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ABSTRACT

This paper describes a developmental approacheadésign of a humanoid
robot. The robot, equipped with initial perceptaad motor competencies, explores the
“shape” of its own body before devoting its attentito the external environment. The
initial form of sensorimotor coordination consisfsa set of explorative motor behaviors
coupled to visual routines providing a bottom-umss®y-driven attention system.
Subsequently, development leads the robot froncdmstruction of a “body schema” to
the exploration of the world of objects. The “bosisthema” allows controlling the arm
and hand to reach and touch objects within the ttebmorkspace. Eventually, the
interaction between the environment and the roldmiy is exploited to acquire a visual
model of the objects the robot encounters which tbam be used to guide a top-down
attention system.

Keywords: development, humanoid robotics, body reehetop-down and

bottom-up attention

(1) Introduction

In the past few years there has been significachn@ogical advance in
computer technology and robotics. Today computegstauch more powerful than they
used to be and they can be interconnected thraasgthnetworks, which allow efficient
parallel computation. At the same time digital ceasehave higher resolution, better
quality and higher frame rate. This notwithstandiwg are still far from achieving the
dream of artificial intelligence. Artificial systesr(computer programs, expert systems or

robots) are not able to face the challenges ofeaéworld. We are still not capable of
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building devices which are able to cope with thealkility of the world where, on the
other hand, even the simplest animal can thrivkewise there is a growing interest in
the scientific community to the study of cognitisgstems with the aim of implementing
cognitive abilities in artificial systems. The sydf cognition is still in the pre-
paradigmatic stage and, indeed, little agreememtbeafound even in its definition (see
(Clark, 2001) for a review). According toognitivism cognition is “a computational
process carried out on a symbolic representatiothefworld”. Symbols represent the
world and can be shared across different entit&stfi€ial or biological); they are a
complete characterization of the world in which #mity is located, and as such are
independent of the entity itself and its past eiguere. Somewhat at the other extreme,
emergent approaches define cognition as the rektlie interaction and co-development
between the agent’'s body and the environment irchvhilives (Maturana and Varela,
1998, Beer, 2000, Sandini et al., 2004).

Although the definitive answer is still to be foyritle observation of biological
systems provides hints to plausible solutions. Bspects look crucial: i) the existence of
a body (embodiment) and ii) the fact that the imrrepresentation of the world is
acquired by acting in the environment. The two nemuents are obviously intertwined,
as the interaction between the agent and the emaeat is possible only by means of a
physical body. As a consequence, internal repraens become function of the
particular embodiment and, perhaps more importafiythe history of experiences of
the agent.

Subscribing to the emergent approach implies th&grmal representations
cannot be built into the system “by design”; instéae cognitive system has to be able to

create these representations by directly intergatiith the environment or, indirectly,
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with other agents. Through action, the embodimert environment co-determine the
resulting representations.

Motivated by these considerations, this paper pepoa developmental
approach to the realization of a number of cogeitabilities in a humanoid robot.
Although a fair amount of cognitivism is still pesd, especially in the realization of the
visual system, learning permeates the implememtadiovarious levels. Learning and a
certain degree of adaptation is clearly the presitguto a fully emergent design,
although not yet an end or a definite answer touhderstanding of cognitive systems
altogether.

We identified the minimum requirements for our robs having an oculomotor
system, an arm, and a hand. Although simplified ttinfiguration suffices in allowing
active manipulation of the world via reaching andhsping. The robot follows a
developmental route that goes initially through éxploration of its body and terminates
into the characterization of external objects (segmentation) by effect of grasping.

Conceptually this process can be divided in thrhasps. The first stage is
devoted to learning the internal models of the b@dy call it “learning the body-map”)
which provides basic motor and perceptual skike jaze control, eye-head coordination
and reaching. Based on these abilities the interactvith the external world is
investigated in the second phase where the robobdérs properties of objects and ways
of handling them (learning to interact). The rolr¢s simple stereotyped actions like
pushing/pulling and grasping of objects which allde start the acquisition of
information about the entities that populate itsiemment and simultaneously discover
new more efficient ways of interaction (for exampliéferent grasp types). Finally the

third stage concerns learning to understand ardpret events; the robot has associated
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its actions with the resulting perceptual consegasn Interpretation is achieved by
inverting this association; perceptions are pr@eédnto the corresponding actions which
work as a reference frame to give meaning to whpphns in the environment.

In our past work we have addressed some of thecespelated to this third
phase (Natale et al., 2002, Fitzpatrick et al.,300 this paper we focus on the two first
phases: learning a body-map and learning to interac

We show how the robot can acquire an internal moflés hand which allows
the robot to localize it and anticipate its pogitim the visual scene during action
execution. The hand internal model is then usdddm to reach a point in space and to
accommodate the position of the hand with respedhé object during grasping. The
robot uses these abilities to build a visual madehe objects it grasps. Once an object is
grasped, in fact, the robot can move and rotate lituild a statistical model of its visual

appearance.

(1) Experimental Platform

The experiments reported in this paper were camwigiddon a robotic platform
called Babybot (Figure 1). The Babybot is an ugpeso humanoid robot which consists
of a head, an arm and a hand. The head has 5 degfréfeedom, two of which control
the neck in the pan and tilt direction, whereasather three actuate the two eyes to pan
independently and tilt on a common axis. The armlnimate PUMA 260, an industrial
manipulator with 6 degrees of freedom; it is modnkerizontally to better mimic the
human kinematics. The hand has 5 fingers; eacteffihgs three phalanges, the thumb
has an additional degree of freedom which alloww iperform a rotation toward the

palm. Overall the number of joints is 16 but foagsens of space and weight they are
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controlled by using only six motors. Two motors aomnected to the index fingers: they
are linked to the first (proximal) and second phgks. The distal (small) phalange is
mechanically coupled to the preceding one so tiatwo bend together (see Figure 1).
Two motors control the motion of middle, ring arntllé finger. As in the case of the

index finger, the proximal phalanges are actuated bingle motor, while the second and
third phalanges are actuated by a second motor.nfdwhanical coupling between the
joints is realized by means of springs to alloweatain degree of adaptation in case of
physical contact or impact with solid objects. Egample, during a movement of flexion

of the fingers toward the palm, if the middle fingeere to be blocked by an obstacle the
others would continue to bend up to the equilibriefthe torque generated by the motor
and that of the spring (Figure 1 b) and c)). Themesavould happen in case the distal
phalanges had hit the obstacle. The thumb is difteas one motor controls the rotation
around an axis parallel to the palm and a secontbmie connected to the three

phalanges, whose independent motion is permittedlastic coupling as for the other
fingers.

The sensory system of the Babybot consists of twmeras and two
microphones for visual and auditory feedback. Taddgedback is provided by 17 force
sensing resistors mounted on the hand, five of lwhie placed on the palm and the
remaining 12 evenly distributed on the thumb, indeiddle and ring fingers. A JR3 6-
axial force sensor provides torque and force feeklbaeasured at the wrist. Further
proprioceptive information is provided by encodemsunted on all motors and by a
three-axis gyroscope mounted on the head. Morelslefaout the Babybot architecture

can be found elsewhere (Natale, 2004).
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[FIGURE 1 about here]

(1) Visual System

One of the first steps of any visual system is thfalocating suitable interest
points in the scene (“salient regions” or events) aventually direct gaze toward these
locations. Human beings and many animals do nat lsavmiform resolution view of the
visual world but rather only a series of snapshatguired through a small high-
resolution sensor (e.g. our fovea). This leadsvim questions: i) how to move the eyes
efficiently to important locations in the visualese, and ii) how to decide what is
important and, as a consequence, where to look next

The literature follows two different approacheghe attempt of accounting for
these facts. On the one hand, the space-basediait¢heory holds that attention is
allocated to a region of space, with processingiedirout only within a certain spatial
window. Attention in this case could be directec@teegion of space even in absence of a
real target (the most influential evidences for #matial selection come from the
experiments of Posner, Snyder and Davidson (Poshet., 1980) and Downing and
Pinker (Downing and Pinker, 1985)).

On the other hand, object-based attention thearigge that attention is directed
to an object or a group of objects, and that thentibn system processes properties of
object(s), rather than regions of space. This t¢jased theory is supported by growing
behavioral and neurophysiological evidence (Eghalet 1994, Scholl, 2001). In other
words, the visual system seems optimized for segimgrcomplex three-dimensional

scenes into representations of (often partly oaidbjects for recognition and action.
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Indeed, perceivers must interact with objects i@ ¥orld and not with disembodied
locations.

Finally, another classification can be made dep®endn which cues are actually
used in modulating attention. One approach usesretp information including basic
features such as color, orientation, motion, degiid, conjunctions of features. A feature
or a stimulus catches the attention of the systént differs from its immediate
surrounding in some dimensions and the surrourrda@sonably homogeneous in those
same dimensions. However higher level mechanismsnaolved as well; a bottom-up
stimulus, for example, may be ignored if attentisralready focused elsewhere. In this
case attention is also influenced by top-down imi&@tion relevant to a particular task.

In the literature a number of attention models tnsg the first hypothesis have
been proposed (Giefing et al., 1992, Milanese, 1883t al., 1998); most of them are
derived from Treisman’s Feature Integration Thediyl) (Treisman and Gelade, 1980).
This model employs a separate set of low-leveluigatmaps which are combined
together by a spatial attention window operating imaster saliency map. An important
alternative model is given by Sun and Fisher (Soah Bisher, 2003), who proposed a
combination of object- and feature-based theorys (thodel, unfortunately, requires
hand-segmented images as input for training).

While it is known that the human visual system &ets basic information from
images such as lines, edges, local orientation gision not only represents visual
features but also the items that such featuresacteize. But to segment a scene into
items, objects, that is to group parts of the Jidigdd as units, the concept of “object”
must be known by the system. In particular, theran intriguing discussion underway in

vision science about reference to entities thatl@ome to be known as "proto-objects"
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or "pre-attentive objects" (Pylyshyn, 2001). These steps up from mere localized
features, and they have some but not all of theacheristics of objects.

The visual attention model we propose starts bysiclaming the first stages of
the human visual system, using then a concept lnsae based on “proto-objects”
defined as blob of uniform color in the images. Mheince the robot can act on the
world, it can do something more: once an objeagrssped the robot can move and
rotate it to build a statistical model of the coldobs, thus effectively constructing a
representation of the object in terms of proto-otg@nd their spatial relationships. This
internal representation feeds then back to thentédie system of the robot in a top-down
way; as an example we show how the latter can bd te direct attention to spot one
particular object among others that are visibl@dable in front of the robot.

Our approach integrates bottom-up and top-down;dnesarticular bottom-up
information suggests/identifies possible regionghie@ image where attention could be
directed, whereas top-down information works agime for those regions during the

visual search task (i.e. when the robot seeks foroavn object in the environment).

(2) Log-polar images

Figure 2 shows the block diagram of the first staféhe visual processing of
the robot. The input data is a sequence of colpplalar images (Sandini and Tagliasco,
1980). The log-polar transformation models the nragpf the primate visual pathways
from the retina to the visual cortex. The ideampeoying space-variant vision is derived
from the observation that the distribution of tlumes, i.e. the photoreceptors of the retina
involved in diurnal vision, is not uniform: conesiMe a higher density in the central

region called fovea, while they are sparser ingegphery. Consequently the resolution
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is higher and uniform in the center while it decesin the periphery proportionally to
the distance from the fovea.

The main advantage of log-polar sensors is comiputat as they allow to
acquire images with a small number of pixels andtgemaintain a large field of view
and high resolution at the center (Sandini and i&agb, 1980). Moreover, this particular
distribution of the receptors seems to influenaedban-paths of an observer (Wolfe and
Gancarz, 1996), so it has to be taken into accomirtbetter model the overt visual

attention.
[FIGURE 2 about here]

The radial symmetry of the distribution of the ceroan be approximated by a
polar distribution, whereas their projection to tipeimary visual cortex is well
represented by a logarithmic-polar (log-polar)rilisttion mapped onto an approximately
rectangular surface (the cortex). From the mathieadapoint of view the log-polar

mapping can be expressed as a transformation bettheepolar plane(r,q) (retinal
plane), the log-polar plan(a(,h) (cortical plane) and the Cartesian pldr)@y) (image

plane), as follows (Sandini and Tagliasco, 1980):

h=a94,

r )

x =log,—.
rO

where 7, is the radius of the innermost circll,q is the minimum angular resolution of

the log-polar layout anélr,q) are the polar co-ordinates.
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Figure 3 illustrates the log-polar layout by shogvanstandard rectangular image
and its log-polar counterpart. It is worth notitngt the flower’'s petals, that have a polar
structure, are mapped horizontally in the log-pataage. Circles, on the other hand, are
mapped vertically. Furthermore, the stamens tlainithe center of the image of the
flower, occupy about half of the corresponding pmdar image (the cortical

magnification).

[FIGURE 3 about here]

(2) Visual attention

As a first step the input image is smoothed, byntakhe average between the
current frame and the output of the color quantraf{see later) on the previous frame.
Then the red, green, and blue channels of eacheiraag separated, and the yellow
channel is calculated as the mean of the red aedngone. These four channels are
combined to generate three color opponent chansietdlar to those of the retina. Each
of these channels, typically indicated as (R+G-RG+B+Y-), has a center-surround
receptive field (RF) with spectrally opponent colesponses. That is, for example, a red
input in the center of a particular RF increasesrésponse of the channel R+G-, while a
green one in the surrounding decreases its respd®hsespatial response profile of the
RF is expressed by a Difference-of-Gaussians (Cfa@gtion. Each pixel is considered
as the center of a RF, so that the output of thefilRfting is simply obtained by a

convolution of the whole image with a DoG kernedngrating an output image of the
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same size of the input. This computation, considefor example th&®+G- channel, is

expressed by:

R'G (x)= axRx) Ag,(x, s,) - x@x) Ag,(x,s,). )

The two Gaussian functiong, (x, sc) and gs(x, ss) are not balanced and the
ratio b/a is 1.5, consistent with the study of Smirnakisakt(Smirnakis et al., 1997)
Similarly to what happens in the human retina (R, 1995) the unbalanced ratio
implicitly code the achromatic information. It isovth noting that filtering the log-polar
images with a standard space-invariant filter cggomds to a space-variant filtering in
the original Cartesian image (von Seelen and Mall®90).

Edges are then extracted on the three channelgaselyaby employing a
generalization of the Sobel filter due to Li et(li et al., 2003). The resulting edge maps

are combined together to generate a single magllas/é:

E(x) =max{ abg{ B (x)) . ab§ Bx(x)), atfs E(x))} ®)

It has to be noted that the log-polar transform thasside effect of sharpening
the edges near the fovea due to the already meudtionagnification factor. To
compensate for this effect the edge map is mudtiplby an exponential function, and
normalized to a fixed range (0-255).

It has been speculated, that synchronizations sfiadi cortical neurons may
serve as the carrier for the observed perceptualpimg phenomenon (Eckhorn et al.,
1988, Gray et al., 1989). The differences in oatll phase between spatially
neighboring spiking cells could be used in prineid label different objects in the scene.
We have used a watershed transform (rainfallingamér (Vincent and Soille, 1991, Smet

and Pires, 2000) on the edge map to simulate thdtref this synchronization and to
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generate the proto-objects. The activation is gpfeam the center of the image (in the
edge map) until all spaces between edges are fiiledls a result the image is segmented
into blobs with either uniform color or uniform glient of color.

Each blob is then tagged with the mean color ofghxels within its internal
area (this leads to a sort of quantized image).r€kalt is blurred with a Gaussian filter
and stored: it will be averaged with the next fralmeobtain a temporal smoothing and
reduce the effect of noise. After an initial startdelay of 4-5 frames, the number of
blobs and their size stabilizes.

As discussed above, it is known that a featuretiorubus is salient if it differs
from its immediate surrounding area. We chose koutate the bottom-up salience as the
Euclidean distance in the color opponent spacedmiveach blob and the average color
in a ball surrounding it. The radius of the bafigtspot or focus of attention) is not fixed:
it changes with the size of the objects in the scén the same way the definition of
“immediate surrounding area” should be relativéhis size of the focus of attention. For
this reason the greater part of the visual attentimdels in the literature uses a multi-
scale approach and filters the salience map wifalde filters, or “blob” detectors (ltti
and Koch, 2001). These approaches lack continuitghe choice of the size of the
attention focus. We propose instead to vary dynalfyithe region of interest depending
on the size of the blobs. In other words, we comphé salience of each blob in relation
to a neighborhood region whose size is proportidoathat of the blob itself. In our
implementation we use a rectangular region 3 tithessize of the bounding box of the
blob. The choice of a rectangular window is noideatal, it was chosen because filters
over rectangular regions can be computed effigidoyl employing the integral image as

in (Viola and Jones, 2004). Blobs that are too sm@atoo big are discarded from the
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saliency computation and will not be consideredpassible candidates to be part of
objects (proto-objects).

The bottom-up saliency is computed as:

Snmmuf%\/(R’G)-(Rq . (6R(GHR p ("BY (* Byz.(ﬂr)

blob surround blob surround blob surround

Where< ) indicates the average of the pixel values overedam area (as in the

subscripts).

The top-down influence on attention is, at the metnealculated in relation to
the visual search task. When the robot has acquiretbdel of the object and begins
searching for it, it uses the visual informationtio object to bias the saliency map. In
practice, the top-down saliency map is computedhasdistance between the average

color of each blob and that of the target:

NE

The total salience is simply estimated as the ficeabination of the two terms

o255 4 (RO} (70 - (67 {59+ ('5y {8y O

blob object blob object blob object

above:

S =a ><$op- down '1b ﬁonom up (6)

The total salience map is eventually normalized in the range 0-255, as a
consequence the salience of each blob in the insagdative to the most salient one. The
target of the next saccade is the center of mastheofmost salient blob (this is in

agreement with human behavior (Melcher and Kowlleg9).
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As a final note on efficiency, it is worth sayirtat the use of log-polar images
allows to compute the saliency map in real-time f{fEBnes per second on a 2.8Ghz

Pentium 1V).

(2) IOR

Local inhibition is transiently activated in thelisace map. This prevents the
focus of attention to be redirected immediateln focation that was previously attended.
Experiments in human psychophysics have demondtrdte existence of such an
“inhibition of return” (IOR) coded in an allocerdrreference frame (Posner and Cohen,
1984) and in an object-based coordinates (Tipfg941L

Our system implements a simple object-based I0R.rdhot maintains a list of
the last five positions (Wolfe, 2003) it has viditeoded in a body centered coordinate
system. The color information of the relative bldbsalso stored in the list which is
updated with a First-In First-Out policy. When ttobot moves its gaze — for example by
moving the eyes or the head in coordination —é&psememory of the blobs it has visited
earlier. Inhibition occurs only if the blob presetiie same color that is stored in the list;

in case the object moves or its color changesadtetibn becomes available for fixation.

(1) Learning about the Self

Internal models are thought to be available to lthain and responsible for
formulating predictions about the world or simutatithe body (Wolpert and Miall,
1996). In general the collection of the internaldeis required to represent the body is
called thebody-schemait involves, for example, the relative positioofsthe limbs, and

their weight and size. In humans and biologicateays the internal representation of the
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body is shaped during development and maintainag@ted to the physical modification
occurring in life. In artificial agents (where tH®ody does not change with time)
adaptation can spare the tedious operation of nigntming the system’s internal
models and their calibration. The latter might bguired to compensate changes in the
visual appearance of the body or drift in the sené®.g. the motor encoders).

In infants this sense of the body is acquired dudavelopment and emerges a
few months after birth (Rochat and Striano, 2000)s is a cause-effect problem because
on the one hand the brain uses internal modelgdognize the body whereas on the
other it has to acquire the body-schema and maiittaip to date. To solve it, the brain
needs a “bootstrapping” mechanism which allowsitleatification of the body and, in
this way, the acquisition of the internal repreaéinh. To distinguish the body from the
rest of the world the brain is thought to take adage of extra information. For example,
while a child waves the hand in front of his eyds,brains “knows” what kind of motion
is producing since it has exclusive access to thentommands it sends to the muscles
and the relative proprioceptive feedback (Rochdt@imiano, 2000).

In robotics there have been attempts to replicaterscognition mechanisms.
Yoshikawa and colleagues (Yoshikawa et al., 206@)joé#t the invariance of the body
with respect to the external world to train a néugtwork to segment the arm of the
robot. Their idea is that during learning, when thbot moves in the environment, the
background changes, whereas the arms remain statiowith respect to the
proprioceptive feedback.

Instead, the active behavior of the robot is useibtta and Fitzpatrick (Metta
and Fitzpatrick, 2003); in this case the robot tidfe&s its body because it moves with

respect to the background. Since motion alone issofficient to segment out external
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objects that move in the environment, the systemneksesimilarities between
proprioceptive and visual feedback. Among the aheeriodic actions may add
robustness because offer the possibility to expepeatability (Fitzpatrick and Arsenio,

2004).

(2) Segmentation of the hand
Repeated, self-generated actions were performedhbyrobot during the

learning phase. In particular the robot was prognach to execute periodic movements
of the wrist. The resulting motion of the hand wietected by computing the image
difference between the current frame and an adaptiedel of the background. The
period of motion of each pixel in the resulting matimage was then computed with a
zero-crossing algorithm; similar information wastrexted from the proprioceptive
feedback of each motor encoder. As a result, thel lnd the robot was segmented by
selecting, among the pixels that moved periodicalipse whose period matched that of
the wrist joints. Conversely non-periodic pixelspixels moving with different periods
were identified as being externally originated aistarded. Figure 4 shows an example
of the detection for two different pixels whose oot was (a) correlated and (b)
uncorrelated with that of the robot’s hand. Lowspéiliering and a threshold was applied

after the detection to obtain a dense segmentegeirtsee Figure 5).

[FIGURE 4 about here]

This algorithm forces the robot to stop and waitilithe periodic movement of

the wrist is performed. For this reason it is neful during action or to drive a feedback
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control loop; it is instead ideally suited as a tstrapping mechanism to acquire an
internal model of the hand which can provide fastealization. In practice this was
implemented with two neural networks: one traineddmpute the position of the hand
in the visual field given the current arm and hg@adture, and another to estimate the
hand’s shape and orientation (in this case the hasdrepresented as an ellipse). Indeed,
these neural networks can also predict the expeldedtion and the (simplified)
appearance of the hand in the visual field givendlrrent posture of the robot (its “felt”
position). The approach we followed here to perfaha segmentation of the hand is
similar to the one of Metta and Fitzpatrick (Mettad Fitzpatrick, 2003); the main
difference with our approach is the use of periibgithat allows the detection of the hand
in real time at high resolution. The result is axgke segmentation from which it is

possible to derive additional information like shagnd orientation.

(2) The hand internal model, expectation and pretito

To gather the training data the robot moved the m@mndomly and then waved
the hand for a few seconds; for each spatial lonattie segmentation of the hand was
performed as described in the previous section.elgch trial the center of mass of the
segmented area was computed along with the besigfiellipse parameters. The

complete algorithm is reported in Figure 6.

[FIGURE 5 about here]

The resulting(x, y) coordinates were used to train the first neurdlvoek

whereas the ellipse parameters (orientation, majwd minor axis) constituted the
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training samples for the second neural networks ilnportant to take into account that
the position of the hand in the visual field depehdth on the posture of the arm and
head (other parameters like orientation and sizhethand are less influenced, if not at
all). Unfortunately this enlarges the learning spand increases the time required for
exploration (to collect the training set) and léagn(higher dimensionality). For this

reason the position of the hand was projected ant@gocentric reference frame before
being used to train the neural network. This lggération significantly reduced the

dimensionality of the input space of the neuralveek. When needed, the output of the
neural network is projected back to the retinodgeneference frame. Both projections
(back and forth from egocentric and retinocentefference frame) require knowledge of
head inverse and direct kinematics. In the experimeeported here they were hardwired
in the system, a possible procedure to learn a hafdéhem is suggested by Arsenio

(Fitzpatrick and Arsenio, 2004). Figure 7 repohts block diagrams of the two models.

[FIGURE 6 about here]

As learning module we employed a multi-layer petaap network with
sigmoidal units trained with backpropagation; léagnwas performed online by storing
all new samples and performing batch learning ev9 new samples. The learning
process was validated by testing the ability ofrikwvork to predict new samples; when
a new sample was obtained the network was usedetlicp the output given the input.
The resulting output was compared to the curremtpda and the error computed. The
increasing ability of the network to predict newmgdes proved that learning was

effective. Figure 8 (left) reports the plot of teor during an experiment (in this case the
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error is computed in the image plane to simplifgudglization of the results); the total

time of this experiment was about two hours.

[FIGURE 7 about here]

At the end of the exploration phase the robot mamhéd an internal model of
the hand by which it could i) localize its centdrnoass ii) estimate its orientation and
approximate size. The output of these models idaeed on actual visual feedback, but
on the mere projection of the proprioceptive infation about the hand: they represent

the expectation the robot possesses about its (rodlyis case, the hand).

[FIGURE 8 about here]

These measures were used in numerous ways. Ther cémbass was employed
to close a visual loop to direct gaze towards thedh(see Figure 8 right). For this task
the internal model was addressed with the propptree feedback of the arm. Another
possibility was to address the model with the aratancommand (final joint position) to
obtain the position of the hand at the end of tliwement. In general this model offers a
means of computing a prediction of the positiongsand orientation of the hand from a
given arm configuration or, in other words, of slating a motor action. In the next
section this will be used to learn the reaching rmagp estimate the visuomotor Jacobian

matrix for a reaching task.
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(2) Reaching

The solution we propose is based on the use ofextdnapping between the
eye-head motor plant and the arm motor plant (Mettaal., 1999). Flanders and
colleagues (Flanders et al., 1999) suggested heairformation about gaze direction
might be employed by the brain to establish a esfee point for reaching. They analyzed
the error when reaching in the dark and showed tidsvcorrelates to the error of the
gaze (the gaze drifts away from the target in #)d Accordingly one premise we make
is that the position of the fixation point coincideith the object to be reached. In other
words, reaching for an object starts by lookingt.atynder this assumption, the fixation
point can be considered as the “end-effector” efélie-head system. The position of the
eyes with respect to the head, determines unigirelyposition of the fixation point in
space relative to the shoulder. The arm motor comdmean be obtained by a
transformation of the eye-head motor/positionalialdes. We called this approach
“motor-motor coordination”, because the coordinatadion is obtained by mapping

motor variables into motor variables:

Qam = (Ahead) (7)
whereq,.,, andq,,, are head and arm posture respectively (joint 9pace
What is interesting in this approach is not equafit) per se, which, after all,
implements the inverse kinematics of the arm, het mechanisms used to learn it. In
fact, this mapping can be easily learnt when tlaeking behavior described in the
previous section is active. The robot explored therkspace by moving the arm
randomly, while simultaneously, it tracked its hamthenever the eyes fixated the hand a

new sample consisting of the arm and head jointegangas acquired and used to train a
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neural network approximating equation (7). In tase learning was performed online by
using the Schaal at al. model (Schaal and Atkek®®3). The exploration was conducted
in two ways. A first movement of the arm was peried by sampling a random uniform
distribution within the part of the arm workspacoefiont of the robot. Small subsequent
movements were performed randomly with Gaussiatrildision with zero mean and
standard deviation equal to 5 degrees. This lagt wthile not strictly required sped up
learning by sampling quickly large portions of them’s workspace: i.e. for small
movements of the order of 5 degrees the arm firatvas achieved rapidly and thus a
new sample was added to the training set. Wherffecisnt number of samples were
acquired, the robot started using the motor-motap rto actively reach for visually
identified objects while learning could continue.

Learning can be further improved by reducing theetisionality of the input

vector g,,.,4- In fact, only three variables are needed to dbdeposition of the fixation

point; for this purpose we decided to use azimwlevation, and distance — in
substitution for the five angles of the head jairfkis transformation is motivated by

practical reasons, but it is also biologically Heale (Lacquaniti and Caminiti, 1998).

[FIGURE 9 about here]

Similarly to the previous section, learning wageadsby comparing every new
sample to the output of the network (see text &ailk). The graph of the error during an
experiment is reported in Figure 9 (left) for eaample (dotted line) and the moving
window average over 20 samples (the total timehefeéxperiment was about one hour

and a half). From the first plot it is hard to detene a real increment of performance as
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several samples at the end of the learning segs&sent relatively large errors. This is
due to noise in the training data, which affectsordy learning, but also the measure of
performance. In particular noise is higher in thosafigurations of the arm where the
hand is closer to the head and the system faitomdrol the angle of vergence between
the eyes. In these situations the error is largaume the position of the fixation points
varies significantly (from very far to very clos€lhe average error, however, has a
distinguishable uniform trend. Figure 9 (right) alsoa sequence of images taken from
the robot left eye during an exemplar reachingoacti

It is worth mentioning that there is no need toasafe the exploration/training
phase and reaching (exploitation). An initial “eefl can be employed as substitute for
the reaching map at the very beginning; this sinbgleavior could, for example, populate
the robot workspace with three positions (left,teemnd right). Exploration in this case
would still be guaranteed by a random procedurmejlai to the one described earlier.
This approach was followed in (Metta et al., 1991@tta, 2000).

The reaching problem can also be solved in the énpdane. Consider the planar

case (i.e. no 3D information is available and ohte arm joints is maintained to a fixed
position) and suppose to measure the positioneoktid point in the image plang,,,4-
We want to control the arm to reach a target paint,,. If the robot is not in a singular
configuration we can solve the problem by followegtandard visual servoing approach

(Espiau et al., 1992, Hutchinson et al., 1996):

q = - kX3 }(q ) XOX ®)

arm

where:

Dx = Xpand ~ X;and’ ©)
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k>0 is a scalar anci]( arm) is the Jacobian of the transformation betweernirtizge
plane and the arm joint spacé:l(qarm) is 2 by 2 matrix whose elements are a non-
linear function of the arm joint angles. Giveh'l(qarm) it is possible to drive the

endpoint toward any point in the image plane. AstdocallyJ ! can be approximated
by a constant matrix:
I ) » 3= (10)
a'21 a'22
Since following the procedure described in the jmew section the robot has
learnt a direct transformation between the armtjamgles and the image plane (see for
example Figure 7), it can now recover the positbrthe endpoint from a given joint

configuration:

Xhand :f(qarm) . (11)

Indeed, to compute a local approximationJof, a random sampling of the arm

joint space around a given poi(i,a) can be performed:

6 =9+ g (12

with

9= (0) 13)
and where (0, ) follows a normal distribution of zero mean anchstard deviation of
5 degrees.

For each sample, by applying equation (11) we oldaiew valuex; = x + Dx;

that can be used to estimale'around@ with a least squares procedure:
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a,
;
q = X 0 5 &2 (14)
0 X' ay
ay,

j'l(ﬁ) can then be used in the closed loop controllatrive the arm toward a specific

position in the image plane. However, there is aechto close the loop with the actual
visual feedback. By using the map in equation (Irlfact, we can substitute the actual
visual feedback with the internal simulation praddby the model. From the output of
the closed loop controller we can estimate thetjposiof the arm at the next step, by
assuming a pure kinematic model of the arm; in Way the procedure can be iterated
several times to obtain the joint motor commandguired to perform a reaching
movement. The flowchart below explains this procedu

In principle the inverse Jacobian could be leagnusing the visual feedback of
the hand. In practice however this is often impcatt because continuous visual
feedback from the hand is rarely available. Thereggh we propose here requires only
knowledge of the forward kinematics (as estimatadthe previous section); the
estimation of the inverse Jacobian with the apgroae described is fast and can be
easily performed online. Note also that the invelaeobian could have been computed
analytically by taking the first derivative of ediocm (11). By selecting a least square
solution, in our case, we added an extra smooticigr that is beneficial in considering
a control application. Also, in theory, our appriods more flexible since it does not
require the knowledge of the number of units andicttire of the neural network

employed to approximate equation (11) and can beptetely automatic.

[FIGURE 10 about here]
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The main limitation of this approach is that we ot make use of three-
dimensional visual information; while this is aatdimitation of this implementation, the
same approach can be easily extended to the fullc&®. The implementation is
consistent with the hand internal model which pdeegi the position of the hand in the
image plane of one of the eyes only (left). Sincghe Babybot the hand position is
uniquely described by three degrees of freedom f(teethree joints of the Puma arm),
this technique was used to control only two of théarm and forearm). Given the
kinematics of the Puma arm this allowed to perfonomvements on the plane defined by
the shoulder joint. Another point worth discussisighat the closed loop controller does
not use real visual feedback, and, therefore,dtsiiacy depends on the precision of the
hand internal model. To achieve better performgnaetial visual feedback might be

required.

[FIGURE 11 about here]

Let us summarize what we have described in thissecWe have introduced
two approaches to solving the inverse kinematicghef manipulator. The first method
uses a mapping between the posture of the headséwfigation point implicitly
identifies the target) and the arm motor commaiiddlows controlling the arm to reach
any point fixated by the robota. The second apgrazes the hand internal model to
compute a piecewise constant approximation of iverse Jacobian and simulate small

movements of the arm in the neighborhood of thérel@sarget. The procedure is iterated

During the learning of the motor-motor map, thieattracks the palm of the hand.
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several times to compute the motor command reqlicedeaching the target. Reaching
in this case is planned in the image plane; howesieice the internal model is two
dimensional, the approach is limited to the plashentified by the shoulder. For these
reasons, the two methods were mixed in the expetingported in the next section. The
motor-motor mapping is employed to plan a firstsgranovement to approach the target,
whereas the “closed-loop approach” allows a finesitoning of the fingers on the
target. This second part of the movement is planmgdonsidering the point of the
ellipse at maximum distance from the robot’s bodhi¢h corresponds to the fingers) as
the arm endpoint (Figure 11). This strategy prosadcessful because it substantially
increased the probability to grasp the objectshertable.

Once the robot has computed the final arm postplaning of the actual
movement is still required. This was done withrape linear interpolation between the
current and final arm configuration. The trajectargs divided in steps which were then
effected by the low level controller; to this pusgowe employed a low-stiffness PD
controller with gravity compensation. The gravigat term for each joint was learnt

online as described in Natale (Natale, 2004).

(1) Learning about Objects

In this section we describe a method for buildimg@del of the object the robot
grasps. We assume for a moment that the robot Ihesdyt grasped an object; this can
happen because a collaborative human has givesbjbet to the robot (as we describe in
the next section) or because the robot has automsigngrasped the object. In this case
the robot may spot a region of interest in the aiscene and apply a stereotyped action

involving the arm and hand to catch it. Both sao§ are valid bootstrapping behaviors
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for the acquisition of an internal model of the eattj When the robot holds the object it
can be explored through movements of the arm aadions of the wrist.

In short, the idea is to represent objects as cidies of blobs generated by the
visual attention system and their relative posgigneighboring relations). The model is
created statistically by looking at the same obgteral times from different points of
view (see Figure 12). At the same time the systetimates the probability that each
blob belongs to the object by counting the numbemees each blob appears during the
exploration.

In the following, we use the probabilistic framewa@roposed by Schiele and
Crowley (Schiele and Crowley, 1996a, Schiele andw@®ry, 1996b). We want to
calculate the probability of the object O given ertain local measurement M. This
probability P(O|M) can be calculated using Bayeshfula:

P(M|O) P(O).

15
p(M) (15)

P(O|M)=

where P(O) is the a priori probability of the olij€; P(M) the a priori probability of the
local measurement M, and P(M|O) is the probabdityhe local measurement M when
the object O is fixated. In the following experinerwe carried out only a single
detection experiment, there are consequently owly tlasses, one representing the
object and another representing the background.ldedr of better estimations we set
P(O) and P(~O) to 0.5 (this is equivalent to damgaximum likelihood estimation).
Since a single blob is not discriminative enough,aensidered the probabilities
of observing pairs of blobs; the local measurendribecomes the event of observing

both a central (i.e. fixated) and surrounding biobs

P(M|0)=P(B|B and( B adiacenB)) (16)
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whereB; is thei™ blob surrounding the central bldh which belongs to the obje€.
That is, we exploit the fact the robot is fixatitige object and assuni to be constant
across fixations of the same object — this is gutaesd by the fact the object is being hold
by the hand. In practice this corresponds to esimgahe probability that all blobB;
adjacent td. (which we take as a reference) belong to the tbjdareover the color of
the central blolB. will be stored to be used during visual searchias the salience map.
This procedure, although requiring the “active iogvation” of the robot (through
gazing) is less computationally expensive compaoetthe estimation of all probabilities
for all possible pairs of blobs of the fixated dattje Estimation of the full joint
probabilities would require a larger training den the one we used in our experiments.
For the same reason we assumed statistical indepeadof the blobs of the objects;
under this assumption the total probability P(MIMN]O) can be factorized in the
product of the probabilities P(Mi|O). The probaie P(M|~O) are estimated during the
exploration phase with the blobs not adjacent éodéntral blob. An object is detected if
the probability P(O|M1,...,MN) is greater than a fixiareshold.

Our requirement was that of building the object elogith the shortest possible
exploration procedure. Unfortunately, the smallinirly set might give histograms
P(M|*) with many empty bins zero counts bins. Tem@ome this problem a probability
smoothing method was used. A popular method of geroothing is Lidstone’s law of
succession: (Lidstone, 1920)

_coun{ MU Q +/
coun{ 9+ v

for a v valued problem. With=1 and a two valued problem (v=2), we obtain thdl-we

17)

P(M|0O)

known Laplace’s law of succession. Following theutes of Kohavi et al. (Kohavi et al.,
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1997) we choose=1/n where n is equal to the number of frameszatili during the
training. The model of an object is trained in ridade; the duration of the training is
determined by the time required by the robot tateoaind move the object with the hand
(currently about 30 seconds).

When an object is detected after visual search,ossiple figure-ground
segmentation is attempted, using the informatiathegad during the exploration phase.
Each blob is segmented from the background if édgcent to the central blob and if its
probability to belong to the object is greater titah. This probability is approximated

using the estimated probability as follows:

P(B T O|B.and(B adiacenB,)) € P(B | B,and(B, adiacenB,)).  (18)

As an example Figure 13 shows the result of thensetation procedure. These
results could be further improved by adding somgoliyesis about the regularity of the
object boundary. However for the purpose of thipepa(object identification for the
manipulation task) these refinements were not rsecgs

In table 1, results are shown of using a toy cal antoy airplane as target
objects; 50 training sessions were performed fohexbject. The first column shows the
recognition rate, the second the average numbsaaifades (mean * standard deviations)
it takes the robot to locate the target in cassuaitessful recognition. The recognition
rate of the toy airplane is lower than the onehef toy car because the former is more

similar (by virtue of its color and number of bldphs the background.

[TABLE 1 about here]

[FIGURE 12 about here]



NATALE ET AL. 31

[FIGURE 13 about here]

(1) Grasping Behavior

The modules described in the previous sectionsbeaimtegrated to achieve an
autonomous grasping behavior. Figure 14 can be aseal reference for the following
discussion. The action starts when an object isepldn the robot's hand and the robot
detects pressure in the palm (frame 1). This sligiclutching action of the fingers; the
hand follows a preprogrammed trajectory, the fisgaend around the object toward the
palm. If the object is of some appropriate sizeg thtrinsic elasticity of the hand
facilitates the action and the grasping of the ctbjéhe robot moves the arm to bring the
object close to the cameras and begins its expioraiThe object is placed in four
positions with different orientations and backgrduframes between 2 and 6). During
the exploration, the robot tracks the hand/objedben the object is stationary and
fixation is achieved, a few frames are acquired gredmodel of the object trained as
explained above. At the end of the exploration dbgct is released (frame 4). At this
point the robot has acquired the visual model ef dbject and starts searching for it in
the visual scene. To do this, it selects the blblose features better match those of the
object’s main blob and perform a saccade. Afterghaecade the model of the object is
matched against the blob that is being fixated idurrounding. If the match is not
positive the search continues with another blobetise grasping starts (frames 7-8-9).
At the end of the grasp the robot uses haptic im&tion to detect whether it is holding

the object or rather the action failed. In this qass the weight of the object and its
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consistence in the hand is checked (the shapeecfirigers holding the object). If the
action is successful the robot waits for anothgeatb otherwise it performs another trial
(search and reach).

It is fair to say that part of the controller waeprogrammed. The hand was
controlled with stereotyped motor commands. Thremifives were used: one to close
the hand after pressure was detected, and twoglthian grasping to pre-shape the hand
and actually clasp the object. The robot reliedhenelasticity of the hand to achieve the
correct grasping. To facilitate grasping, the ijey of the arm was also programmed
beforehand; waypoints relative to the final positaf the arm were included in the joint

space to approach the object from the top.

[FIGURE 14 about here]

(1) Discussion and Conclusions

In this paper we have presented a developmentabagip to the realization of
cognitive abilities in a humanoid robot which stafitom the exploration of the body and
unfolds by eventually exploring the external worlthe robot starts from a limited set of
initial motor and perceptual competencies and artausly develops more sophisticated
ways to interact with the environment. This knovgeds used to begin the exploration of
the environment and to build a visual model ofabgcts that are grasped.

We have presented an implementation of a visuanadn system properly
taking into account top-down and bottom-up inforiwrat The top-down system divides

the visual scene into color blobs; each blob isggassl a saliency depending on the ratio
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between its color and the color of the area suimgnit. The robot actively explores the
visual appearance of the objects it grasps: every &n object is placed on the palm a
statistical model of the blobs that are part ofisitconstructed. This information is
subsequently fed to the attention system as a rhetifp primer to control the visual
search of the same object. Thus the robot experiathaws it to build a representation of
the object with which it interacts while, at thergatime, modulates the visual attention
system. The robot’s ability to act is used togethigh the body internal model to drive
the exploration of the environment. This faciligfearning in different ways. Firstly it
helps the robot to focus attention both in spackianime. During the acquisition of the
object visual model, in fact, the robot can trao& bbject because it knows the position
of the hand from its proprioceptive feedback. Tdutel is also useful to detect when the
acquisition of the model can be initiated becabsedbject does not move and the eyes
have acquired a stable fixation on it. Finally, thet that the object is being held by the
hand guarantees the link between different sensmgalities (for example the sight of
the object and the kinesthetic information from ltlaed). The object model makes use of
visual information; in (Natale et al., 2004) we shioow it is possible to build a model of
the objects based only on haptic information. la fiture we would like to investigate
the integration of the two approaches.

We support the enactive view of cognition in shayirow much the body and
the ability to build the representation of the em& world through the interaction
between the body and the environment can be ugafidn autonomous agent. Even a
simple set of behaviors (such as the one initipigvided to the robot) is sufficient to
begin the exploration of the environment and aagain internal representation of it. On

the other hand it is fair to say that much of tlysteam presented in this paper is still
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“cognitivist” and more or less carefully handcraffiato the robot. For practical reasons,
our implementation lays in between a full emergamd a cognitivist approach although
biologically informed choices were made when pdssib

We have also shown how this initial body-environiiateraction is sufficient
to start linking actions with their resulting cogsences to form prediction about the
behavior of the robot. Very often prospective cohis required to plan a successful
action. During grasping, for example, the corréuing of preshaping and closure of the
fingers is required; the lags in the sensory stee@nsual and tactile) typical of artificial
and natural systems make feedback control ineffectio be able to anticipate the
impact of the hand with the object, the robot iguieed to control the timing between
preshaping and actual grasping; clearly this cameobased only on visual and tactile
feedback. Prospective control, however, is not amiyortant for action. It gives an agent
the possibility to create expectations on whiclbase the interpretation of the world and
the actions performed by others. By means of theraction with the world the agent
builds a model of the behavior of external entit{@bjects, people, etc.) and the
associated sensory feedback. This link can be uwsgetward to anticipate the
consequences of a similar action and, eventuallgpmpare them with the real feedback.
In the same way new situations can be interpreyech&tching them against the robot’s
past experience. For example, the event of a ballfalls on the floor (and the resulting
visual and auditory sensations) can be associabedhé action of dropping it.
Anticipation and predictions enhance the agentgitato understand and interact with
the environment and, for this reason, are imporéspects of cognition. The results of
this paper represent the first steps into the implegtation of cognitive abilities in an

artificial system. It is difficult to think, at ls& from an emergent perspective, of a
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shortcut that prescinds from sensorimotor coorénan achieving cognitive skills to be
used in the real world.

To conclude, we would like to comment on the effeeuired to build a
complete robotic platform on the one hand, andsthiéware architecture on the other.
Presently the Babybot is an integrated roboticfptat where it is extremely easy for
software modules controlling different subpartsi{ahead or hand to mention just a few)
to exchange information and coordinate with eadteo{Metta et al., 2006). This is not
very common, as usually in the literature papeporesingle experiments where the
robotic platform is specifically programmed to merh the desired task, but care is not
taken to realize a system which can grow in compleas new modules are added. The
experiment reported in the last section does nbt show the integration between the
visual attention system and the motor system tad #ile complexity of the system as a
whole. We believe that this is a necessary pres@guio carry out research in humanoid

robotics as the complexity and number of skillgéase.
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Figure 1. a) The experimental setup, the Babybeft: Idetails of the hand. b) and c):

elastic compliance. d)-f): mechanical coupling kegw phalanges.
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Figure 2. The visual attention system: block diag(aee text for details).
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A,

Figure 3. Log-polar mapping. The original imageftfland the result of the log-polar

‘\

mapping in the cortical plane (right).
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Figure 4. Correlated versus uncorrelated motiongxample. The plots represents the
time course of the variables involved in the deétecprocedure for two exemplar pixels
whose motion matched (a) and did not match (b)dh#te hand. (al) and (bl) show the
value of the motion for the pixel (normalized betned and 1). The result of the zero-
crossing algorithm is reported in (a2) and (b2)e Bame procedure is replicated for the
wrist proprioceptive feedback: (a3) and (b3) shtw speed of the joint (normalized
arbitrary scale), whereas (a4) and (b4) show tkeltref the zero-crossing algorithm.

Compare (a2) to (a4) and (b2) to (b4).
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Figure 5. An example of the detection procedurentieft to right: the original image at
the beginning of the procedure, the result of teiection (that is the pixels whose motion
was correlated with that of the hand), the resulttlme low-pass filtering, the
segmentation after the ellipse fitting. Notice ttta ellipse tends to collapse towards the
center, because the log-polar transformation gmese weight to the pixels close to the

fovea.
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Figure 6. Detection algorithm, block schema. Imagescaptured from the camera. The
“motion detector” block compares the motion in timage with the proprioceptive
feedback from the arm (the wrist). A series of Ipass filters identify the blob which
contains the hand. The blob is used to mask thetrelsthe “motion detector” to remove
possible outliers. An ellipse shape is fitted oa thmaining pixels and, eventually, the

hand is segmented.
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Figure 7. Left: hand position predictor. Right: Hashape predictor. In the experiments
reported in this paper the learning modules werdiitayer perceptrons with a hidden

layer and sigmoidal units.
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Figure 8. Hand localization error trend (left). Asw examples are presented to the
network the performance improves. Example of thealiaation after learning (right).

The cross corresponds to the position of the hartttreas the ellipse represents its
approximate shape and orientation. The size oh#tesork was 20 units in the hidden

layer, the total time of this experiment was altewtt hours.
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Figure 9. Reaching error (left). As new examples gathered and presented to the
network the performance increases. This improvenseetss remarkable; we believe this
is due to noise in the training data which affeat only learning, but also the measure
of performance. An exemplar sequence of a readhitign after the learning is reported
on the right. The number of units of the networleathe learning was 12, the total time

required to perform this experiment was about ang land a half.



NATALE ET AL.

Figure 10. Closed-loop approach to reaching, flawciSee text for further details.
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Figure 11. Arm trajectories for two reaching actida) and (b). TO marks the position of
the hand at the beginning of the action. Crossesspond to the position of the palm;
circles show the position of the fingers. The ati®divided in three phases. From TO to
T1 arm prepositioning. From T1 to T2, reachingthis case the motor-motor map is
used to move the palm towards the center of thealisield (the target). A small

adjustment with the arm Jacobian is performed sitipm the fingers on the target (T2 to

T3).
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Figure 12. Object exploration and corresponding®l@l-3 and 4-6 respectively). The
blobs used in training the object model are théreéand the adjacent ones. An example
of the resulting segmentation is reported in Figl8e Notice that fixation is maintained

on the object by using the hand localization modsés text).
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Figure 13. Visual search. The robot has acquiredodel of the airplane toy during an
exploration phase (not shown); this informationn@$ the attention system. The blue
blob at the center of the airplane is selected aasdccade performed. (a) and (b) show
the visual scene before and after the saccaden@)e) show the output of the visual
attention system synchronized with (a) and (b) eespely. The result of the

segmentation after the saccade is in (c).
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Figure 14. A sequence of the robot grasping ancbbjée action starts when an object is
placed on the palm (1). The robot grasps the oljedtmoves the eyes to fixate the hand
(2). The exploration starts in (3) when the robohds the object close to the camera.
The object is moved in four different positions lghmaintaining fixation; at the same

time the object model is trained (3-6). The robaps the object and starts searching for
it (7). The object is identified and a saccade qgrenkd (7-9). The robot eventually grasps

the toy (10-12).
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Table 1. Performance of the recognition system nreasfrom a set of 50 trials.

Number of saccades when

Object Recognition rate

recognized
Toy car 94% 3.19+2.17
Toy airplane 88% 3.02+2.84




