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Abstract— We present experimental results for the humanoid
robot Kaspar2 engaging in a simple “peekaboo” interaction game
with a human partner. The robot develops the capability to
engage in the game by using its history of interactions coupled
with audio and visual feedback from the interaction partner
to continually generate increasingly appropriate behaviour. The
robot also uses facial expressions to feedback its level of reward to
the partner. The results support the hypothesis that reinforcement
of time-extended experiences through interaction allows arobot
to act appropriately in an interaction.

I. I NTRODUCTION

This paper reports the results of an experiment showing a
humanoid robot (Kaspar2 - Fig 1) using its history of inter-
action to acquire the ability to engage in the early interaction
game “peekaboo” with a human interaction partner. The robot
is a simple upper-body humanoid that can display a range
of facial and bodily expressions. The peekaboo engagement
is developed by the robot using the Interaction History Ar-
chitecture, a developmental control architecture based onthe
grounded history of sensorimotor interactions.

In earlier experiments (see [1]), this architecture was shown
to be capable of supporting development of a turn-taking
interaction in a non-humanoid robot which took appropriate
sequences of actions or gestures based on its own grounded
sensorimotor experience. This new experiment uses interac-
tion history-based control architecture, relying on temporally
extended grounded sensorimotor experiences, deployed on an
expressive an expressive humanoid for the first time. The
humanoid embodiment enhances the richness of the possible
interaction for instance by adding the ability to feedback re-
ward through facial gestures. An audio modality is also added
to the visual and other sensorimotor data, and is employed in
perception of reward along with face recognition. Furthermore,
for the first time in a robotic platform, we show how continual
modification of the space of experiences through merging
and forgetting builds a more adaptive and focused interaction
history.

Fig. 1. The Kaspar2 robot (University of Hertfordshire) hastwo 5 DoF
arms, a 3 DoF neck, two coupled 2 DoF eyes containing colour cameras and
a flexible face actuated by two further motors at the mouth.

A. Interaction Histories

We define an interaction history for an embodied agent as
the temporally extended, dynamically constructed, individual
sensorimotor history of an agent situated and acting in its
environment, including the social environment, that shapes
current and future action[1]. The history is grounded in the
sensorimotor coupling of the agent with its environment and
therefore the development of the action capabilities of an agent
based on such a history are also grounded and meaningful from
the agent’s perspective.

This aligns with the “embodied cognition” hypothesis, that
“cognition is a highly embodied or situated activity and
suggests that thinking beings ought therefore be considered
first and foremost as acting beings.”[2]. Lakoff & Johnsson
[3] also argue that all cognition, including representations and
memory of categories, eventually grounds out in embodiment
and Glenberg [4] also argues that the purpose of perception
and memory for the natural environment is to guide action,
and that even abstract concepts can be interpreted in terms
of physical actions and properties. In general we can say that



memory manifestsitself as embodied action of some kind.
That is, it is in actions resulting from recall that one witnesses
memory and that recall itself is dependent on embodiment.

Autonomous embodied artificial agents that make use of
interaction histories in guiding their actions can be thought of
as extending their temporal horizon beyond that of a simple
reactive agentand becomepost-reactivesystems when acting
with respect to a broad temporal horizon by making use of
temporally extended episodes in interaction dynamics [5].

We hypothesize that a dynamically constructed history that
is used to generate and select actions in an embodied agent
can also serve as the basis forontogenetic developmentof
the agent. Self-organization (merging and deletion of) ex-
periences in the history can provide abstraction as well as
anticipation [6]. Development in this case can be seen as
the increasing richness of the connections of experience with
action, mediated by suitable mechanisms. Such a history can
facilitate incremental development at the borders of experience
(cf. Vygotsky’s “zone of proximal development” [7])

Fig. 2. Schematic of the Interaction History Architecture

II. I NTERACTION HISTORY ARCHITECTURE

The Interaction History Architecture is shown schematically
in Figure 2. The approach is as follows:

1) to continually gather sensorimotor data and find “suit-
able” episodes of sensorimotor experience in the history
near (in terms of the experience metric) to the current
episode;

2) depending on the course of subsequent experience, to
choose from among actions that were executed when
these episodes were previously encountered;

3) where no suitable experiences are found, to choose ran-
dom actions.

There are two key aspects of this architecture. The first is the
metric space of experiencewhereby new experiences appear
as points in a growing and changing high-dimensional metric
space. The metric space is enhanced withquality information,
potentially received from the environment, from internal drives
or from other sources such as affective state. Each experience
is also associated with actions executed during the experi-
ence. The second is theaction selectionsystem. This “closes

the perception-action loop” and also closes an internal loop
feeding back and modifying the experience space. The quality
associated with each experience combined with proximity in
the metric space is used to select experiences from the history
and select actions associated with those experiences.

A. Interaction History Space

Briefly1, the Interaction History Spaceconsists of:
Sensorimotor Experiences: Time-series of sensor readings
from all available sensors of a robot, from timet to another
time t + h whereh is thehorizon lengthof the experience.
The Experience Metric: A metric measure of distance
between sensorimotor experiences. Based on an information-
throetic measure of distance between sensor time-series
viewed as values of random variables. (Crutchfield-Rényi
Information Metric [8]).
Next Action information: The next action executed after an
experience is associated with that experience.
Quality information: A value representing environmental
reward received after the experience (for a particular time
span).

Thus the metric space of experience in the Interaction
History Architecture, theinteraction history space, can be
described by the tuple(ǫ, D, q, a), whereǫ is a collection
of quantized “experiences”,D is the a matrix of distances
between elements ofǫ, q is a vector of quality values anda
a vector of actions.

The metric space is constructed continuously as the robot
experiences its environment. A new experience is created every
Granularity G timesteps, and consists of Horizonh timesteps
counting back from the current timestep. Whereh > G the
experiences will overlap. Each sensor reading is quantized
into Q evenly-sized bins. Each new quantized experience
is compared to other experiences in order to determine its
neighbours. This process, if all experiences are compared,
results in a distance matrix between experiences which defines
the structure of the metric space as it is experienced by an
individual robot.

B. Action Selection

A simple mechanism is adopted for action selection
whereby the robot can execute one of a number of “atomic”
actions (or no action) at any timestep. The actual action
selected will either be a random selection of one of the atomic
actions, or will be an action that was previously executedafter
an experience in the history. Both “quality” and proximity
to the current episode in the space affect the chance of an
historical experience (and therefore action) being selected.

This process ensures the robot may still choose a random
action as this may potentially help to discover new, more
salient experiences This has the advantage of emulating body-
babbling, i.e. apparently random body movements that have
the (hypothesized) purpose of learning the capabilities ofthe

1For further details see [1].



body in an environment [9]. Early in development, there are
fewer, more widely spread experiences in the space, so random
actions would be chosen more often. Later in development, it
is more likely that an the action selected will come from past
experience.

An advantage of this approach is that behaviour can be
bootstrapped from early random activity, and later behaviour
built on previous experience.

1) Roulette-Wheel Action Selection:An experience is se-
lected fromK candidate experiencesnear to the current expe-
rienceEcurrent. The chance of random action selection is also
represented in that list. The probabilities are calculatedusing
a “gravitational model” where each experience is represented
as a point mass a particular distance fromEcurrent. The
probability of selecting an experienceEi from E1, . . . , EK

is:
pi =

miqi

D(Ecurrent, Ei)
2

(1)

whereqi is thequality valueof Ei, mi is the mass (i.e. how
many experiences have been merged into this experience) and
D(Ecurrent, Ei) is the experience distance2.

The chance of random is added to the list as:

p0 =

∑K

i=1
pi

(rmax/τ)
2

(2)

wherermax is the radius of the ball that includes the ranked
experiences andτ is a temperaturefactor, that controls the
chance of random action selection.

Then the weighting on the “roulette wheel” is given by:

wi =
pi

∑K

i=0
pi

(3)

C. Update of Environmental Reward

The quality valueq has bearing on the selection of the
experience, and in turn on the action-selection process. The
quality value is intended to reflect how useful the experience
is in terms of positive or negative environmental feedback,
and is derived directly from the internal reward function oran
external reward measured by the robot’s sensors.

In the simplest case, the immediate (instantaneous) reward
received from the environment is associated with the current
experience. An alternative scheme is for the quality associated
with an experience to be dependent not only on the current
reward, but also on the future reward. In the present imple-
mentation thefuture rewardfor an experienceEt,h for some
given horizonhfuture is the maximum reward over the next
hfuture following the experience.

D. Merging and Deletion of Experiences in the Interaction
History Space

It is necessary to employ strategies such asmerging and
forgetting if storage and computation requirements are to be
controlled. However, employing such a strategy also provides a

2The “Experience Metric” -see [10].

powerful mechanism for continually changing and adapting the
experience space and is therefore of fundamental importance.

The merging strategy is to merge any two experiences
closer than a thresholdTmerge. Tmerge was fixed for the
most part, however alternative strategies were trialled during
development of the algorithm, including adapting the threshold
such that the maximum number of experiences in the space
remained constant.

The meta-information associated with experiences that are
merged are also assimilated. Actions from both merged ex-
periences are accumulated, resulting in an action probability
distribution; the quality values are averaged; and, a weight
value, indicating the number of experiences that have been
merged together, is set to the sum of the weights of the merged
experiences.

Experiences may also be deleted, that is, forgotten. There
are a number of different strategies to decide which expe-
riences should be forgotten, and the one used here is to
forget those experiences which have lower quality values and
thus will have little or no impact on future action selection.
Specifically, experiences older thanhfuture with a quality less
than or equal toTpurge will be deleted.

III. D EVELOPMENT USINGINTERACTION HISTORIES

THROUGH PLAYFUL INTERACTION

We describe an experiment that illustrates how a robot can
develop action capabilities based on its history of interaction
with the environment through the use of the architecture
presented. The scenario is a simple communicative interaction
game, “peekaboo”, that uses simple non-verbal gestures. The
peekaboo game as a research tool is discussed, followed by a
description of an experiment using an upper-body humanoid
robot that uses its interaction history to develop the capability
to engage in a peekaboo interaction with a human partner.

A. Peekaboo as a Research Tool

The development of gestural communicative interaction
skills is grounded in the early interaction games that infants
play. In the study of the ontogeny of social interaction, ges-
tural communication and turn-taking in artificial agents, it is
instructive to look at the kinds of interactions that children are
capable of in early development and how they learn to interact
appropriately with adults and other children. A well known
interaction game is “peekaboo” where classically, the caregiver
having established mutual engagement through eye-contact,
hides their face momentarily. On revealing their face again
the care-giver cries “peek-a-boo!’, “peep-bo!”, or something
similar, resulting in pleasure for the infant before the cycle
repeats.

In relation to the development of social cognition in infants,
cyclic social interaction games are important as they are
considered to contribute developmentally to infant understand-
ing and practise of social interaction. Peekaboo provides the
caregiver with the scaffolding upon which infants can co-
regulate their emotional expressions with others, build social
expectations and establish primary intersubjectivity [11].



It is as as a simple example of a socially-based interaction,
that peekaboo is used in these experiments, but we expect our
architecture to operate in many other situations.

B. Peekaboo with the Humanoid Robot Kaspar2

We describe an experiment that demonstrates how a robot
can use its history of interactions with a human partner to
engage in the peekaboo game. This implementation uses audio
both as an extra sensory modality and as reward feedback.

1) Method: The robot and human partner3 were positioned
facing each other at a distance of a few feet at the same eye-
level. The robot control software was started with the inter-
action history containing no previous experiences. Interaction
then commenced with the robot executing various actions and
the human offering vocal encouragement when it was thought
appropriate. The interaction then continued for approximately
two to three minutes.

Three different conditions were tried differing in the vocal
reward feedback during the interaction. Either “peekaboo”was
encouraged, an alternative action sequence was encouraged, or
no vocal encouragement was offered at all.

The experimental hypothesis was that encouraging the hid-
ing action would result in a higher rate of peekaboo sequences
than would be expected from random action selection. Fur-
thermore, this should also be the case when other actions are
encouraged instead. Finally, this hypothesis was also tested by
the no-encouragement condition with the expectation that no
action would be selected in preference to any other.

2) Interaction History Architecture Components and Set-
tings: Metric Space of Experiences: The sensor rate during
these experiments resulted in an average timestep length of
approximately 300ms. Experiences were created everyG = 2
timesteps - permitting real-time creation of the metric space,
quantizing the sensor data intoQ = 5 bins. The horizon
h for experiences was either16 or 20 depending on the
run. Quality was assigned to experiences as the maximum
environmental reward received in the subsequenthfuture = 32
or hfuture = 40 timesteps (again, depending on the run).
These values were chosen as reasonable values, the horizon
approximately matching the duration of a single behavioural
sequence.

The thresholds for merging and deletion were set at
Tmerge = 0.6bits and Tpurge = 0.9bits respectively. With
these values, a combination of the merging and forgetting
processes resulted in a manageable sized metric space for real-
time operation.
Action Selection: The closestK = 4 neighbours of the
current experience within a radius ofrmax = 2.0bits of
Ecurrent were considered in the action-selection process.

3) Motivational Dynamics:In this experiment, motivation
feedback (reward) is provided through two mechanisms: ob-
servation of a face, and audio feedback.

3Note that for all these experiments the lead author took the role of the
human partner and so was fully aware of the capabilities of the robot and of
the software.

TABLE I

KASPAR2 PEEKABOO: ACTIONS

Group Number Action Description

Movement
Actions

3 HL Head Left
4 HR Head Right
6 HID Hide Head with Hands
8 RAU Right Arm Up
9 LAU Left Arm Up
12 RAW Wave Right Arm
13 LAW Wave Left Arm
14 TR “Think” Right - raise

right arm to chin and
look right

15 TL “Think” Left - raise left
arm to chin

Facial
Expressions

1 Smi Smile
2 Neu Neutral
16 Frn Frown

Resetting
Actions

0 Rst All motors to resting po-
sition

7 NA No Action
5 HF Head to forward posi-

tion
10 RAD Right Arm Down
11 LAD Left Arm Down

Face: Human-like faces were detected in the robot’s camera
image4 and this provided direct positive rewardRf , con-
strained to be in the range[0, 1]. Habituation causes this reward
to drop-off over time.
Sound: Sound was captured from a microphone, and used
both as an additional sensory signal as well as providing
further environmental reward. The sum of the amplitudes of
the sound signal samples over the period of a timestep,εsound,
provides a new sensory input to the robot and is normalized
to the range [0,1].
Resulting Reward Signal: The final reward signalR gener-
ated by the robot in response to it’s environmental interaction
is a combination of the sound and face reward signals.R =
max(1, α(Rf +Rs)) whereα, in the range [0,1] attenuates the
reward signal and is set at0.75 for this experiment meaning
that neither reward signal on its own can result in a maximum
R, but requires support from the other reward signal.

4) Experimental Materials and Methods:Robot: The
robot used was the upper-body humanoid Kaspar2 robot cre-
ated at the University of Hertfordshire, see Figure 1. The robot
has 17 individually controlled DC servo motors: three in the
neck controlling head orientation, two controlling the coupled
eyes, two controlling the mouth for facial expression, and five
controlling each arm. The interaction history architecture and
control software was written in C++ as multiple interacting
modules, with the communication layer and abstraction of
hardware control provided by the YARP framework [13].
Actions: A total of 17 actions were available to the robot, and
these can be considered in 3 groups: movement actions, facial
expressions and resetting actions. These are listed in Table I.
The types of action that the robot can execute at any time
depends on which action was last executed. This is so that the

4Using the OpenCV library implementation [12] of Viola-Jones HAAR
cascades.



robot does not attempt to execute actions that could possibly
damage it. The configuration therefore defines the set of next
actions possible after any given action and the action selection
process is responsible for ensuring that these conditions are
met.

5) Defining a Peekaboo Sequence:A “peekaboo” sequence
is defined to be a sequence of actions beginning with the robot
hiding its face (action 6 - HID), followed by any number of
“no-action” actions (action 7 - NA) and ending with the robot
back in the resting position (action 0 - Rst). Furthermore, for
the purposes of evaluating the results of this experiment the
actions should be selected from previous experience rather
than executed randomly.

To measure the relative amounts of peekaboo in any given
period of behaviour,psel(A

HID), the percentage of times the
hiding action wasselectedas compared to other “movement”
actions, was used as a measure and is calculated as follows.
GivenN possible actions{A1, A2, . . . AN} and a period of be-
haviour consisting ofK actions executed (selected or random),
actionAn will be executedF (An) = Frand(A

n) + Fsel(A
n)

times, whereFrand indicates the frequency of random execu-
tions andFsel the frequency of the action being deliberately
selected. Then the percentage of times the Hiding actionAHID

was selected is given byPsel(A
HID) = 100Fsel(A

HID)/K
Note that for the purpose of evaluating “peekaboo”, only
actions in the “movement actions” group were considered (see
Table I).

6) Success Criteria:To consider a run successful the en-
couraged behaviour should be executed repeatedly for some
extended period of the run. Remembering that the system
starts by executing random actions and building-up experience
before potentially using its history to execute the appropriate
action repeatedly, then we might reasonably consider the run
to be successful if the behaviour made up at least a third
to half of overall behaviours executed. Furthermore, a full
peekaboo cycle would be comprised of more than one (usually
2 or 3) selected actions that together make up the selected
behaviour. So from an action perspective if the encouraged
action was selected more than around10 − 15% of the time,
then the run could be considered successful. However, the
percentage of selection alone was not the sole criteria for
judging success. Instead, each trace was examined to see when,
if, and how often repeated behaviour was executed. Ultimately
however, some runs were still considered borderline - that is
they may have failed to satisfy some aspect of the criteria.
The comments in Table II offer explanations for the decisions
in these and other cases.

C. Results

A total of 22 runs were completed. 16 of these for the
first condition (encouraging the Hiding action), 3 for the
second condition and 3 for the no-encouragement condition.
The results are summarized in Table II.In most of the exper-
imental runs it was fairly straightforward to estimate whether
the experiment successfully supported, or clearly failed,the
hypothesis that the interaction history would result in increases

TABLE II

IHA ON KASPARII: EXPERIMENTAL RUNS SUMMARY

Run Typeh Comment HID
Chosen

Result

d0032 Pkb 16 HID executed early and
repeated

55.17% Success

d0033 Pkb 16 HID executed early and
repeated

41.18% Success

d0034 None 16 HID only twice randomly 0.00% Success

d0035 Alt
HL

16 HL action chosen of-
ten. HID also chosen.
HL=36.59%

14.63% Success

d0036 Pkb 16 HID chosen often. 42.11% Success

d0037 Pkb 16 3 HID actions selected,
but RAW selected more
often

13.64% Fail

d0038 Pkb 16 No random HID to en-
courage.

0.0% Fail

d0039 Pkb 16 Run too short 12.50% ?

d0041 Pkb 16 Mixed actions - some
HID

5.49% Fail

d0042 Pkb 16 Mixed actions 9.68% Fail

d0043 Pkb 16 HID only twice 1.09% Fail

d0044 Pkb 16 HID throughout 18.87% Success

d0045 None 16 Few random HID actions 0.00% Success

d0046 Alt
HL

16 HL chosen many times
HL=11.84%

2.63% Success

d0049 Pkb 20 Few HID actions 3.26% Fail

d0050 Pkb 20 HID chosen often 26.32% Success

d0051 Pkb 20 HID chosen often 19.32% Success

d0052 Pkb 20 HID not chosen enough
for success over run.
However, regular peeka-
boo was begining to oc-
cur at the end.

4.96% ?

d0053 Pkb 20 HID chosen often 17.46% Success

d0054 Pkb 20 HID chosen often 61.76% Success

d0055 Alt
TR

20 TR (Think-Right) encour-
aged. TR=26.00%

0.00% Success

d0056 None 20 Some HID chosen 2.53% Success

in frequency of the encouraged action. However, in 2 of the
runs, this was not possible (“?” in Table II). In run d0039,
the hiding action was the only one to be selected (rather than
chosen randomly) however the run was too short for successful
evaluation. In run d0052, the figures for the whole run do not
indicate success, however, the results are borderline as the
peekaboo behaviour was clearly beginning to occur towards
the end of the run.

Where a result could be determined, 14 out of 20 runs
(70%) were successful. In the following sections representative
results from each condition are discussed.

1) Peekaboo Encouragement Condition:Figure 3 shows for
the first run (d0032), how the motivational variables (face,
sound and resultant reward) vary with time, along with the



Fig. 3. Kaspar2 Results d0032. Example of Peekaboo Encouragement Condition. The trace shows, against time, the detection of the face and audio
encouragement as well as the resulting reward. Along the topare shown the actions executed.

actions being executed . The interaction partner encourages
the first “peekaboo” sequence (“hide-face” on the diagram).
Note that a “peekaboo” action is actually a combination of the
action to hide the face (action 6), any number of “no-action”
actions (action 7) and an action to return to the forward resting
position (action 0) (for clarity only the primary action is shown
on the trace). This results in a maximal reward shortly after
the hide-face action, and as the interaction partner continues
to reinforce the peekaboo behaviour with vocal reward, this
pattern can be seen repeated throughout the trace.

As the chance of choosing a random action rather than
selecting one using the history gradually declines the early
part of the run will be more exploratory (have more randomly
selected actions) whereas towards the end of the run, actions
will be more likely to be deliberately selected using past
experience. It can be seen that during the first half of the
run various different actions are tried, but during the second
half of the run, the “hide-face” action is chosen regularly.

The timing of the motivational feedback given by the
interaction partner to the robot is important in determining
what actions are executed. In Figure 4 from run d0050, the
encouragement for the hiding action (and subsequent actions to
return the robot to the resting position) is only receivedafter
the robot additionally turns its head to the side. The result
is that when the robot decides to repeat the hiding action, it
generates experiences which are likely to generate the actions
that were executed following the original hiding action,i.e. the
robot hides its face, returns to face the front and immediately
turns its head to the side.

This behaviour (of the architecture) is an important part
of how not just single actions are repeated, but instead how
sequences of actions and robot behaviour are replayed, and it
is this that encourages a fuller development of capabilities of
the robot. It is important to note also that a specific sequence
of actions are not learnt, instead it is the continuing generation
of experience through the structural coupling of the embodied
agent and its environment that drives this observed repeated
behaviour. This can be clearly seen from Figure 4 in that the
timing of the subsequent head-turn following a hiding action
is not always the same, and indeed does not always occur.

2) Alternative Action Encouragement Condition:To il-
lustrate that the operation of the interaction history is not
limited to the peekaboo behaviour, the interaction partneralso
encouraged certain alternative actions rather than hiding. In
two cases the “head left” (HL) action was encouraged (once
also with a different call of “hello!” instead of “peekaboo!”)
and in one case the “think right” (TR) action was encouraged
instead. In each of these cases the predominant action after
some time was the encouraged one.

3) No Encouragement Condition:The final condition
where the interaction partner offered no or very little en-
couragement resulted in various kinds of behaviour, none of
which reinforced any particular action over any other, other
than “doing nothing”.

Run d0045 was completed without an interaction partner
present and so offered no reward feedback at all. The result
showed some random actions being chosen at first but as time
goes on, “movement actions” are not chosen and the robot



Fig. 4. Kaspar2 Results d0050. Showing a repeated action sequence.A multiple action sequence is encouraged and repeated here.

executed actions that keep it stationary.
In the other cases where no encouragement was offered

(runs d0034 and d0056) the robot did receive some reward
albeit not a maximum reward. In these cases the robot did
have actions from recent behaviour to choose from, however,
the behaviour did not become repeated over the long term
as continual merging and purging of experiences that do not
result in near maximal reward resulted in only transitory
behaviour. Thus the modification of the space through merging
and deletion plays an important role.

D. Emergent Classes of Experience

Analysis of the results shows that there was an extensive
reduction in the number of experiences in the metric space
through forgetting and merging, usually reducing the number
of experiences by between 40% and 90%. Between 5 and
20% of experiences were merged, the others were deleted
(“forgotten”).

Examining a typical example; run d0033, a successful
peekaboo run, merged 15 experiences out of a total of 181
experiences and deleted 63. One experience that was merged
with many later ones was experience number 1 (the sec-
ond experience). That experience was merged with 8 other
experiences and was associated with action 6 (HID - the
“hiding” action). Often when the HID action was chosen, it
was experience number 1 which was found to be similar to the
current experience. Thus it is possible to say that a class of
experiences was emerging during this run that “represented”
to the robot that it should next execute the peekaboo “hiding”
action.

This results in a developed history that has become adapted
to the interaction and focused around rewarded experience.

IV. RELATED WORK

The concept of an agent learning from its past experience is
one also used by the Case-Based Reasoning (CBR) approach
[14]. Extension to the continuous domain [15] and combi-
nation with a Reinforcement Learning approach, however,
brings the approach much closer to our IHA. However, in our
approach, the use of an information theoretic metric measure
to compare past experience with present experience can poten-
tially uncover different and more interesting relationships in
the history of experience as well as offering an ordered listof
near experiences to choose from. Furthermore, the application
to the social domain is unique and challenging.

Our approach is also related to reinforcement learning
[16], particularly those examples that use intrinsic motivation
e.g. [17] [18] and memory-based approachese.g. [19] [20]
[21]. In contrast to traditional reinforcement learning, the
Interaction History Architecture approach uses temporally
extended experience rather than the instantaneous values of the
sensorimotor and internal variables (state). This distinction is
important as, particularly where there is an interaction partner
or other agents, the environment cannot be modelled as a
simple Markov Decision Process.

[22] also studies the acquisition of a peekaboo-style com-
municative ability although in a virtual agent. The human
caregiver hides the face instead of the robot while also saying
“peek-a-boo” as reassurance and surprise. The model matches
simplified state (internal emotion state, face sensor and reward)
to predict when to expect a reward. Our work thus differs from



this in many important ways, the most significant being the
generality of our approach, using complex sensor stream and
episodes of experience, and the potential to develop and adapt
action capabilities over ontogeny.

V. FUTURE WORK

While short term behaviour acquisition is illustrated here,
future research work should look at how behaviour can be
altered over the long term in response to changing encour-
agement and reward by the interaction partner. Furthermore,
showing how different behavioural responses can be developed
for different experiences would be important next step.

Further experiments should also utilize interaction partners
that do not have prior knowledge regarding the operation of
the robot and software.

VI. CONCLUSION

The Interaction History Architecture was implemented for
the upper-body humanoid robot Kaspar2. The peekaboo inter-
action game was used to evaluate the architecture in terms of
how the robot could use its own personal interaction historyto
develop the capability to engage in the game. Results, while
limited, indicate that giving appropriate encouragement to the
robot as it executes certain series and groups of behaviours
can result in those behaviours being selected in preference
to others in equivalent conditions. This result supports the
hypothesis that encouraging the hiding action would resultin
a higher rate of peekaboo sequences than would be expected
from random selection. Furthermore, encouraging alternative
action sequences resulted in those actions being repeated,
inviting the conclusion that this behaviour of the architecture
is general and not limited to the peekaboo game. Additional
support for the hypothesis was found in the conditions that
offered no encouragement. In these cases no single action or
sequence was selected in preference to any other, emphasizing
the importance of the interaction of the environment with the
robot in producing a history of interaction that can be used to
develop action capabilities.

It was found that classes of experiences emerged through
the process of merging of experiences as the interaction pro-
gressed. These classes of experience and their associated next-
action can be said to be emergent, grounded “representations”
that have “meaning” from the robot’s own perspective in the
actions they generate.
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L. Cañamero, “Meaningful information, sensor evolution,and the tem-
poral horizon of embodied organisms,” inArtificial Life VIII . MIT
Press, 2002, pp. 345–349.

[6] N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst, “An-
ticipating future experience using grounded sensorimotorinformational
relationships,” inArtificial Life XI 11th International Conference on the
Simulation and Synthesis of Living Systems. Winchester, UK: University
of Southampton, August 2008, in press.

[7] L. Vygotsky, Mind and society: The development of higher mental
processes. Cambridge, MA: Harvard University Press., 1978.

[8] J. Crutchfield, “Information and its metric,” inNonlinear Structures in
Physical Systems - Pattern Formation, Chaos and Waves, L. Lam and
H. Morris, Eds. New York: Springer-Verlag, 1990, pp. 119–130.

[9] A. Meltzoff and M. Moore, “Explaining facial imitation:a theoretical
model,” Early Development and Parenting, vol. 6, pp. 179–192, 1997.

[10] C. L. Nehaniv, “Sensorimotor experience and its metrics,” in Proc.
2005 IEEE Congress on Evolutionary Computation, vol. 1. Edinburgh,
Scotland: IEEE Press, 2-5 Sept. 2005, pp. 142–149.

[11] P. Rochat, J. G. Querido, and T. Striano, “Emerging sensitivity to the
timing and structure of protoconversation in early infancy,” Develop-
mental Psychology, vol. 35, no. 4, pp. 950–957, 1999.

[12] OpenCV, “Open computer vision library (gpl licence),”
http://sourceforge.net/projects/opencvlibrary/, 2000.

[13] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[14] J. Kolodner,Case-based Reasoning. Morgan Kaufman, 1993.
[15] A. Ram and J. C. Santamaria, “Continuous case-based reasoning,”

Artificial Intelligence, vol. 90, no. 1-2, pp. 25–77, 1997.
[16] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.

MIT Press, March 1998.
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