see Figure 1). Each connection has a state
that can be manipulated by external commands, which

Giorgio Metta; Paul Fitzpatrick & Lorenzo Natale / YARP: Yet Another Robot Platform

045

manage the connection or obtain state information from
it. Ports can behave either as input or output. An input
port can receive from multiple connections at different
data rates “speaking” different protocols (e.g. TCP, UDP,
multicast). An output port can send data to many
destinations reading at different rates on different
protocols. Service channels are also temporarily created
to perform the handshaking between ports; in this case
the protocol of choice is TCP for reliability. The use of
several different protocol allows us to exploit their best
characteristics:

• TCP: reliable, it can be used to guarantee the
reception of a message;
• UDP: faster than TCP, used for point to point
connections;
• multicast: used for creating one to many connections,
efficient for distributing the same information (e.g.
images from cameras) to many targets;
• shared memory: employed for local connections
(selected automatically whenever possible, without the
need for programmer intervention);
• QNet: a fast and synchronous protocol used under the
QNX real-time OS.

Ports can be connected either programmatically or at
runtime. Communication is fully asynchronous and as
such messages are not guaranteed to be delivered unless
special provisions are made. The default behavior of
YARP ports is targetted at dealing with recurrent
messages, updated and sent often, where losing one
message does not compromise the integrity of the system.
This is a characteristic of sensor data such as images and
sound, where it is far more important to keep up with the
present than to process every bit received. A typical
application is, for example, the acquisition of images, and
delivery to many machines performing the processing in
parallel. Slower processes might simply not use all the
available frames in the stream of data and instead skip
some of them. Details of the port API are reported in the
next section (Section 4.). Message delivery can be
guaranteed, but at the cost of introducing a subtle
coupling between processes (see Section 5.).
Ports are located on the network by symbolic names
which are managed by a name server. The name server
maps symbolic names (strings) into the triplet composed
of the IP address, port number, and interface name. This
information is all that is required to establish socket
communication between two endpoints. A description of
the network topology is stored statically in the name
server tables (a cluster might have multiple separate
networks) and used to reply to registration or connection
requests by the clients. The first operation each port must
perform is the registration of its name with the name
server. Registration is typically followed by connection to
a peer of the same data type. When the user is done with
the port, it can be stopped, unregistered, and eventually
destroyed.

Fig. 1. The port internal structure: in practice either input
or output connections, but not both, are used for a given
instance of a port object.

Ports can deal with any data type. For simple data types
(i.e. not containing pointers) the port class is already
equipped with the appropriate communication code.
Complex data types are dealt by specializing the port C++
template for the new type and providing the serialization
and deserialization functions. Serialization is done by
providing lists of memory blocks, to minimize copies
(crucial for bulky types such as images). Support for
marshalling is not built into the library. Ports are
implemented as C++ templates and specialized to the
type of the data to be transmitted or received. This creates
a very clean and consistent client interface.

4. Port API

We will show an example of the idiom used in YARP for
communication. As mentioned in the previous section,
the Port class is the key abstraction used. Ports are
typically instantiated with a specific type. For example, if
we wish to receive integers, we can create an input port at
any point in the program and in any thread, as follows:

YARPInputPortOf<int> in_port;
in_port.Register ("/my_in_port");

This creates a port for receiving integers with the default
buffering provided by the communication layer (see
Section 5. for a discussion of alternatives). If we are in a
heterogeneous network, it would be wiser to use
YARPInputPortOf<NetInt32>, where NetInt32 is a standard
integer type that is the same size and byte order on all
platforms. The next statement instructs the port to
register with the name server with the arbitrary name
“/my_in_port”. A hypothetical sender should conversely
create a port as in the following example:

YARPOutputPortOf<int> out_port;
out_port.Register ("/my_out_port");

This is an output port employing the default protocol
(TCP, or shared memory whenever possible); alternatives

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

046

can be easily requested. The protocol type is determined
by the output port since the input port can receive any of
the available protocols. Again, the port has to register
with the name server by calling Register. As described
earlier, the port is a template with the argument of the
template being the type of the data being sent.
The next step is to wait for data from the input port and
send data through the output port waiting or polling for
data can be done in several ways; here is one way:

if (in_port.Read()) {
int datum = in_port.Content();
cout << datum << endl;

}

This shows how to read from the port with a blocking
Read and acquire the received data through Content. If the
call to Read succeeds, then the object returned by any
subsequent call to Content will be the received data, and
is guaranteed not to change or be overwritten until the
next call to Read. If new data is sent to the port in the
meantime, the appropriate action will be taken based on
the port buffering policy (see Section 5.). For example, the
data may be stored in an alternate buffer and then
queued up to become the Content after the next call to
Read. On the sending side we will have something like:

out_port.Content() = 42;
out_port.Write ();

This fills the content (a simple integer in this case) by
accessing the buffer through Content and sends it by
calling Write. The use of Content is important to avoid
unnecessary copies while still maintaining an abstraction
barrier between the port and the user. We can now
connect the two processes (one receiving, one sending)
by, for example, using the YARP command-line utility
yarp-connect:

yarp-connect /my_out_port /my_in_port

To halt the communication the user can detach the ports
in a similar way. The ports are not destroyed by
detaching them and in fact can be connected and
disconnected freely. When done with the ports the user
code can call Unregister to remove the ports from the
name server, and finally destroy them by invocation of
the C++ destructor (perhaps implicitly when exiting the
port scope).
The Write method abstracts over a great deal of
complexity. An output port may be connected to many
input ports, all of which may read data at different rates.
By default, when Write is called, a reference to the buffer
is passed to every free output connection (to block and
wait for all sends to finish before trying the next one,
FinishSend can be called). The buffer will be retained until
it is no longer needed by any output connection, and then
given back to the port to be recycled.
This short example shows all the main features of the port
classes including the strong typing of the communication
channels, the independence of the connected processes,

and the use of an external utility to command ports. Port
creation, connection, and communication can occur in
one part of a much larger program without, for example,
having to place special initialization steps in some
particular phase of start-up. This makes it very easy to
add YARP-style communication incrementally to existing
code.

5. Decoupling timing

A very useful feature of YARP is that “observers” (input
ports) can be connected to an “observable” (output port)
with minimal impact on existing observers. A “slow”
observer, which takes time to process each update it
receives from the observable, does not force a “fast”
observer of the same observable to slow down. To
achieve this requires either buffering of messages for
bursty sources, or simply dropping messages for
observers that cannot keep up. The second approach is
the default behavior in YARP, since it is important to
minimize latency.
Let us assume we have a “server” process which contains
an observable (an output port), and a “client” process
which contains a corresponding observer (an input port).
The server process can update the observable in one of
three ways:
• The default mechanism is no-wait. When the server
process calls the observable’s update method (Write),
then the current state of the observable is made available
to be sent to every free observer, and the server can
continue without delay. Free observers are ones not
currently in the process of reading a previous state of the
observable.
• An alternate mechanism is wait-after. After the same
steps as no-wait are taken, the server can choose to wait
for all communication to cease before continuing (by
calling FinishSend). This guarantees that all observers
will be notified and free to receive the next update.
• The final mechanism is wait-before. The server can
choose to wait for all communication to cease before
updating (by calling a blocking version of Write). This
guarantees that all observers will be free, and the update
will be sent to all of them. The difference between this
and wait-after is that, if the processing time of the server
(the time between updates) is greater than the time taken
to send the update to all observers, then the server will
never actually need to wait.

To insulate the server from the details of implementing
all this, the state associated with an observable is made
logically distinct from the observable itself, and once an
update is requested (by a call to Write) the state becomes
the property of the communication system, while the
server is given a replacement object to prepare for the
next update.
The communication system manages a pool of such state
objects which grows to whatever size is necessary based

Giorgio Metta; Paul Fitzpatrick & Lorenzo Natale / YARP: Yet Another Robot Platform

047

on the speed of the various observers. On the client side,
there are some choices in how the observer behaves:
• triple-buffer behavior: an observer becomes free for
another update immediately after having received one,
before any processing is done by the client. If updates
arrive faster than processing occurs, then updates will be
lost from time to time (where “lost” means “never
processed”), but the most recent update received will
always be available to the client immediately when
processing is completed.
• double-buffer behavior: same as above, but if an update
is currently arriving, then no new content will be
available to the client until the update arrives. This is
good if it is more important to minimize latency of non-
dropped updates than to maximize throughput.
• single-buffer behavior: the arrival of updates is delayed
until the client completes processing. No updates will
ever be lost on the client side.

The default behavior for YARP is no-wait for the
observable (server side) and triple-buffer for the observer
(client side). This choice minimizes the time spent waiting
for communication to occur by the server and the client,
and permits updates to be lost (either by never sending
them, or discarding them on the client side) if the client is
not keeping up. This is generally a good choice for real-
time performance (see Figure 2).
The default of no-wait on the server side is particularly
important, since it minimizes coupling between observers
of the same observable. If it is important that updates are
never lost, then inevitably there will be coupling, since a
slow client can then force the server to slow down the
rate at which it serves all clients.
The default of triple-buffer on the client side insulates the
server from the client’s behavior by default. Even if the
server is configured to wait, default clients will only
delay the server with the time taken to communicate with
them, and not the time they take to process the update.
Clients which absolutely need a guarantee of zero update
loss can choose single-buffer behavior.

6. Image processing

Support for visual processing is a mandatory requirement
for a software library designed to be used in humanoid
robotics. Efficiency is very important in real-time image
processing, so we chose an approach which interfaces
well with popular optimized libraries, but which is still
capable of good performance in their absence.
To help developers write efficient visual processing
routines, Intel released the Image Processing Library
(IPL). This library is optimized to provide high
performance on machines which employ Intel processors,
especially if equipped with MMXTM technology. The IPL
library is a set of C functions which implement basic
operations on images, from simple algebraic operations
on pixels to color conversions and convolutions.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Frame 1 Frame 2 Frame 3 Frame 5

Frame 7 Frame 8

Frame 6

Frame 1 Frame 3 Frame 5 Frame 7

Frame 1 Frame 2 Frame 5Frame 4 Frame 7

Fig. 2. The top row represents an output port configured
for no-wait; dashed and solid lines show (exaggerated)
start and end times of sending an update to three
observers (input ports), configured as single-buffer, double-
buffer, and triple-buffer respectively. For the scenario
shown, the processing time of the client is greater than
that of the server.

Another advantage of using the IPL is that it is at the core
of the OpenCV library (Bradsky, G., 2004) which provides
sophisticated routines for image processing such as
filtering, face tracking, optic flow, and much more.
Our basic image class has an internal structure that is
compatible with the IPL library. This allows any user to
take full advantage of the IPL and/or OpenCV libraries; if
these libraries are not used, then a core set of functions
are available through YARP. YARP also provides support
for transmitting images across the network.

7. Device drivers

A frequent problem encountered during development in
robotics is that it is very hard to reuse code on different
platforms. For example, two mechanically similar
platforms may have different electronics – different frame
grabbers, different control boards, etc. (see Figure 3). In
these situations it is not possible to reuse code written for
one platform on the other unchanged. However
something can be done to reduce the differences and
localize them to specific components by minimizing the
degree to which high level software modules are
concerned with the low level details of the underlying
hardware platform.
Another problem occurs when two identical boards are
used on setups that are mechanically different.
Experience shows that in these situations code reuse is
very difficult. Consider for instance the example of two
robotic arms controlled by identical boards. The
calibration of the joints might be different if index signals
from the encoders are available or if hardware limits are
present in the joints. Likewise, the procedure required to
activate the amplifiers might differ in the two cases.
These dissimilarities cannot be handled by different
configuration files as they imply the execution of different
routines. In YARP, the ensemble of these routines is
grouped in an adapter. This class is, in general,
responsible for implementing methods to correctly
initialize and shut down the device, but it can implement
other functionalities as well – it is the place where all the
peculiarities of each particular piece of distal hardware

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

048

�

�

Fig. 3. YARP makes a distinction between proximate
devices, such as control boards and framegrabbers which
are used to talk to distal devices such as arms or sensors.
In different systems, the same proximate device may be
used to interface with different distal devices (A).
Conversely, a given distal device may be interfaced with
using a choice of proximate devices (B). Taking care to
disentangle these two devices aids code reuse.

(arms, sensors, etc.) is mapped onto the proximal device
(control boards, framegrabbers, etc.) used to interface
with it. As such it collects all and the only routines
specific to each hardware device.
Finally, the driver for the proximal device and the
adapter for the distal device are aggregated together by a
single class. The interface between higher level software
modules and the hardware occurs through this class and
it is thus independent of the device driver or the actual
hardware underneath. Code changes required to use
different boards or mechanical devices are localized to
the device driver and the adapter respectively.

8. Conclusions

To operate in natural, unengineered environments, we
need perceptive robots. We hope that humanoid robots
will ultimately be able to operate productively in such
environments. That means that between now and when
that happens, we can only expect the sensor density and
computational burden on our robots to grow. Real-time
operation under this burden is challenging enough, but
we must also expect the hardware we work with to
change continually. The YARP library has grown
organically to face this challenge. Somewhat similar
projects have evolved from other domains in robotics
such as mobile navigation (Carmen/IPC (Montemerlo, M.
et al., 2003)) and commercial/industrial robotics
(OROCOS, (http://www.orocos.org), Constellation from
RTI (http://www.rti.com/products/constellation)), and we
expect that there will be further development as the
perceptual component of robotics grows in importance.

Acknowledgements

This work was partially funded by DARPA DABT 63-00-
C-10102, and by NTT under the NTT/MIT Collaboration
Agreement, and by European Union grants RobotCub
(IST-2004-004370) and ADAPT (IST-2001-371173).

References

Aryananda, L. and J. Weber (2004). Mertz: A quest for a

robust and scalable active vision humanoid head
robot. Proceedings of IEEE/RAS Int. Conf. on
Humanoid Robots, pp.513-532, November 2004, Los
Angeles, CA

Beltran, C. and G. Sandini (2005). Visual attention
priming based on crossmodal expectations.
Proceedings of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1283-1288, August 2005,
Edmonton, Alberta, Canada

Bradsky, G. (2004). Open source computer vision library,
In: Emerging Topics in Computer Vision, G. Medioni and
S. Kang (Ed.), 521-582, Prentice Hall

Breazeal, C. F. and B. Scassellati (1999). How to build
robots that make friends and influence people.
Proceedings of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp.858-863, October 1999,
Kyonjiu, Korea

Brooks, R. (1990). The behavior language; user's guide.
Tech. Report: AIM-1227, 1990, Artificial Intelligence
Laboratory, MIT, Cambridge, MA

Brooks, R. A., C. L. Brezeal, M. Marjanovic, B. Scassellati
and M. Williamson (1999). The COG project: Building
a Humanoid Robot, In: Computation for Metaphors,
Analogy and Agents, C. L. Nehaniv (Ed.), 52-87,
Springer-Verlag

Edsinger-Gonzales, A. and J. Weber (2004). Domo: A
force sensing humanoid robot for manipulation
research. Proceedings of IEEE/RAS International
Conference on Humanoid Robotics, pp.273-291,
November 2004, Los Angeles, CA

Gamma, E., R. Helm, R. Johnson and J. Vlisside (1995).
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, USA

Huston, S. D., J. C. E. Johnson and S. U. (2003). The ACE
Programmer's Guide, The Practical Design Patterns for
Network and Systems Programming. Addison-Wesley,
Boston, MA

Montemerlo, M., N. Roy and S. Thurn (2003).
Perspectives on standardization in mobile robot
programming: The Carnagie Mellon Navigation
(CARMEN) toolkit. Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pp.2436-2441, October 2003, Las Vegas, NV

Natale, L. (2004). Linking action to perception in a
humanoid robot: a developmental approach to
grasping. DIST. Genova, University Of Genoa

Torres-Jara, E., L. Natale and P. Fitzpatrick (2005).
Tapping into touch. Proceedings of Fifth Int. Conf. on
Epigenetic Robotics, pp.79-86, July 2005, Nara, Japan

Vinoski, S. (1997). CORBA: integrating diverse
applications within distributed heterogeneous
environments. IEEE Communications 35, 2, February
1997, 46-55

