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Abstract. Oscillators model are interesting models for applications that involve synchronization
phenomena and are increasingly used in science and engineering. However they have two main
limitations, first their synchronization properties are limited in the sense that they have a finite
entrainment basin, second they have no memory of past interactions (i.e. they come back to their
intrinsic frequency whenever the entraining signal disappears). We recently proposed a general
mechanism to transform an oscillator into an adaptive frequency oscillator, i.e. an oscillator that can
adapt its parameters to learn the frequency of any input signal. This mechanism is such that the
entrainment basin becomes infinite and that the oscillator remembers the frequency of entrainment
even if the driving signal disappears. Moreover it is generic enough to be applied to a large class of
oscillators. In this contribution we detail the fundamental properties of this mechanism in the case
of phase oscillators. We show that the frequency adaptation is exponential in the strong coupling
case and we generalize the mechanism to be able to explicitly control the relaxation time during
convergence. We also show the limits of the system in terms of time-frequency resolution and relate
this to an equivalent of Heisenberg boxes. Finally we use these results to extend our previous work
on pools of adaptive frequency oscillators, where a set of oscillators coupled via a negative mean
field can perform a kind of windowed Fourier series decomposition from a dynamical systems point
of view. We augment the system such that the energy content of each frequency component can also
be learned and use our results on single oscillators to infer the basic properties of the system. We
also show several numerical simulations to illustrate the capabilities of the system.
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1. Introduction. Oscillators are used increasingly in sciences, for both mod-
eling and engineering purposes. They are well suited for applications that involve
synchronization with periodic signals. However, since they traditionaly have a fixed
intrinsic frequency, two main limitations arise. First their synchronization properties
are limited in the sense that they can synchronize only with signals with close enough
frequencies (i.e. they have a finite entrainment basin). Although this entrainment
basin depends on the coupling strength with the signal to be synchronized to and
might be made arbitrarily wide (at least for simple types of oscillators) this entrain-
ment basin will always be finite. Second, they have no memory of past interactions,
if the signal to which they were synchronized disappears, they return to their original
frequency of oscillations.

Consequently when one wants to model systems that have unlimited synchro-
nization capabilities and where past interactions (i.e. memory) plays an important
role, these models are not well adapted. People have postulated that some biologi-
cal oscillators have a mechanism to adapt their intrinsic frequencies, for example to
explain the synchronization phenomena of some species of fireflies [10] or to explain
how the neural pattern generators that control the locomotion of animals can adapt
to a body that changes dramatically during the development of the animal. More-
over, for engineering applications, one would like to have flexibility in setting the
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parameters of the oscillator to have synchronization with zero phase delay without
wondering about the entrainment basins. Continuous interactions with signals of the
environment would change the parameters of the oscillator such that they correspond
to the mode of operation of the engineered system (e.g. the resonant frequency of a
mechanical system).

Several recent contributions have proposed models of oscillators that can automat-
ically adapt their frequencies to the frequency of an input signal [1, 3, 9, 10, 14, 15, 16].
However all theses mechanisms of frequency adaptation were either limited to simple
driving signals (e.g. pulses or sine waves) or limited to simple classes of oscillators
that are equivalent to phase oscillators.

1.1. Adaptive frequency oscillators. Recently we proposed a general mecha-
nism to transform an oscillator into an adaptive frequency oscillator (i.e. an oscillator
that can adapt its parameters to learn the frequency of an input signal) [5, 18]. This
mechanism is generic enough to be applied to a large class of oscillators with a wide
range of driving signals. Given an arbitrary oscillator

ẋ = fx(x, y, ω) (1.1)

ẏ = fy(x, y, ω) (1.2)

where x, y ∈ R and the parameter ω has a monotonic relation with the frequency
of the oscillations (we do not require a linear relation), we can transform it into an
adaptive frequency oscillator that will adapt its frequency to the one of an input
signal F (t). First we perturb the oscillator with the input signal F (t) (as can be
done to have standard synchronization). Second we transform the ω parameter into
a new state variable such that it will follow the natural tendency of the oscillator to
synchronize

ẋ = fx(x, y, ω) +KF (t) (1.3)

ẏ = fy(x, y, ω) (1.4)

ω̇ = ±KF (t)
y

√

x2 + y2
(1.5)

The sign depends on the direction of rotation along the limit cycle (positive if the
evolution on the limit cycle is clock-wise) and K > 0 is the coupling strength. With
this new dynamics, ω converges to a value such that the frequency of the oscillations
of x matches one of the frequency components of the input F (t). This mechanism goes
beyond mere synchronization since it works for any initial frequencies (infinite basin
of attraction) and if the input signal disappears (F (t) = 0), the new frequency stays
encoded in the system. Moreover it automatically tracks changes in the frequency of
the input (for non-stationary signals) and after synchronization the phase delay is 0.

In [18], we showed the convergence of ω to the correct frequency for adaptive fre-
quency phase and Hopf oscillators for small coupling K ≪ 1. Through perturbation
analysis we saw that the frequency adaptation was taking place at the second order
perturbation, thus emphasizing the importance of the interaction between the ten-
dency of the oscillator to synchronize and the dynamics of ω both having an evolution
on two different time-scales. One of the important results of the analysis was that the
time evolution of ω, when perturbed by a periodic signal F (t) =

∑∞
n=−∞AneinωF t is

equal to

ω(t) = ω0 +K2Dω(t) +KP (t) +O(K3) (1.6)
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Dω(t) =

(

−A0

2
√
µω0

+
∑

n∈N∗

|An|2ω0√
µ((nωF )2 − ω2

0)

)

(t− t0) (1.7)

where P (t) is a periodic function with 0 mean, Dω describe the convergence of ω, ω0

and t0 are the initial conditions of the system and µ is the radius of the limit cycle
(i.e. the amplitude of the oscillation).

Thus we see that for input signals with complex frequency spectra, the frequency
will converge to one of the frequency components of the input depending on the
initial frequency of the oscillator. For small coupling this analytic result also gave
a characterization of the different basins of attraction for different frequencies (the
basins are separated by the roots of Dω). Moreover, numerical simulations showed
that this mechanism was generic enough to be generalized to many different types of
oscillators, from phase oscillators to relaxation types and even for strange attractors.

Numerical simulations showed that this mechanism is also working for strong
coupling K ≫ 1 and that the higher the coupling, the faster the convergence to
the frequency. After convergence, the frequency parameter still oscillates around the
correct frequency value and its amplitude increases with coupling. But it seems that
this amplitude is bounded when K → ∞ as well as its speed of convergence. However,
an analytic understanding of these properties is still missing and this is one of the
goals of this contribution.

1.2. Pool of oscillators for frequency analysis. When using a large number
of adaptive frequency Hopf oscillators (a pool) coupled via a negative mean field, we
showed in [8] that it was possible to very well approximate the frequency spectrum
of signals in real-time, ranging from signals with discrete spectra to ones with time-
varying spectra and also continuous spectra. The resolution of the approximation can
be made arbitrary good by increasing the number of oscillators present in the pool,
although the total energy in the final spectrum is bounded by the mean field.

One interesting observation was that for time-varying spectra, the ability of the
oscillators to follow changing frequencies was similar to the behavior of a low-pass
filter with cutoff frequency at 1 rad · s−1. This means that oscillators can really well
track changing frequencies as long as the rate of change of the frequencies is lower
than 1 rad · s−1. It is an interesting observation because it suggests that behind
the nonlinear nature of the adaptation mechanism there exists some average linear
behavior. We will give in this contribution an explanation of this phenomena.

To overcome the limitation of the maximum energy density in the frequency
spectrum and the need to use a large number of oscillators for a resolution in the
frequency spectrum, the pool of oscillators can be extended by adding a weight to each
oscillator in the mean field sum, and a dynamic equation for the weight, such that the
system can also learn the energy content related to each frequency component of the
input signal [17]. In other words, instead of needing N oscillators to fill a given “peak”
in the spectrum, a single oscillator with weight is sufficient. By also adding coupling
between the oscillators it is possible to construct a system that exhibits a limit cycle
that can produce as an output any periodic patterns [17]. The resulting limit cycle
has interesting properties such as stability and modulation of the periodic pattern in
frequency and amplitude by changing the frequency and weight vectors. Furthermore,
the representation of the signal (and its state space) as differential equations allowed
us to use control theoretic tools to design a controller for biped robots [19] using the
limit cycle together with feedback loops. Although we introduced this full system
in [17, 19], we only showed a pratical application for robotics control and we never
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analyzed its properties for a systematic use in real applications.

1.3. Applications. Adaptive frequency oscillators are not just a theoretical con-
cept but were a key element in several recent applications. This mechanism was suc-
cessfully applied in adaptive control, where it was able when used in a simple feedback
loop to automatically tune a controller to the resonant frequency of a legged robot
with passive dynamics [6, 4, 5, 7]. The locomotion was then made very efficient by
exploiting the intrinsic dynamics of the robot. Another advantage is that one does
not need to tune the controller for a specific robot and any changes in the resonant
frequency will be tracked automatically (e.g. when changing gaits or the stiffness and
mass properties of the robot). An analytic treatment of adaptive frequency oscillators
in closed feedback loops with linear response is also given in [6].

Another application we mentioned earlier is the construction of limit cycles that
can produce as an output any periodic patterns [17, 19]. This was used to control
biped locomotion with a simple feedback loop that enabled to online modulate the
generated control policies and thus to control the robot at different speeds and step
lengths using only one example trajectory. This idea was extended recently and used
in conjunction with movement primitives developed by [12] for learning and robust
generation of periodic movements for a complex humanoid robot [11].

Real robotic applications require a deep knowledge of the system in use and from
that point of view the analysis provided in this contribution are very useful.

1.4. Contributions of the paper. The goal of this paper is to first present
a detailed description of the properties of adaptive phase frequency oscillators, in
order to understand the fundamental behavior of the adaptation mechanism. These
results are important since they will be used as a basis for the design of real world
applications as well as a basis to analyze more complex adaptive frequency oscillators.
We show that for strong coupling (K → ∞) the convergence of ω is exponential with
relaxation rate equal to 1. These insights allow us to introduce a parameter that
controls explicitly the relaxation time associated to this exponential convergence.
As one can expect from the Fourier uncertainty relationship, this relaxation time is
intrinsically related to the final resolution in frequency which we illustrate numerically.
We use these results to explain the linear behavior observed in tracking frequencies
for the pool of oscillators. Then we extend our analysis to pools of oscillators with
dynamic weights that adapt to the energy content of the frequencies. Finally we show
numerical experiments to illustrate these results and the capabilities of the pool of
oscillator to perform signal processing from a dynamical systems viewpoint.

2. Strongly coupled adaptive frequency phase oscillator. In our previous
work, we showed that the system was able to learn the frequency of any periodic
input. Numerical experiments showed that converge time decreases as the coupling
K increases, however so far our analytic understanding is valid only for small coupling
K << 1 and we do not have yet an analytical treatment for the case K → ∞. In the
following, we are interested in characterising the convergence for strong coupling and
especially its limit (what is the maximum convergence possible).

In the following we derive our results using a phase oscillator, even though we
used Hopf oscillators in our previous contributions. We justify this because for strong
coupling it turns out that the frequency to which the oscillator converges is slightly
different than the expected frequency. This behavior is mainly due to the interaction
of the adaptation mechanism with the radius of the oscillator (in phase space) and
is not related to the fundamental frequency adaptation process (see Appendix A for
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a more detailed discussion). In the following we use a phase oscillator to exhibit the
fundamental frequency adaptation mechanism.

2.1. Harmonic perturbation. We first analysize the system when perturbed
by a simple harmonic signal, in further sections we extend this to more complex
signals. Let an adaptive phase oscillator, i.e. a phase oscillator strongly coupled to a
periodic input with the adaptation rule for its frequency

φ̇ = ω −KF sinφ (2.1)

ω̇ = −KF sinφ (2.2)

where F = cos(ωF t) and K high enough. The main result of this section is
summarized in the following proposition.

Proposition 2.1. The solution of Equations (2.1)-(2.2) for a strong enough

coupling K when F = cos(ωF t) can be written as

φ̇(t) = sin−1
(2(ω(t) − ωF )

K

)

+ Pφ(t) +O(
2

K
) (2.3)

ω̇(t) = ωF + (ω(0) − ωF )e−t + Pω(t) +O(
2

K
) (2.4)

where Pφ(t) and Pω(t) are 2ωF periodic perturbations that have a maximum bounded

amplitude independent of the coupling strength K when K → ∞.

This means that there is exponential frequency convergence and a zero phase
difference between the oscillator and the input signal after convergence.

The rest of this section is dedicated to the proof of this proposition.

Proof. We look at the differences ωd = ω − ωF and φd = φ− ωF t in order to be
able to do fixed point analysis in the following. We then get

φ̇d = ωd − K

2
(sinφd + sin(2ωF t+ φd)) (2.5)

ω̇d = −K
2

(sinφd + sin(2ωF t+ φd)) (2.6)

We rewrite the system into time-invariant and time dependent components and
look at the time-dependant components as a perturbation, adding a factor λ

ẋ = f(x) + λg(x, t) (2.7)

where x =
(

φd

ωd

)

, f(x) =
(ωd−K

2 sin φd

−K
2 sin φd

)

and g(x, t) = −K
2 sin(2ωF t + φd)

(

1
1

)

and

where λ is the strength of the perturbation (λ = 1 in the original system). We write
the Taylor series expansion of x(t, λ) around λ = 0

x(t, λ) = x(t, 0) +
∑ ∂nx(t, λ)

∂λn
|λ=0

λn

n!
(2.8)

In the following, we first study the unperturbed system, x(t, 0) using singular per-
turbation theory and then we investigate the effect of the higher order terms in the
Taylor series.
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2.1.1. Solving x(t, 0). The time invariant system that we first need to solve is

φ̇d = ωd − K

2
sinφd (2.9)

ω̇d = −K
2

sinφd (2.10)

rescaling Ω = ωd
2
K

we get the singular perturbation problem

ǫφ̇d = Ω − sinφd (2.11)

Ω̇ = sinφd (2.12)

where ǫ = 2
K
<< 1. To solve this system, we use the singular perturbation theory

presented in [13]. The system has two distinct time scales, Equation (2.11) is varying
fast while Equation (2.12) varies on a slower time scale. In order to solve this system
of equations, we first solve an auxiliary system, taking for Equation (2.11) ǫ = 0 and
Ω constant. We get

φd = sin−1 Ω (2.13)

This solution is valid only for Ω < 1 which corresponds to the case where the frequency
of the phase oscillator of Equation (2.9) (without any frequency adaptation) has
entered in its entrainment basin. Injecting this solution into equation (2.12) we get

Ω(t) = Ω0e
−t (2.14)

From this we solve, what is called in [13], the boundary layer equation defined by

dφ̃d

dτ
= Ω − sin(sin−1 Ω + φ̃d) (2.15)

where Ω is kept fixed. φ̃d = 0 is an exponentially stable fixed point of the system and
the solution is

φ̃d(τ) = 2 tan−1(
1

Ω
(1 −

√

Ω2 − 1 tan(
−τ

√
Ω2 − 1

2
))) (2.16)

We can now use Theorem 11.2 of [13] that tells us that there exists a positive ǫ∗

such that ∀t0 ≥ 0 and 0 < ǫ < ǫ∗ the previous singular perturbation problem (Eqs.
(2.11)-(2.12)) has a unique solution on [0,∞] and that Ω(t, ǫ) − Ω0e

−t = O(ǫ) and
φd(t, ǫ) − sin−1(Ω0e

−t) − φ̃d(
t
ǫ
) = O(ǫ). Moreover ∀t1 > t0, there is a ǫ∗∗ such that

φd(t, ǫ) − sin−1(Ω0e
−t) = O(ǫ) holds uniformly for t ∈ [t1,∞] whenever ǫ < ǫ∗∗.

Relating these results to the original system of Equations (2.9)-(2.10), it means that
we can find sufficiently high coupling K such that in the region where ωd

2
K
< 1 (when

the oscillator enters its entrainment basin) we have for any t > 0

φd(t) = sin−1
(2ωd(t)

K

)

+O(
2

K
) (2.17)

ωd(t) = ωd(0)e−t +O(
2

K
) (2.18)

It is an interesting result since it shows that when t → ∞ we eventually get φd = 0
which means that we have synchronization of the phases and ωd = 0 which means that
the correct frequency is learned. Moreover it shows that for the frequency adaptation,
convergence is exponential with relaxation time 1.
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2.1.2. Higher order terms of the Taylor series. We calculate the ∂nx(t,λ)
∂λn |λ=0

terms in the Taylor series expansion (Eq. (2.8)). For n = 1 we have

xλ(t, λ) =

∫

(
∂f

∂x
+ λ

∂g

∂x
)
∂x

∂λ
+ g(x, s)ds (2.19)

where xλ = ∂x
∂λ

. Its time derivative at λ = 0 is

ẋλ = A(t)xλ +
K

2
b1(t) (2.20)

where we have

A(t) =
∂f

∂x
|x(t,0)=

[

−K
2 cos(φd(t, 0)) 1

−K
2 cos(φd(t, 0)) 0

]

(2.21)

and

b1(t) = g(x, t)|x(t,0)= − sin(φd(t, 0) + 2ωF t)

(

1

1

)

(2.22)

which can be approximated (at any precision increasing K) using Equation (2.17)

A(t) ≃





−K
2

√

1 − 2ωd(0)
K

e−t 1

−K
2

√

1 − 2ωd(0)
K

e−t 0



 (2.23)

and

b1(t) ≃ − sin(sin−1(ωd(0)e−t) + 2ωF t)

(

1

1

)

(2.24)

Generally we see that higher order partial derivatives of x by λ have a time derivative
that has the form of

ẋλn = A(t)xλn +
K

2
bn(t, xλ . . . , xλn−1) (2.25)

where bn is 2ωF periodic in t. We also notice that bn is made of polynomial combi-
naisons of xλk , k < n, such that for each monomial, the sum of the degrees of each
xλk times k is lower or equal to n − 1. The convergence and boundedness of the
Taylor series depends on the behavior of the matrix A(t) when forced by the periodic
functions bn.

2.1.3. Properties of A(t). First we can notice that the eigenvalues of A(t) are
always negative for t > 0, thus the linear systems defined by (2.25) are BIBO-stable
and inputs bn make the xλn converge to some periodic function of frequency 2ωF after
some transcient. Moreover, this matrix converges exponentially fast to

lim
t→∞

A(t) = A∞ =

[

−K
2 1

−K
2 0

]

(2.26)

Approximating A(t) by A∞ we find the Laplace transform of xλn valid for some t > 0
(after the transcient) as

Xλn(s) = (Is−A∞)−1CBn(s) (2.27)
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Fig. 2.1. (a) We plot ωd for the adaptive frequency phase oscillator (in blue), the approximated
system up to the second order term of the Taylor series (in dashed red) and the exponential con-
vergence (in black). We used ωF = 30, ω(0) = 50 and K = 1000. We see the good match between
the approximations and the original system. (b) This figures shows the final relative amplitude of
oscillations of ω after convergence as a function of K. In this experiment we used ωF = 30.

where C =

[

K
2 0
K
2 0

]

. Thus the corresponding transfer function H(s) = Xλn (s)
Bn(s) is

H(s) =

[

K
2

s+1
s2+ K

2 (s+1)
0

K
2

s

s2+ K
2 (s+1)

0

]

(2.28)

We see that the gain when K → ∞ is independent of K and equal to
(

1
ω√

1+ω2

)

< 1.

Taking the previous observation on the structure of the bnwe can write that for λ = 1

‖ xλn ‖λ=0≤‖ bn ‖≤ dn ‖ b1 ‖ (2.29)

where dn is a number that cannot grow faster than n!. Thus we can now bound the
Taylor series around λ = 1 and get

‖
∑

xλn |λ=0
1

n!
‖≤
∑ dn ‖ b1 ‖

n!
(2.30)

We then see that the series is bounded and converges absolutely. The solution of
Equations (2.1)-(2.2) for strong coupling K can then be written as

φ̇(t) = sin−1
(2ωd(t)

K

)

+ Pφ(t) +O(
2

K
) (2.31)

ω̇(t) = ωF + (ω(0) − ωF )e−t + Pω(t) +O(
2

K
) (2.32)

where Pφ(t) and Pω(t) are 2ωF periodic perturbations that have a maximum bounded
amplitude independent of the coupling strength K when K → ∞. This finishes the
proof of Proposition 2.1.

In Figure 2.1(a) we show the behavior of the frequency variable (ωd of the original
system (Eqs. (2.9)-(2.10)) together with the approximation from the singular pertur-
bation problem (Eq. (2.18)) and the approximation from the Taylor series of order
2. We see very well the exponential convergence of the system in average and also
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that the first two terms of the Taylor series explains most of the oscillating behavior.
Figure 2.1(b) shows how the final amplitude of oscillations (∆ω) around the frequency
ωF changes as a function of the coupling strength. We clearly see that this amplitude
is bounded when K → ∞.

2.2. Control of the relaxation time. The convergence of frequency is expo-
nential with relaxation time 1. From the previous analysis, it is then easy to choose
an arbitrary relaxation time τ for the exponential convergence by transforming the
system as

φ̇ =
ω

τ
−KF sinφ (2.33)

ω̇ = −KF sinφ (2.34)

It can be seen as a rescaling of frequency or equivalently as a change in the frequency
resolution (the frequency of interest is now ω

τ
). Performing the same analysis as before

we can see that the convergence will be of order e−
t
τ .

Another way of considering this change in frequency resolution is to make the
change of variable Ω = ω

τ

φ̇ = Ω −KF sinφ (2.35)

Ω̇ = −K
τ

sinφ (2.36)

and we see that we can consider the frequency rescaling as a different coupling strength
for the φ̇ and Ω̇ equations. Theoretically we could converge as fast as possible if we
set τ → 0, however this control of relaxation time does not come for free.

2.3. Tradeoff between fast convergence and precision. In addition to ex-
ponential convergence there is a periodic oscillation Pω(t) that is conserved after
convergence. Since this function is the weighted sum of the xn

λ its amplitude ∆ω will
be related to the frequency response of the transfer function H(s) associated to xn

λ

given by Equation (2.28).
We are interested in the relative amplitude ∆ω

ωF
and for relaxation time τ , we can

rewrite the magnitude of the frequency response of ωn
λ relatively to the converged

frequency ωF for K → ∞ as

‖ Hω(2ωF , τ) ‖
ωF

=
2

√

1 + 4(ωF τ)2
(2.37)

from this equation, we see that in terms of error of convergence, changing the relax-
ation time is the same as changing the frequency of the input, i.e. doubling τ will
yield the same relative error as doubling ωF . From this analysis, we can expect that
∆ω
ωF

will increase as ωF decreases and that it will also increase when decreasing the
time constant τ (i.e. increasing speed of convergence).

In order to evaluate the error of convergence, another measure of interest is the
spread of ω around the converged frequency ωF . We define this as the standard
deviation of ω after convergence σ∆ω

. This measure is the kind of measure that is
used in signal processing to measure the relationship between time and frequency
resolution.

We made experiments to measure both quantities ∆ω and σ∆ω
relatively to ωF

for different values of τ , with K sufficiently high. Figure 2.2 shows the results of the
experiments.
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Fig. 2.2. Left graph shows the relative standard deviation σ∆ω
of the ω variable around the

converged frequency as a function of τωF . The diagonal dashed line show the linear approximation
for these values for τωF > 1. The right graph shows the amplitude of the oscillations of ω after
convergence. Note the log scale on the two graphs. In this experiment, we used K = 107 and τ = 0.1,
1 and 10 for the red, blue and green lines respectively.

The first observation is that we get exactly the same results if we either change
ωF or τ in the same manner (i.e. the graphs for several τ superpose perfectly if we
use τωF as the abcisse). This confirms what we predicted from Equation (2.37).

The second observation is that for τωF < 1, σ∆ω
becomes more than 100% of

the converged frequency ωF , and the amplitude of oscillations are also much higher
than 100% of ωF . These observations just show that it is not possible to have a good
resolution on ωF if the time window defined by τ is smaller than ω−1

F (i.e. we cannot
converge with a small error faster than the input signal oscillates).

The third observation is the two linear relations between the scaled frequency
τωF and the relative amplitude and standard deviations. In the case of the standard
error, the linear relation that interests us is the one for τωF > 1 (indeed we notice
that there is an inflexion around that point). Linear regression on the data gives us
the two relations

ln(
∆ω

ωF

) = −1.07 ln(τωF ) + 0.8036 (2.38)

ln(
σ∆ω

ωF

) = −1.0006 ln(τωF ) − 0.103 (2.39)

for the second relation, if we approximate the slope with −1 (since it is included in
the confidence interval of the regression) and we then get

σ∆ω
τ ≃ 0.9021 for τωF > 1 (2.40)

Note that it was not possible to assume the slope to be −1 for the equation involving
∆ω, since it was not included in the confidence interval of the regression.

The result of Equation (2.40) is quite remarquable since it provides an equality
relating the spread of ω around ωF after convergence with the relaxation time (or time
window) associated with the exponential convergence. It thus shows that these two
quantities are closely related, even if at first sight they seem to measure two different
processes.

If we relate this observation to what is known in signal processing, we can see τ as
an implicit time window for our system and σ∆ω as a frequency window and there is

10
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Fig. 2.3. Example of convergence of ω for small coupling (K = 20). The input signal is
F (t) = cos(60t), ω(0) = 90. The vertical dashed line shows the limit of the entrainment basin, we
notice that convergence becomes exponential when the frequency of the oscillator enters in it.

a relation between the two such that the area of the window in time-frequency space
is constant (when K → ∞). We can then see τσ∆ω as an equivalent of an Heisenberg
box for adaptive frequency oscillators.

2.4. Generalization to finite coupling and more complex inputs. So far
we have shown that the convergence of frequency was exponential, with relaxation
time τ only in cases where K is high enough and for sine waves as input signals. In
this section we extend the results to any value K and to more complex input signals.

2.4.1. Exponential convergence for finite K. In Section 2.1, we showed that
frequency adaptation was exponentially fast. The singular perturbation problem that
led to this conclusion has a solution only when the initial frequency of the oscillator
is located in its entrainment basin (Eq. (2.9) without frequency adaptation) and then
all our results were derived supposing that K was high enough. Now we conjecture
that the important hypothesis is the fact that the oscillator enters its entrainment
basin to have exponential convergence and that the value of K is not important. In
the case of the original system (Eqs. (2.1)-(2.2)), the entrainment basin cannot be
calculated explicitly but we can evaluate it numerically.

We performed simulations of an adaptive phase oscillator perturbed by a cosine
input and evaluated its entrainment basin (without frequency adaptation) for a large
range of K (between 1 to 103) and then the region of exponential convergence (with
frequency adaptation). It turned out that these two regions match very well, even for
small coupling (K < 10). In Figure 2.3 we show an example of such convergence, it is
obvious that exponential convergence starts when the oscillator enters its entrainment
basin, before convergence is slower.

2.4.2. The case of signals with discrete spectra. We know from our pre-
vious contributions [8, 18] that if the input has a more complicated spectrum, ω
converges to one of the frequency components of the spectrum. We showed in [18]
that given an input signal F (t) = A0 +

∑

nAn cos(ωnt + ψn), the basins of attrac-
tion corresponding to the frequencies ωi present in the input signal are delimited
approximately by the solutions of equation

−A0

2ω(0)
+
∑

n

|An|2ω(0)

((nωn)2 − ω(0)2)
= 0 (2.41)
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This result is valid for small K. The frequency to which ω converges depends on the
initial frequency of the oscillator and the energy content of each frequency present
in the spectrum of F (t). In the case of stronger coupling, the previous equation to
delimit the region of convergence is not valid any more.

In order to characterize the convergence of ω for periodic and non periodic in-
puts with discrete spectra, we numerically evaluated the behavior of the adaptive
frequency phase oscillator for different types of input, different values of coupling and
initial conditions for ω. For each experiment, we evaluated the entrainment basins of
the oscillator for a given input without frequency adaptation together with the con-
vergence behavior of ω when adaptation was activated. Typical results for periodic
and non periodic signals with discrete spectra are shown in Figure 2.4.

From the figures, we notice that the regions of exponential convergence matches
roughly the entrainment basins, as long as these entrainment basins contain the fre-
quency to which they correspond. It must be noted that since the type of convergence
(if it is exponential or not) is evaluated numerically, the delimitation of the region of
exponential convergence is not exact, since in addition to the oscillations due to the
frequency component to which the oscillator converges there are oscillations coming
from the other frequency components. It may explain why this region exceeds a bit
the regions of entrainment. In the case of the non periodic signal (Figure 2.4(b)),
the dark gray region corresponds to the case where the frequency still converges to
the frequency 30

√
2, but the final oscillations around this frequency are mixed with

sudden jumps out the region of the frequency (then the frequency comes back to nor-
mal oscillations). This phenomena becomes more visible as coupling increases and
as the entrainment basin of this frequency gets bended until the moment where the
entrainment basin does not contain anymore the frequency 30

√
2, then the oscillator

converges to a frequency that does not correspond in average to one of the frequencies
of the input.

Albeit adaptation of frequency is different from mere synchronization, it turns
out that the structure of the entrainment basins is critical in the convergence of
the adapted frequency. First, convergence is possible only if the entrainment basin
contains the corresponding frequency. Second, when ω enters an entrainment basin
where convergence is possible, convergence is exponential.

2.5. Tracking changing frequencies. An adaptive frequency oscillator is also
able to track a time-varying frequency. Since the average convergence of the frequency
to the input frequency is exponential, with relaxation time τ we can describe it with
the following differential equation

ω̇ ≃ ωF − τ−1ω (2.42)

If we assume that ωF changes with time, this equation corresponds to a low-pass filter
with cutoff frequency τ−1 rad · s−1. It means that the oscillator will only be able to
correctly track changing frequencies such that ω̇F < τ−1. Experimental results are
shown in Section 3.

Now that we have a good understanding of the behavior of the adaptive phase
frequency oscillator, we look at the system composed of a pool of such oscillators
coupled via a negative mean field.

3. Frequency analysis with a pool of adaptive frequency oscillators. In
a previous work [8], we showed how we could use a pool of Hopf oscillators coupled via
a negative mean field to do frequency analysis of signals, with discrete, continuous and
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Fig. 2.4. These figures shows the entrainment basins of a phase oscillator (in dashed line)
for two different inputs, the vertical dotted lines represent the frequency components of the forcing
signal. The light gray area represents the region where there is exponential convergence of the
frequency adaptation. The thick black lines separate the region of convergence (i.e. towards which
frequency component the oscillator goes). The left graph shows result for a periodic signal F (t) =
1.3 cos(30t + 0.4) + cos(60t) + 1.4 cos(90t + 1.3), the right graph shows results for a non periodic
signal F (t) = 1.3 cos(30t) + cos(30

√

2) + 1.4 cos( 30π√
2

). See the text for discussion of the results and

an explanation of the dark gray zone of the right graph.

Fig. 3.1. Structure of the pool of adaptive frequency oscillators that is able to reproduce a given
signal T (t). The mean field produced by the oscillators is fed back negatively on the oscillators (taken
from [8]).

time-varying spectra. The essential idea was to use a system with multiple oscillators
with different intrinsic frequencies, and to use the adaptive frequency mechanism such
that these intrinsic frequencies change over time in order to “populate” the frequency
spectrum of the input signal. In this section, we first review the main results of our
previous contribution and then we discuss the performance of the system in light of
our results of the previous section.

3.1. Frequency analysis with coupled nonlinear oscillators. The original
idea of [8] is to use a pool of N Hopf oscillators coupled via a negative mean field, as
it is presented in Figure 3.1. The oscillators receive as an input the difference between
the signal to analyze and the mean field produced by the pool.

In this contribution we use phase oscillators instead of Hopf oscillators, since their
representation is simpler and they do not have the drawback of possessing a radius
(see Appendix A for more details). However the main results for phase oscillators
can be transposed to the case of Hopf oscillators. We also introduce the parameter τ
controlling the relaxation time, as it plays a role in the performance of the system.

13



The evolution equations are then

φ̇i = τ−1ωi −KI(t) sinφi (3.1)

ω̇i = −KI(t) sinφi (3.2)

I(t) = T (t) − 1

N

N
∑

i=0

cosφi (3.3)

The result of the frequency analysis is directly represented by the distribution of the
ωi. Especially, we see that if this distribution is equal to the frequency spectrum of
the signal to analyze, T (t), then it is a solution of the differential equation.

The resolution of the final distribution depends on the number N of oscillators.
Indeed, each oscillator contributes to the frequency spectrum in the order 1

N
. This

introduce also a limitation in the type of spectra the system can analyze since if the
power of the signal to analyze is higher than 1, the system will only be able to recover
partially its spectrum. If the power is smaller than 1, the oscillators not participating
in the recovery of the spectrum can cancel each other (for example by having out of
phase oscillations).

Numerical results from [8], showed that the system can track discrete spectra
as well as continuous and time-varying ones. For the performance of the frequency
tracking, we numerically saw that the system was behaving like a linear low-pass filter
with cutoff frequency at 1 rad · s−1.

3.2. Linear behavior of the pool of oscillators. We can now explain why
the system is behaving like a linear system when tracking changing frequencies and
moreover we can predict that τ−1 will be the cutoff frequency of the response (i.e.
how fast the system can track changing frequencies). It means that the amplitude

response of frequency tracking will be smaller than
√

2
2 for spectra changing at a higher

rate.
Lets consider Equations (3.1)-(3.3) with N = 1 and a simple cosine input. We

use N = 1 and a simple cosine input for clarity of the argument, similar observations
could be done in the more general case (N > 1, T (t) arbitrary). We can then rewrite
the equations as

φ̇ = τ−1ω −K(cos(ωF t) − cosφ) sinφ (3.4)

ω̇ = −K(cos(ωF t) − cosφ) sinφ (3.5)

looking at the differences φd = φ− ωF t and ωd = ω − τωF we then get

φ̇d = τ−1ωd − K

2
(sinφd + sin(φd + 2ωF t) − sin(2φd + 2ωF t)) (3.6)

ω̇d =
K

2
(sinφd + sin(φd + 2ωF t) − sin(2φd + 2ωF t)) (3.7)

Separating the time dependent fast oscillating terms from the time independent terms,
we can apply the same analysis as we did in Section 2 for the oscillator without
the feedback loop. The exponential convergence is not influenced by the negative
feedback loop. This loop only influences the oscillations that adds to the exponential.
These oscillations become 0 when φd = 0. This shows that the negative feedback
structure does not change the exponential behavior of the system, but it influences the
amplitude of oscillations around the exponential. Another effect that might appear is
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Fig. 3.2. Magnitude of the frequency response of the pool of oscillators (in this case N = 1 but
results are the same for higher values of N). τ = 1 is represented by the green line, τ = 0.1 by the
red line and τ = 10 by the blue line. The magnitudes 0dB and −3dB are represented by the two
horizontal lines. See the text for more details.

an interaction between several oscillators through the feedback loop, indeed we often
see that oscillators while converging to some frequency regroup into clusters. However
the analysis of such interactions is beyond the scope of this paper.

We can expect that the linear response of the system to changing frequencies will
be the same as the adaptive phase oscillator without negative feedback loop. Figure
3.2 shows the experimental amplitude frequency response for one oscillator (note that
the results would be the same for N > 1). This response is calculated as follows, we
send as input for the pool a sine wave with a time-varying frequency T (t) = sinφ, with
φ = 1

ωC
sin(ωCt) so the instantaneous frequency of the signal is φ̇ = cos(ωCt). During

the steady-state behavior of the system, we take the complex Hilbert transform of
the signal 1

N

∑

N ωi, the frequency response H(ωC) is then this Hilbert transform
divided by the Hilbert transform of cos(ωCt). We clearly see on the figure that the
experimental results match very well what we predicted. The pool behaves like a low
pass filter on the frequency space, its cutoff frequency being located at τ−1.

3.3. A word on the uncertainty relationship. We have seen in Section 2.3
that there was a relationship between the final amplitude of oscillations of ω and the
relaxation time τ in the case of a single phase oscillator without the feedback loop.
However, when introducing the negative feedback loop, we can in theory make the
error go to 0 (if we have enough oscillators to fill the input frequency spectrum). And
thus, we could think that we can use τ as small as we want since the oscillators will
converge to the correct frequencies without oscillations.

However, they cannot converge as fast as we want for free (and thus go beyond
the fundamental limits of signal processing). First, because if the oscillators do not
fill completely the spectrum of the signal in input (which is very likely if N is finite),
all the residual frequencies will make the ωi oscillate with a very high amplitude (this
amplitude will be related to the results of Section 2.3).

Second, assume that we can perfectly recover the input spectrum in theory. Then,
the error will go to 0 eventually, whatever the value of τ . However, during the transient
there will still be oscillations and their amplitude will still be related to τ . In Figure
3.3, we have made such experiments, for a sine wave as input signal with different
frequencies and for one oscillator, with and without the feedback loop. From the
results, we see that even though we are able to have convergence rate that depends on
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Fig. 3.3. Comparative convergence behavior for a system with a single oscillator, without
feedback loop ((a) and (b)) and with feedback loop ((c) and (d)). We plot the frequency differences
ωd = ω − ωF normalized by ωF . For each graph we show the behavior for different values of τ (red
for τ = 0.01, blue for 0.1 and green for 1). For each experiments, we used ωD(t = 0) = 0.5 and
K = 105. See the text for the discussion on the results.

τ with a 0 final amplitude of oscillations when using the feedback loop, the amplitude
of the transient oscillations are still comparable to the one of the oscillator without
feedback. For applications using the ω signal in real-time, one will want to have a
small relative amplitude of oscillations compared to range of working frequencies.

Moreover, if the input signal has several frequency components (which is more
realistic), then because of the large oscillations during convergence (if τ si too small),
the oscillators might never converge to the correct frequency components but keep
oscillating. In Figure 3.4, we show experimental results that illustrate this fact. We
used a pool of 50 oscillators to find the frequencies of an input signal for different
values of τ . The smallest frequency contained in the input has a period of π

100 s, and
we tested the system for a value of τ = 0.01 which is smaller than this frequency and
a value of τ = 0.05 which is bigger. We see that in the first case most of the oscillators
never converge to the correct frequencies, while in the second case, the oscillators fill
the spectrum of the input. It shows that in general it is good to have τ (that defines
the implicit time-window) bigger than the characteristic period of the frequency to
track and that we cannot use arbitrary small τ for real applications.

4. Dynamic adaptation to the energy content of the frequency spec-
trum. One problem with the pool of oscillators as we presented it is that the res-
olution of the analyzed frequency spectrum is highly dependent on the number of
oscillators present in the pool and that to fill completely a frequency component, one
has to wait that sufficently many oscillators have converged to it. Indeed, one need
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Fig. 3.4. These graphs shows the convergence behavior of a pool of 50 oscillators to the frequen-
cies of the input signal T (t) = 0.2 sin(200t) + 0.4 sin(100πt) + 0.4 sin(450t) for two different values
of τ . In both cases we used the same initial conditions and K = 200.

many oscillators to fill the energy content of a frequency component. Moreover, the
power of the signal to analyze must be less than 1.

In this section we present a way to associate to each oscillator a weight that will
allow one oscillator to code for the whole energy content of a frequency component.
This method was introduced earlier in [19, 17] for an application to robotics but its
properties were never analyzed in detail.

We add to each oscillator a new state variable αi that stands for its weight, then
the output of the system is the weighted sum of the outputs of the oscillators, we also
remove the averaging over the oscillators. The following equations describe the whole
system

φ̇i = τ−1ωi −KI(t) sinφi (4.1)

ω̇i = −KI(t) sinφi (4.2)

α̇i = ηI(t) cosφi (4.3)

I(t) = T (t) −
N
∑

i=0

αi cosφi (4.4)

where η is a positive constant. At the beginning the αi = 0. The dynamics of the new
state variable can be seen as the correlation of the input I(t) and the output of the
corresponding oscillator cosφi. When they have a frequency in common (i.e. when
one oscillator is entrained by a frequency component of the input), then in average
the correlation will be positive and αi will increase, but this frequency component
will then disappear from I(t) because of the negative feedback, making αi converge
exactly to the amplitude of the associated frequency. The other oscillators will only
feel the remaining frequency components and converge to those. We see that for a
discrete spectrum with a finite number of frequency components, we only need a finite
number of oscillators to extract exactly the frequency spectrum with our method. We
indeed see that the Fourier series decomposition of this signal is a solution of the
equations such that I(t) = 0 (we set the ωi to the frequencies of the series and the αi

to the corresponding amplitudes).
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4.1. Dynamics of the new state variables. Assuming that the input signal
has a discrete spectrum, we write it as T (t) =

∑

j Aj cos(ωFj
t + ψj). The dynamics

of the new state variables αi can then be written as

α̇i = η
(

∑

j

Aj cos(ωFj
t+ ψj) −

N
∑

k

αk cosφk

)

cosφi (4.5)

which gives

α̇i = η

(

∑

j

Aj

2

[

cos(ωFj
t+ ψj − φi) + cos(ωFj

t+ ψj + φi)
]

−
N
∑

k 6=i

αk

2

[

cos(φk − φi) + cos(φk + φi)
]

− αi

2
(1 + cos 2φi)

)

(4.6)

When the oscillator i has not converged to any frequency component of the input,
the right hand side of the equation is composed of oscillating terms (fast and slow)
and of a non oscillating term that makes αi go to 0. So in this case the dynamics is
in average exactly what we want, since there is no energy related to frequency ωi.

In the case where the oscillator i has converged to a frequency component of the
input, or at least when it is in the corresponding entrainment basin (i.e. φi ≃ ωFj

t+ψj

for some j), there is one oscillating term in the first sum that becomes constant and
Equation 4.6 can be rewritten as

α̇i =
η

2
(Aj − αi) +O.T. (4.7)

where O.T. stands for oscillating terms. Thus αi converges exponentially fast to the
correct amplitude Aj . The relaxation time is then 2

η
. In the case where several

oscillators have already converged to the same frequency, Equation 4.6 reads

α̇ =
η

2
(Aj −

∑

k

αk − αi) +O.T. (4.8)

where the sum is to be taken over the oscillators that have converged to the frequency
ωFj

. There is still exponential convergence, but in this case αi converges to the
remaining amplitude that was not taken by the other oscillators.

In order to confirm the linear behavior in average of the αi and its exponential
convergence, we mesured the frequency response of this variable when the amplitude
of a sine wave is modulated at a certain frequency. We use only one oscillator in this
experiment and the input signal is (1+cos(ωCt)) cos(ωF t), where ωC is the frequency
of variation of the amplitude. We choose ωF ≫ ωC , since the representation of the sine
wave with a time-varying amplitude is not unique and there might be an interaction
between the frequency and amplitude adaptations, which we do not want. Figure
4.1 shows the result of the experiments. We clearly see that the system acts as a
low pass filter and that the cutoff frequency is equal to η

2 as we predicted previously.
However, we do not take into accound several oscillators and the possible interactions
between these oscillators is still to be analyzed but is beyond the scope of this paper.
It seems that this interaction is nonlinear and is obviously not easy to understand.
Nevertheless this first analysis gives an idea of the average behavior of the system and
experimental tests showed us that the interaction between the oscillators becomes
critical in limiting cases (e.g. when the relaxation time of the αi is smaller than the
period of oscillations of the input to analyze).
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We used K = 100, τ = 1 and ωF = 1000.

4.2. Examples. In this section we give examples of the behavior of the system
when tracking the frequencies of different types of signals.

4.2.1. Discrete spectra. The first example we show is to track spectrum of
the signal T (t) = 1.3 cos(30t) + cos(30

√
2t) + 1.4 cos( 30π√

2
t) that we already used in

Section 2.4.2. We tested the system for two values of K to show the behavior of the
oscillators where they were starting or not in the entrainment basins corresponding
to the input. We use exactly 3 oscillators to show that they are sufficient to perfectly
recover a spectrum consisting of 3 frequencies. The results are shown in Figure 4.2.
We show the evolution of the state variables ωi and αi together with the absolute
difference between the input signal T (t) and the output of the oscillators O(t). We
also show the spectral distance, which is the distance between the spectrum of the
input and the spectrum defined by the ωi and αi variables. We assume that two
frequencies are equal if they differ by less than 1%. Note that in general to calculate
the amplitude associated to one frequency component, one has to take into account
the phase differences between the oscillators into consideration.

For the case K = 10, the initial conditions of the frequencies are out of the
entrainment basins, we see that the convergence is not exponential at the beginning.
We also see that the amplitudes αi start to increase only when the corresponding
oscillator’s frequency matches the correct input frequency. We also see the exponential
convergence of the αi. Interestingly we see that the red ωi crosses the frequencies
already filled by the other oscillators. Note that it might not always be the case
and sometimes several oscillators might code the same frequency component, thus it
is generally better to have a higher number of oscillators than frequencies that one
wants to recover.

We also show the case where K = 100, because it shows that the oscillators can
go much faster in learning the frequency spectrum of an input (in less than 5s which
corresponds to less than 50 periods of the smallest frequency) even when they start
quite far from the desired frequencies (the red ωi starts at more than 100 to converge
to 30 rad · s−1). Second, this is the same coupling as in the open loop case where only
one oscillator did not manage to get one of the frequency components of the input
as we explained in Section 2.4.2 because the entrainment basins where not containing
the corresponding frequencies anymore. Interestingly, in the system with the feedback

19



0 10 20 30 40 50
0

50

100

ω
i

0 10 20 30 40 50
0

1

2

α i

Time [s]

0 10 20 30 40 50
0

2

4

|T
(t

) 
−

 O
(t

)|

0 10 20 30 40 50
0

1

2

Time

S
pe

ct
ra

l d
is

ta
nc

e

(a) K = 10

0 10 20 30 40 50
0

50

100

ω
i

0 10 20 30 40 50
0

1

2

α i

Time [s]

0 10 20 30 40 50
0

1

2

3

|T
(t

) 
−

 O
(t

)|

0 10 20 30 40 50
0

1

2

Time

S
pe

ct
ra

l d
is

ta
nc

e

(b) K = 100

Fig. 4.2. Examples of decomposition of the spectrum of an input signal T (t) = 1.3 cos(30t) +
cos(30

√

2t)+1.4 cos( 30π√
2

t) with a pool of N = 3 oscillators for two different coupling strengths. The

parameters used in the simulations are τ = 0.5 and η = 2, K = 10 (top) and K = 100 (bottom).
Refer to the text for more details.

loop, because of the interactions between the oscillators via the mean field and the
fact that an increase of the αi induces a decrease in coupling strength, the system can
learn correctly the frequency spectrum of the input.

4.2.2. Time-varying spectra. So far we have discussed a simple example to
show the basic properties of the system. Now we show an application where the
system tracks a time varying spectrum, with appearing and disappearing frequency
components, in order to give an idea on the capabilities of the pool.

Figure 4.3 shows such an example. It is composed of one ascending linear chirp,
one descending quadratic chirp and two frequency-modulated gaussians. It is an
interesting example because it needs both the frequency and amplitude tracking ca-
pabilities of the system.

The upper graph shows the frequency distribution of the pool of oscillators as a
function of time. This representation gives the same information as a spectrogram
resulting from a windowed Fourier transform. We see that the system is able to track
the chirps and to appropriately locate the gaussians. Thus all the important features
of the signal are visible.

Second, we also notice that the error between the output of the pool and the
input is almost always 0, except when a new component appears (the gaussian) or
when the chirps cross, but still the match is quite good.

Third, the time evolution of the ωi and αi shows that oscillators that are not used
to encode the chirps are recruted when an event appears (the gaussians). We can also
see the clusters of frequencies and amplitudes that represent the different signals.
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Fig. 4.3. These graphs shows the result of analysis of a signal with a time varying spectra
with a pool of adaptive frequency oscillators, using the amplitude adaptation. The input signal is
composed of one ascending linear chirp sin(200t + 2t2), one descending quadratic chirp sin(400t −

t
3

15
), and two frequency modulated gaussians located at t = 5 and 30: sin(300t) exp− (t−5)2

2.5 and

sin(400t) exp− (t−30)2

5 . The pool is composed of N = 100 oscillators, τ = 0.05 and η = 0.2. The
upper figure shows the frequency distribution of the oscillators weighted by their respective amplitude
as a function of time. The lower left graph shows the evolution of the ωi and αi variables and the
lower right graph shows the input signal T (t) and the difference between the output of the pool and
the input. The vertical dashed bars signals the important event in time: the maximum of the 2
gaussians and the crossing of the chirps.

4.3. Importance of the choice of parameters. There are 4 parameters to
choose when using the pool of oscillators, the number of oscillators N , the coupling
strength K, the relaxation time of the frequency variables τ and the relaxation time
of the weights 2

η
. The choice is very important since it can either degrade completely

the performance of the system or be such that the oscillators never converge to the
correct frequencies (as we have seen in Section 3).

For the number of oscillators, it defines the maximum number of frequencies that
the system can identify, so in general the higher the better. However the number
should be small enough that real time computations are still possible.
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The coupling strength will mainly define the width of the entrainment basins,
thus a high value is desirable since it will allow an exponential convergence from
many initial conditions. However a too high value of K will hide some frequency
components and if all the oscillators converge to some frequencies, then the others
will not be represented.

The τ parameter, from our experience, should be chosen such that it is higher
than the period of the frequencies to track. It seems also that η should be chosen
such that 2

η
> τ . However to rigorously set rules to choose these different parameters,

we still need to make a deeper analysis of the system, particularly the influence of
the interactions between the oscillators, but this analysis is out of the scope of this
contribution.

5. Conclusion. In this paper, we have shown analytically that the adaptive
frequency phase oscillator had an exponential convergence for its frequency when
entering the entrainment basin, the relaxation time being defined by τ . We also
showed numerically that the final oscillations of ω after convergence were dependent on
this relaxation time, similar to what is known as Heisenberg boxes in signal processing.
However an analytical characterization of this relation is still missing. Our analysis
was performed on a simple adaptive frequency oscillator (based on phase oscillators),
but we know that more complex adaptive frequency oscillator can be built. We do
not provide an analysis of such oscillators, but preliminary results with oscillators
such as the van der Pol oscillator show that the fundamental concepts developped
here (exponential convergence, the τ parameter, the uncertainty relationship) should
be qualitatively the same in other oscillators.

In the last part of the contribution, we presented a system to perform a kind of
dynamic Fourier series decomposition. To the best of our knowledge this is a com-
pletely novel way of implementing a Fourier series decomposition. The system is able
to find the frequencies and associated amplitudes of an input signal in a dynamic man-
ner. The performances of the system in tracking changing frequencies and amplitudes
are charaterized by the parameters τ and η and their behavior can be assimilated to
lowpass filters. There are still open questions for these systems, as for example how to
choose the different parameters for a given application. To answer these questions, an
analysis of the interactions between the oscillators might be needed. Then a system-
atic analysis of these properties could be used to specify for which applications our
approach could be competitive compared to traditional signal processing approaches.
We must note that we do not intend to compete with state of the art signal processing
methods at this point, but to show that it is possible to implement similar processing
into a dynamical system. A strength of our system is that it is completely distributed
and could be implemented on an analog electronic device using standard components
such as phase-locked loops. Interestingly an electronic implementation of adaptive
frequency Hopf oscillators was recently proposed by Ahmadi et al. [2].

Investigating a pool of oscillators with different τ and η for different oscillators
would also be interesting. Then we could have different oscillators for different ranges
of frequencies and time resolutions. In our approach, we decompose the signal using a
basis made of sines (because we use a phase oscillator), it would be interesting to see
how changing this basis would change the performance of the system (e.g. relaxation
oscillators) and maybe to see if it is possible to find a basis that would be more similar
to a wavelet basis.

Although this adaptive frequency mechanism is very new and the design of the
pool of oscillators was mainly driven by scientific curiosity, these concepts can be used

22



in real applications. For example adaptive frequency oscillators were used successfully
for adaptive controllers in legged robotics [4, 5, 7]. Another application of this mech-
anism could be for biological modeling were memory of past interactions is needed
(e.g. in the modeling of central pattern generators). The pool of oscillators, where
coupling between the oscillators was added, was used to construct limit cycles for
robotics control [19]. The representation of a periodic trajectory with a surrounding
state space as a set of differential equations can be very useful in control because then
tools from control theory can be used directly. Other applications of this system also
include learning and robust generation of periodic movements for complex humanoid
robots [11].

Acknowledgments. This work was supported by the European Commission’s
Cognition Unit, project no. IST-2004-004370: RobotCub (L.R.) and by a grant from
the Swiss National Science Foundation (L.R. and A.I.).

Appendix A. Error of convergence for the adaptive Hopf oscillator. We
show in the following that due to interaction with the radius of the Hopf oscillator, the
adaptation mechanism makes the system converge to a frequency that is smaller than
the expected frequency. This error in convergence is only related to the fact that there
is an interaction between the adaptation mechanism and the radius of the oscillator
and does not relate to the fundamental properties of the adaptation mechanism. It
justifies our choice of phase oscillators in this contribution to understand the properties
of the adaptation mechanism.

The adaptive frequency Hopf oscillator has the following equations

ẋ = (µ− r2)x− ωy +KF (t) (A.1)

ẏ = (µ− r2)y + ωx (A.2)

ω̇ = −KF y
r

(A.3)

which gives in polar coordinates the following equations

ṙ = (µ− r2)r +KF cosφ (A.4)

φ̇ = ω −KF
sinφ

r
(A.5)

ω̇ = −KF sinφ (A.6)

where
√
µ is the amplitude of oscillations. When ω has converged, the oscillator is

phase-locked with the input signal. For a perturbation F = sin(ωF t), we approxi-
mately have φ ≃ ωF t − π

2 since the output of the oscillator is x = r cosφ. Thus we
can calculate the behavior of ω.

ω̇ = −K sin(ωF t) sinφ (A.7)

≃ K

2
sin(2ωF t) (A.8)

Integrating this equation yields,

ω ≃ ω0 −
K

4ωF

cos(2ωF t) (A.9)

Thus the frequency will oscillate around a mean value ω0, with frequency 2ωF

rad · s−1 and amplitude approximately K
4ωF

.
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The question now is to find the mean value ω0. We postulated that φ ≃ ωF t− π
2

thus we get

ωF ≃ φ̇ (A.10)

≃ ω −K sin(ωF t)
sinφ

r
(A.11)

≃ ω0 −
K

4ωF

cos(2ωF t) +
K

2r
sin(2ωF t) (A.12)

Thus we get

∆ω = ωF − ω0 (A.13)

≃ − K

4ωF

cos(2ωF t) +
K

2r
sin(2ωF t) (A.14)

∆ω represents the difference between the input frequency and the frequency of
the oscillator. Averaging ∆ω over one period will give us the mean deviation of ω0.
Because of the r term in the second part of the equation and because r has also a
perturbing function with period 2ωF , integrating ∆ω over one period will not give
a zero mean and thus the difference will not be zero and the adaptive frequency
oscillator will not exactly converge to the correct frequency. To understand how this
deviation occurs, we look at the frequency response of r. First we rewrite

ṙ = (µ− r2)r +K sin(ωF t) cosφ (A.15)

= µr − r3 +
K

2
− K

2
cos(2ωF t) (A.16)

and look at the system

ṙ = µr − r3 +
K

2
− K

2
u(t) (A.17)

where u(t) = cos(2ωF t). Since the system has a cubic term, it is difficult to
know its frequency response. However, we know that when u(t) = 0, the system
has at maximum 3 fixed points and only one is > 0, say r0. It is also >

√
µ when

K > 0 and it is stable (by looking at the linearization around r0). The vector field is
always pointing in the direction of r0. Thus we postulate that the behavior of r will
approximately be r = r0 − Ar cos(2ωF t − γ). The amplitude Ar and the phase shift
γ are defined by the frequency response of this linear system.

Analytically it is difficult to determine the frequency response for a nonlinear
system but we can calculate it for the linearization of the system around r0, we should
have a good approximation for relatively small K. We thus have for new system

˙̃r = (µ− 3r20)r̃ + u(t) (A.18)

whose transfer function is

H(s) =
−K

2(s− µ− 3r20)
(A.19)

Numerically we show that because of the phase shift, ∆ω will be positive and
thus ω0 < ωF . We also numerically evaluated the frequency response of the nonlinear
system. Figure A.1 shows the result of the prediction for ∆ω using the frequency
response of the linearized system, the nonlinear one and the real values for the adaptive
Hopf oscillator. It is clear from the graph that our postulate of φ ≃ ωF t− π

2 and the
frequency response of r explain well the deviations from the expected frequency.
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Fig. A.1. Relative mean error of convergence <ω>

ωF
of the adaptive frequency Hopf oscillator

(plain line). We also show the predictions made with the linearization of r (dash-dotted line) and
the frequency response of r numerically evaluated (dashed line).
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